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ABSTRACT

In 1965, Ron Douglas proved that if X is a closed subspace of an L1-space
and X is isometric to another L!-space, then X is the range of a con-
tractive projection on the containing L!-space. In 1977 Arazy-Friedman
showed that if a subspace X of C is isometric to another Cj-space (pos-
sibly finite dimensional), then there is a contractive projection of Ci onto
X. In 1993 Kirchberg proved that if a subspace X of the predual of a von
Neumann algebra M is isometric to the predual of another von Neumann
algebra, then there is a contractive projection of the predual of M onto
X.

We widen significantly the scope of these results by showing that if a
subspace X of the predual of a JBW *-triple A is isometric to the predual
of another JBW *-triple B, then there is a contractive projection on the
predual of A with range X, as long as B does not have a direct summand
which is isometric to a space of the form L°°(Q2, H), where H is a Hilbert
space of dimension at least two. The result is false without this restriction
on B.
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1. Introduction and background

1.1. INTRODUCTION. In 1965, Douglas [10] proved that the range of a contrac-
tive projection on an L!-space is isometric to another L'-space. At the same
time, he showed the converse: if X is a closed subspace of an L'-space and X is
isometric to another L'-space, then X is the range of a contractive projection.
Both of these results were shortly thereafter extended to LP-spaces, 1 < p < o0
by Ando [2] and Bernau-Lacey [7]. The first result fails for L>°-spaces as shown
by work of Lindenstrauss—Wulbert [31] in the real case and Friedman—Russo [17]
in the complex case. But not by much—the image of a contractive projection
on L is a C,-space.

Moving to the non-commutative situation, it was already known in 1978
through the work of Arazy-Friedman [4], which gave a complete description
of the range of a contractive projection on the Schatten class C, that the range
of such a projection is isometric to a direct sum of Cj spaces. Moreover, in
1977, Arazy-Friedman [3] showed that if a subspace X of C}, 1 < p < 00, p # 2
is isometric to another C)-space (possibly finite dimensional), then there is a
contractive projection of C), onto X. In 1992, Arazy—Friedman [5] extended
and expanded their earlier results on C to Cp, 1 < p < 00,p # 2.

Generalizing the 1978 work of Arazy—Friedman on C to an arbitrary noncom-
mutative L!-space, namely the predual of a von Neumann algebra, Friedman—
Russo [19] showed in 1985 that the range of a contractive projection on such
a predual is isometric to the predual of a JW™*-triple, that is, a weak*-closed
subspace of B(H, K) closed under the triple product zy*z 4+ zy*z. Important
examples of JW*-triples besides von Neumann algebras and Hilbert spaces
(H = B(H, C)) are the subspaces of B(H) of symmetric (or anti-symmetric) op-
erators with respect to an involution, and spin factors. Actually, the Friedman—
Russo result was valid for projections acting on the predual of a JW*-triple,
not just on the predual of a von Neumann algebra.

A far reaching generalization of both the 1977 work of Arazy—Friedman (in
the case p = 1) and the 1965 work of Douglas was given by Kirchberg [28§]
in 1993 in connection with his work on extension properties of C*-algebras.
Kirchberg proved that if a subspace X of the predual of a von Neumann algebra
M is isometric to the predual of another von Neumann algebra, then there is a
contractive projection of the predual of M onto X.
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In view of the result of Friedman—Russo mentioned above, it is natural to ask
if the result of Kirchberg could be extended to preduals of JBW*-triples (the
axiomatic version of JW*-triples), that is, if a subspace X of the predual of a
JBW*-triple M is isometric to the predual of another JBW*-triple N, then
is there a contractive projection of the predual of M onto X7 We show that
the answer is yes as long as the predual of N does not have a direct summand
which is isometric to L' (2, H) where H is a Hilbert space of dimension at least
two (Theorem 1 in Subsection 1.2). To see that this restriction is necessary,
one has only to consider a subspace of L' spanned by two or more independent
standard normal random variables. Such a space is isometric to L? but cannot
be the range of a contractive projection on L' since by the result of Douglas it
would also be isometric to an L!-space, and therefore one dimensional (consider
the extreme points of its unit ball).

1.2. PROJECTIVE RIGIDITY. THE MAIN RESULT. A well-known and useful re-
sult in the structure theory of operator triple systems is the “contractive pro-
jection principle,” that is, the fact that the range of a contractive projection on
a JB*-triple is linearly isometric in a natural way to another JB*-triple (Kaup,
Friedman—Russo). Thus, the category of JB*-triples and contractions is stable
under contractive projections.

To put this result, and this paper, in proper prospective, let B be the category
of Banach spaces and contractions. We shall say that a sub-category S of B is
projectively stable if it has the property that whenever A is an object of &
and X is the range of a morphism of S on A which is a projection, then X is
isometric (that is, isomorphic in §) to an object in S. Examples of projectively
stable categories (some mentioned already) are, in chronological order,

(1) Ly; contractions (Grothendieck 1955 [21]),

(2) LP, 1 < p < o0; contractions (Douglas 1965 [10], Ando 1966 [2], Bernau—
Lacey 1974 [7], Tzafriri 1969 [38]),

(3) C*-algebras; completely positive unital maps (Choi-Effros 1977 [9]),

(4) £,, 1 < p < oo; contractions (Lindenstrauss—Tzafriri 1978 [30]),

(5) €P-direct sums of C, (Schatten classes), 1 < p < oo, p # 2; contractions
(Arazy—Friedman 1978 [4] 1992 [5]),

(6) JC*-algebras; positive unital maps (Effros—Stormer 1979 [14]),

(7) TROs (ternary rings of operators); complete contractions (Youngson
1983 [41]),
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(8) JB*-triples; contractions (Kaup 1984 [27], Friedman—Russo 1985 [19]),
(9) ¢P-direct sums of LP(Q, H), 1 < p < oo, H Hilbert space; contractions
(Raynaud 2004 [35]).

For a survey of results about contractive projections and their ranges in Kothe
function spaces and Banach sequence spaces, see [34].

It follows immediately that if S is projectively stable, then so is the category
S, of spaces whose dual spaces belong to S. It should be noted that TROs, C*-
algebras and J(C*-algebras are not stable under contractive projections and
J B*-triples are not stable under bounded projections.

By considering the converse of the above property, one is lead to the following
definition which is the focus of the present paper. A sub-category S of B is
projectively rigid if it has the property that whenever A is an object of S
and X is a subspace of A which is isometric to an object in S, then X is the
range of a morphism of § on A which is a projection. Examples of projectively
rigid categories are fewer in number (all are projectively stable), namely,

(1) £,, 1 < p < o0, contractions (Pelczynski 1960 [33]),

(2) L?, 1 < p < oo, contractions (Douglas 1965 [10], Ando 1966 [2], Bernau—
Lacey 1974 [7]),

(3) Cp,1 < p < o0, contractions (Arazy-Friedman 1977 [3]),

(4) Preduals of von Neumann algebras, contractions (Kirchberg 1993 [28]),
(5) Preduals of TROs, complete contractions (Ng—Ozawa 2002 [32]),

(6) Cp,1<p < o0,p#2; complete contractions (LeMerdy, Ricard, Roydor
2009 [29)).

The result by Ng and Ozawa fails in the category of operator spaces with
complete contractions. Referring to Kirchberg’s paper, Ng and Ozawa conjec-
tured that “a similar statement holds for JC*-triples.” While we found that
this is not true in general, we have been able to prove the following which, in
view of the counterexample mentioned earlier, is the best possible.

THEOREM 1: Let X be a subspace of the predual A, of a JBW*-triple A. If X
is isometric to the predual of another JBW *-triple, then there is a contractive
projection P on A, such that X = P(A.) o’ Z, where Z is isometric to a direct
sum of spaces of the form L*(§), H) where H is a Hilbert space of dimension at
least two, P(A.) is isometric to the predual of some JBW*-triple with no such
LY(Q, H)-summand, and P(Z) = 0.
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In particular, the category of preduals of JBW *-triples with no summands of
the above type is projectively rigid. The proof of Theorem 1 will be achieved in
Corollaries 6.8 and 6.9. Theorem 2 in Subsection 4.3 and Theorem 3 in Section
6, are key steps in the proof of Theorem 1.

As has been made clear, JB*-triples are the most natural category for the
study of contractive projections. It is important to note that JB*-triples are
also justified as a natural generalization of operator algebras as well as because
of their connections with complex geometry. Indeed, Kaup showed in [26] that
J B*-triples are exactly those Banach spaces whose open unit ball is a bounded
symmetric domain. Kaup’s holomorphic characterization of JB*-triples directly
led to the proof of the projective stability of JB*-triples in [27] mentioned above.
Many authors since have studied the interplay between JB*-triples and infinite
dimensional holomorphy (see [15], [39], [40] for surveys).

Preduals of JBW™*-triples have been called pre-symmetric spaces ([11]) and
have been proposed as mathematical models of physical systems ([16]). In this
model the operations on the physical system are represented by contractive
projections on the pre-symmetric space.

ACKNOWLEDGMENTS. The authors thank the referee for a meticulous report,
which included many suggestions for improving and clarifying the exposition.
The authors also thank Timur Oikhberg for a useful discussion.

2. Preliminaries

2.1. JBW*-TRIPLES. A Jordan triple system is a complex vector space V
with a triple product {-,-,-} : V xV xV — V which is symmetric and linear
in the outer variables, conjugate linear in the middle variable and satisfies the
Jordan triple identity (also called the main identity),

{a,0,{z,y,2}} = {{a,b,2},y, 2} — {z,{b,a,y}, 2} + {z,y,{a, b, 2} }.
The triple product is also written {zyz}. A complex Banach space A is called
a JB*-triple if it is a Jordan triple system such that for each z € A, the linear
map
D(z):veA—{zzv}e A
is Hermitian, that is, [|e®®”(*)|| = 1 for all + € R, with non-negative spectrum
in the Banach algebra of operators generated by D(z), and ||D(2)| = ||z]|*>. A
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summary of the basic facts about JB*-triples can be found in [37] and some
of the references therein, such as [26], [18], and [20]. The operators D(z,y)
and Q(z,y) are defined by D(z,y)z = {zyz} and Q(z,y)z = {xzy}, so that
D(z,z) = D(x) and we define Q(x) to be Q(x,z). We use the notation z3 for

A JB*-triple A is called a JBW™-triple if it is a dual Banach space, in which
case its predual, denoted by A, is unique (see [6] and [22]), and the triple
product is separately weak* continuous. Elements of the predual are referred
to as normal functionals. It follows from the uniqueness of preduals that an
isomorphism from a JBW *-triple onto another JBW *-triple is automatically
normal, that is, weak™-continuous. We will use this fact repeatedly in the paper.
The second dual A** of a JB*-triple is a JBW *-triple.

The JB*-triples form a large class of Banach spaces which include C*-
algebras, Hilbert spaces, spaces of rectangular matrices, and JB*-algebras. The
triple product in a C*-algebra A is given by

1
(.2} = , (o2 + 2570).

In a JB*-algebra with product x o y, the triple product making it into a JB*-
triple is given by {z,y,2} = (zoy*)oz+ zo (y* ox) — (x 0 z) o y*.

An element e in a JB*-triple A is called a tripotent if {e, e, e} = e in which
case the map D(e) : A — A has eigenvalues 0, 1/2 and 1, and we have the
following decomposition in terms of eigenspaces,

A= AQ(@) (S¥) A1(6> 2 AO(e)v

which is called the Peirce decomposition of A. The k/2-eigenspace Ag(e) is
called the Peirce k-space. The Peirce projections from A onto the Peirce
k-spaces are given by

Py(e) = Q*(e), Pi(e) =2(D(e) — Q*(e)), Pole) =1—2D(e) +Q(e)

where, as noted above, Q(e)z = {e, z,e} for z € A. The Peirce projections are
contractive, and weak*-continuous if A is a JBW*-triple. In the latter case, we
denote their action on A, by Pj(e)«, that is, (P;(e)«)* = Pj(e).

A powerful computational tool connected with Peirce decompositons is the
so-called Peirce calculus, which states that

{Ak(u), Aj(u), Ai(u)} C A jti(u),
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{Ao(u), Az (u)’ A} = {AQ (u)’ Ao (u)a A} =0,

where it is understood that A;(u) =0 if j & {0, 1, 2}.

For any tripotent v, the space As(v) is a JB*-algebra under the product
r -y = {rvy} and involution z* = {vrv}. We use implicitly in Lemmas 3.7
and 3.8 the correspondence between projections in As(v) and tripotents of A
majorized by v and the fact that the order on such tripotents (defined below)
coincides with the order in the JB*-algebra As(v) ([12, Lemma 2.4]).

Tripotents v and v are compatible if {Py(u), Pj(v) : k,j = 0,1,2} is a
commuting family. This holds for example if u € Ay (v) for some k. Tripotents
u,v are collinear if u € A;(v) and v € A;(u), notation vTu, and rigidly
collinear if As(u) C A;(v) and Az(v) C A1 (u).

Tripotents u,v are orthogonal if u € Ag(v), that is, {uvv} = 0. More
generally, arbitrary elements z,y are orthogonal if D(z,y) = 0, and we write
x L y if this is the case. Since ||z||* = |[{zzx}| holds in a JB*-triple and for
orthogonal elements = and y we have {z + y,z + y,z + y} = {zxz} + {yyy},
it follows that ||z + y|| < 2'/2 max(||z|,||y|) and by iteration that |z + y|| <
237" max(||z||, ||y||), so that ||z + y|| = max(||z|], ||y||) for orthogonal elements
x,y. The converse is false in general, but is true in case one of x,y is a tripotent
(as pointed out to us independently by R. Hiigli and A. Peralta, [25, Th. 4.1]).
This latter fact is needed in Lemma 6.1.

For tripotents u,v, the following four statements are equivalent: D(u,v) =
0, D(v,u) = 0, {uuwv} = 0, {vvu} = 0. (By symmetry, the only non-trivial
assertion to prove is that {vvu} = 0 = D(v,u) = 0; assuming {vvu} = 0, by
the main identity, {vuv} = {vu{vvv}} = 2{vv{vuv}}, so that {vuv} € A;(v),
and by Peirce calculus, {vuv} € Ay(v), so that {vuv} = 0. Again by the main
identity (written in operator notation),

[D(v,v), D(v,u)] = D(v,u) + D(v, {vou}) = D(v,u)
and
[D(v,u), D(v,v)] = D{vuv},v) — D(v, {uvv}) = 0.

Hence D(v,u) = 0, as required.) We note here for use in the proof of Lemma 6.3
that the result just proved also holds for arbitrary elements (see [8, Lemma 1],
a reference which was pointed out to the authors by the referee).
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In the case of a tripotent w in a JBW™*-triple A with predual A,, there is a
corresponding Peirce decomposition of the normal functionals:

in which As(u), is linearly spanned by the normal states of the JBW *-algebra
Az (u). The norm exposed face {f € A, : f(u) =1 = ||f||} is automatically a
subset of As(u). and coincides with the set of normal states of Aa(u).

The set of tripotents in a J BW *-triple, with a largest element adjoined, forms
a complete lattice under the order v < v if v — u is a tripotent orthogonal to u.
This lattice is isomorphic to various collections of faces in the JBW*-triple and
its predual ([12]). A maximal element of this lattice other than the artificial
largest element is simply called a maximal tripotent, and is the same as an
extreme point of the unit ball of the JBW*-triple. Equivalently, a maximal
tripotent is one for which the Peirce 0-space vanishes, and it is also referred to
as a complete tripotent.

Given a JBW*-triple A and f in the predual A, there is a unique tripotent
vy € A, called the support tripotent of f, such that f o P»(vs) = f and
the restriction f|A2(Uf) is a faithful positive normal functional on the JBW*-
algebra As(vy). The support tripotent of f is the smallest tripotent on which
f assumes its norm. It is known that for any tripotent u, if f € A;(u). (j =
0,1,2), then vy € A;(u). The converse is true for j = 0 or 2 but fails in general
for j =1 (however, see the proof of Lemma 5.1).

We shall occasionally use the joint Peirce decomposition for two orthogonal
tripotents u and v, which states that

Ao (U + ’U) = Ay (u) ® Ao (’U) & [Al (u) N A; (’U)],
A1 (U + ’U) = [Al (U) N AO (’U)] D [Al (’U) M AO (U)],
AO(U + ’U) = Ao(’u) n Ao(’U).

Let A be a JB*-triple. For any a € A, there is a triple functional calculus,
that is, a triple isomorphism of the closed subtriple C'(a) generated by a onto the
commutative C*-algebra C(Sp D(a, a) U{0}) of continuous functions vanishing
at zero, with the triple product fgh (see [26, Cor.1.15]). Any JBW*-triple has
the propertly that it is the norm closure of the linear span of its tripotents.
This is a consequence of the spectral theorem in JBW *-triples, which states
that every element has a representation of the form z = [ Adu, analogous to
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the usual spectral theorem for self-adjoint operators, in which {uy} is a family
of tripotents [12, Lemma 3.1].

For any element a in a JBW™*-triple, there is a least tripotent, denoted by
r(a) and referred to as the support of a, such that a is a positive element in the
JBW*-algebra As(r(a)) ([12, Section 3]). It is known that y L wu is equivalent
to r(y) L u for a tripotent u. For each element a of norm one in a JBW*-triple
A, denote by u(a) the unique tripotent of A for which

{fedAc:fla)=|fl =1} ={f € Av: f(ula)) = [If]| = 1}.

The tripotent u(a) is the supremum of the set of tripotents u with {uau} = u
and is the weak*-limit of the sequence {a?"*1} ([12, Lemmas 3.2,3.4]).

A closed subspace J of a JBW*-triple A is an ideal if {AAJ} U{AJA} C J
and a weak*-closed ideal J is complemented in the sense that

Jt={zeA:D(z,J)=0}

is also a weak*-closed ideal and A = J®JL. A tripotent u is said to be a central
tripotent if As(u) ® A (u) is a weak*-closed ideal. In this case Az(u) ® A (u)
is orthogonal to Ag(u). This definition is implicit in [22, 2.7] where instead the
notion of central e-projection is defined. Our definition of central tripotent
differs from the one in [13, p. 262].

A tripotent u is an abelian tripotent if As(u) is an associative triple, that
is, the identity {zy{abc}} = {{zya}bc} holds (See [22, Definition 4.8]). The
structure theory of JBW*-triples has been well developed, using these and
other concepts in [23] and [24].

The following lemma, [18, Lemma 1.6], will be used repeatedly.

LEMMA 2.1: Ifu is a tripotent in a JBW*-triple and x is a norm one element
with Py(u)x = u, then P;(u)z = 0. Put another way, © = u + q where q L w.

2.2. SOME GENERAL LEMMAS.

LEMMA 2.2: Let uy be a family of tripotents in a J BW*-triple B and suppose
Sup, uy exists.

(a) Ifuy L y for some element y € B, then sup, uy L y.

(b) If uy € By(t) for some tripotent t, then sup, uy € B(t).

Proof. (a) If y L uy for all A, then r(y) L uy. If we let z = supuy and
z = 29 + 21 + 20 be the Peirce decomposition with respect to r(y), then
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by Peirce calculus, uy = {uxzux} = {urzour} so that by Lemma 2.1,
zo = ux + by with by L wuy. Therefore r(z9) > wy, which implies
z < 1(z0) € Bo(r(y)) and so z € By(r(y)) and therefore z L y.

(b) Write sup uy = x2+x1+xo with respect to t. Since D(uy, uy)(supuy) =
uy, by Peirce calculus we have D(uy,uy)r1 = uy and D(uy,uy)xe =
D(uy,ux)zo = 0. By (a), z2 L supuy and zy L supuy so that 0 =
D(z2,22)(x2 + 21 + 2o9) = {@2x222} + {x22221}. By Peirce calculus,
{xawaxe} = {x222x1} = 0, so that 22 = 0.

Similarly, 0 = D(zo,z0)(x2 + 1 + z9) = {zozoxo} + {Tozox1},
{zoxox0} = {T0T021} = 0, S0 that xg = 0.

LEMMA 2.3: If z and y are orthogonal elements in a JBW *-triple and if z is
any element, then

D(z,2)D(y,y)z = {a{zzy}ty}.
In other words, D(x,x)D(y,y) = Q(x,y)? for orthogonal ..

Proof. By the main identity,

{zy{zzy}} = {{zyz}oy} — {z{yzaty} + {zz{zyy}},

and the term on the left and the first term on the right are zero by
orthogonality.

LEMMA 2.4: If w is a maximal tripotent, and if u and v are tripotents with
v € Bi(u) N Ba(w) and u € Bi(w), then By (w) N By(u) C By(v).

Proof. Let z be a tripotent in By (w) N By(u). By Peirce calculus with respect
to w, D(z,z)v = 2D(z,2)D(u,u)v = 2{x{zvu}tu} = 0 so that z L v. The
spectral tripotents of an element x € By (w) N By(u) also lie in By (w) N By (u),
and the result follows.

3. Local Jordan multipliers

In this section, we define and establish some properties of Jordan multipliers,
and introduce the pullback map, which is a key concept in this paper.

Let ¢ : B, — A, be a linear isometry, where A and B are JBW*-triples.
Then * is a normal contraction of A onto B and, by a standard separation
theorem, 1* maps the closed unit ball of A onto the closed unit ball of B. Let
w be an extreme point of the closed unit ball of B. Since (¢*)~!(w) Nball A is
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a non-empty weak*-compact convex set, it has an extreme point v, and in fact
v is an extreme point of the closed unit ball of A.

LEMMA 3.1: With the above notation, ¥*[A; (v)]C B1(w) and Py(w)y*[Az2(v)] =
BQ (w)

Proof. If f is a normal state of Ba(w), then () has norm one and ¥ (f)(v) =
f(@W*(v)) = f(w) = 1 so that ¥(f) is a normal state of As(v). Now let z; €
Aj(v) and suppose ¥*(x1) = y2 + y1 with 0 # y2 € Ba(w) and y; € By(w).
There is a normal state of f of Ba(w) such that f(y2) # 0. Then ¢(f)(z1) =
f@W*(x1)) = f(y2) # 0, a contradiction since ¥(f), being a state of Az(v),
vanishes on A;(v).

To prove the second statement, let z € Ba(w). Then z = ¢*(az+a1) with a; €
A;(v) and, by the first statement, z = Py(w)z = Pa(w)Y*(a2) + Pa(w)y* (a1) =
Py(w)p*(az).

3.1. A CONSTRUCTION OF KIRCHBERG. The following lemma was proved by
Kirchberg [28, Lemma 3.6(ii)] in the case of von Neumann algebras. His proof,
which is valid for JBW*-algebras, is repeated here for the convenience of the
reader.

LEMMA 3.2: Let T be a normal unital contractive linear map of a JBW™*-
algebra X onto another JBW *-algebra Y, which maps the closed unit ball of
X onto the closed unit ball of Y. For a projection ¢ € Y, let a € X be of norm
one such that T'(a) = 1y — 2q. If ¢ is the self-adjoint part of a, then

(i) T(c?) = T(c)*,
(ii) T(xoc) =T(x) oT(c) for every z € X.

Proof (Kirchberg [28, Lemma 3.6(ii)]). With a € X such that T'(a) = 1y — 2g,
let ¢ = (a + a*)/2. Since T is a positive unital map on X, T(c) =
(T(a)+T(a*))/2 = (T(a) + T(a)*)/2 = 1y — 2¢q and, by Kadison’s genera-
lized Schwarz inequality ([36]), 1y > T'(c?) > T(c)? = (1y — 2¢)? = 1y, which
proves (i).

Define a continuous Y -valued bilinear form T on Xs.a. by

T(x,2) =T(xoz)—T(x)oT(2).



304 M. NEAL AND B. RUSSO Isr. J. Math.

By Kadison’s inequality again, T'(z,z) = T'(z2) — T'(z)?® > 0 so that for any
state p of Y, the Schwarz inequality for positive bilinear functionals yields

poT(z,y)| < [poT(x,a)]*[po T(y,y)]"/? < |IT(z, )| T(y, y)II'2.

Then by the Jordan decomposition for normal functionals, for any element
peY,

lpo T(x,y)| < 4|T(z, )| T(y, 9)I"*.
Since T'(c,¢) = 0 we have T(c,z) = 0 for all z € Xg.a., and (ii) follows.

With the notation of Lemma 3.2, define a Jordan multiplier (with respect
to the data (X,Y,T)) to be any element of the set

MX,)Y,T)={z€ X :T(xoz)=T(x)oT(z) for all z € X}.

COROLLARY 3.3: Let v : B, — A, be a linear isometry, where A and B are
JBW*-triples. Let w be an extreme point of the closed unit ball of B and
let v be an extreme point of the closed unit ball of A with ¢*(v) = w. We
set V = Py(w)y*|A2(v) and note that V is a normal unital contractive (hence
positive) map of Ay(v) onto Ba(w). Then
(a) For each projection q € Ba(w), there is an element a € Az(v) of norm
one such that V(a) = w — 2q.
(b) If ¢ is the self-adjoint part of the element a in (a), then
() V() = V(eP,
(ii) V(zoc) =V(x)oV(c) for every x € As(v).

Proof. Part (a) follows from Lemma 3.1 and part (b) follows from Lemma 3.2.

With the notation of Corollary 3.3, a Jordan multiplier (with respect to the
pair of extreme points w € B,v € A with ¢*(v) = w) is any element of the set

M = M(A3(v), Ba(w), V)
={x € As(v) : V(zoy) =V (x)oV(y) for all y € A2(v)},

where V' = Po(w)*|Az2(v). We shall let s denote the support of the positive uni-
tal normal mapping V, that is, s = inf{p : p is a projection in As(v), V(p)=w}.
Note that s is a multiplier by Lemma 3.2.

The following two lemmas could easily have been stated and proved if As(v)
and Bs(w) were replaced by arbitrary JBW *-algebras and V was replaced by a
normal unital contraction with support s mapping the closed unit ball onto the
closed unit ball. This fact will be used explicitly in the proof of Lemma 3.13.
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In the rest of Section 3, A and B denote JBW *-triples, ¢ : B, — A, is a
linear isometry, and V = P(w)y*, where w is a maximal tripotent of B.

LEMMA 3.4: Let x € Ax(s) be such that 0 < x < s and V(z) is a projection q
in Bo(w). Then x € M.

Proof. We have V(2z—s) = 2g—w and, by the functional calculus, ||2z—s]|| < 1.
Then Lemma 3.2 shows that 2z—s € Aa(s) is a multiplier with respect to (w, v),
hence 22 — s € M and z € M.

LEMMA 3.5: (a) M is a unital JBW*-subalgebra of As(v).
(b) VIM is a normal unital Jordan *-homomorphism of M onto Ba(w)
satisfying V ({zyx}) = {V(2)V (y)V (x)} for all x € M,y € Az(v).
(¢) V|My(s) is a normal unital Jordan *-isomorphism of M(s) onto Ba(w),
where M(s) = A2(s) N M.

Proof. M is clearly a weak*-closed self-adjoint linear subspace of As(v). To
prove it is a JBW*-subalgebra, it suffices to show that if ¢ = ¢* € M, then
¢® € M, equivalently that V(c2, ¢?) = 0, where V(x,y) = V(zoy)—V(z)oV (y).

Using the Jordan algebra identity, namely (bo a?)oa = (boa)oa?), and the
fact that c is a self-adjoint multiplier, we have V(c?) o V(c?) = V(¢)2 0V (c)? =
V(e)o(V(e)oV(e)*) = V(e)o(V(c)oV(c?)) = V(c)o(V(coc?)) = V(co(coc?)) =
V(c? o c?). Thus V(c?,?) = V(o ?) — V(c?) o V(c?) = 0, proving (a).

By the definition of multiplier, V' is a Jordan *-homomorphism of M into
Bs(w). To show that it is onto, let ¢ be a projection in Bz(w). By Corollary 3.3
there is a self-adjoint multiplier ¢ with V(¢) = w—2g and so ¢ = (w—V(¢))/2 =
V((v — ¢)/2). By the spectral theorem in Bz(w), B2(w)s.a. C V(M) proving
that Ba(w) C V(M) and hence Ba(w) = V(M). The last statement in (b)
follows from the relation {zyz} = 2z o (z 0 y*) — y* o 2%

To prove (c), note that the kernel of V'|Mas(s) is a JBW*-subalgebra of Ms(s)
and is hence generated by its projections. If it contained a non-zero projection
p then we would have V(s —p) = w, contradicting the fact that s is the support
of V. Thus the kernel of V|Ma(s) is zero. Finally, since V(P(s)m) = V(m) for
any m € M, V|Ms(s) maps onto Ba(w).

3.2. THE PULLBACK MAP.

Remark 3.6: Starting with an extreme point w € B, every choice of extreme
point v € A with ¢*(v) = w determines the objects V, s, M. This notation will
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prevail throughout this section. For use in the next three lemmas, we define
¢ : Ba(w) — Ma(s) to be the inverse of the Jordan *-isomorphism V|Ms(s).

LEMMA 3.7: If u = sup, uy in the lattice of tripotents of B, where each uy
is a tripotent majorized by a fixed maximal tripotent w, then u € Bs(w) and
¢(u) = supy ¢(uy) in the lattice of tripotents of A.

Proof. In As(s), ¢(ux) < supy ¢p(ur) < ¢(u) < s so that uy = V(p(uy)) <
V(supy ¢(uy)) < u < w and therefore u = sup, ux < V(supy ¢(uy)) < u. Thus
u = V(sup, ¢(uy)) and, since u is a projection in Be(w) and sup, ¢(uy) > 0,
supy ¢(uy) is a multiplier by Lemma 3.4. Therefore ¢(u) = ¢(V (supy ¢(uyr)) =
supy ¢(uy) < ¢(u), proving the lemma.

LEMMA 3.8: Let f be a normal functional on B and let w be a maximal tripo-
tent in B with vy < w, giving rise to v, M,s in A and ¢ : Ba(w) — Ma(s).
Recall that vy denotes the support tripotent of f. Then vy sy = ¢(vy).

Proof. Since Ba(vy) C Ba(w), f € Ba(w),. Thus
(W(f),s) = (W(Pe(w)«f), 8) = (f, Pa(w)™(s)) = f(w) = flvg) = [IF] = [l (I,

so that vy(s) < s is a projection in Aa(s).
We also have

(0(vs), (f) = (Pa(w)y™(d(v5)), f) = (vg, [ = [l = 19N,

and therefore

(1) d(vg) > vy(p)-

Let b = Po(w)y* (vy(s)) so that 0 < b < w in By(w) and

(b, f) = W@ (vy(), £) = (v, () = 1PN = II£1]-

Thus b belongs to the weak*-closed face in B generated by f (that is,
{z € B:||z|| =1,(z, f) = ||f||}) and therefore by [12, Theorem 4.6], b = vy +¢
with ¢ L vy.

We then have vy + ¢ = b = Pa(w)p* (vy(s)) < Pa(w)yp*(¢(vy)) = vy, so that
¢ < 0. The JB*-subalgebra generated in Bs(w) by the orthogonal elements
v¢ and c is associative and is thus representable as continuous functions on a
locally compact space. The function representing ¢ cannot take on a negative
value, since by orthogonality, so would the function represented by b. Thus
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c = 0 and Py(w)y* (vy(p)) = Po(w)y*(é(vy)). By Lemma 3.4, vy sy € Ma(s)
and the result follows since Po(w)* is one to one on Ms(s).

From the previous two lemmas, we can deduce the following lemma, which
in turn will be strengthened in Lemma 3.15 to require only that u € Ba(w) for
some maximal tripotent w. Moreover, Lemma 3.15 holds more generally for
arbitrary elements of B.

LEMMA 3.9: With the above notation, if u is any tripotent in B and w is
a maximal tripotent with v < w, then ¢(u) depends only on u and 1. More
precisely, if w' > w is another maximal tripotent and if v’ is a maximal tripotent
in A with ¢*(v') = w’" and if M and s’ are the corresponding objects such that
Py(w")y* is a Jordan *-isomorphism of Mj(s') onto Bz(w'), and ¢’ denotes

(Pa(w")*[Mj(s")) "1, then ¢(u) = ¢/ (u).

Proof. By Zorn’s lemma, we may write u = sup, v¢, for some family fy of
normal functionals on B. Writing uy for vy, , we have

¢(u) = ¢p(supux) = sup (ux)
and
¢'(u) = ¢'(supux) = sup ¢’ (un).
By Lemmas 3.7 and 3.8, ¢(ux) = vy(s,) and ¢’ (ux) = vy(s,)-

Definition 3.10: The pullback of a tripotent u € B is defined to be the element
¢(u) in Lemma 3.9. By this lemma, we may unambiguously denote it by w,.

Thus u, is the unique tripotent of A such that for any maximal tripotent
w majorizing u and any maximal tripotent v of A with ¢*(v) = w, giving rise
to the space of multipliers M and the support s of Py(w)y*|A2(v), we have
Uy € Ma(s) and Po(w)y* (uy) = u. Note that in this situation, s = wy.

We next improve the last assertion in Lemma 3.5 by replacing V|Mz(s) by
4* | Mas).

LEMMA 3.11: 9* agrees with V' on Ms(s). In particular, ¢¥*(uy) = u for every

tripotent u of B and ¢*|Mas(s) is a normal unital Jordan *-isomorphism of
M>(s) onto Ba(w).

Proof. We use the notation of Lemma 3.5. Since V(s) = w, we have ¢*(s) =
w41 where 1 = Py (w)y*(s). Then by Lemma 2.1, 21 = 0, so that ¢*(s) = w.
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It suffices to show that ¢* maps projections of M(s) into Ba(w). So let p
be any projection in Ba(w). Since V(py) = p, we have ¢*(py) = p + y1 where
y1 = Pi(w)y*(py). Since p < w and y1 € Bi(w), P2(p)yr = {p{pyip}p} =0
by Peirce calculus with respect to w, so that by Lemma 2.1, y; L p. Similarly,
V*(s —py) =w —p—y1 and, by Lemma 2.1, y; L w — p. Hence y1 € By(w) =

{0}

The following lemma will be improved in Lemma 5.4 to include the case of
the Peirce 2-space. As it stands, it extends the first statement of Lemma 3.1.

LEMMA 3.12: Let v be a tripotent in B. Then

(a) ¥*(A1(vy)) C B1(v) + Bo(v),
(b) ¥*(Ao(vy)) C Bo(v).

Proof. Let f be a normal state of Ba(v). Then (¢(f),vy) = f(v) =
[l(f)|l so that ¥ (f) is a normal state of As(vy) and hence ¢[Ba(v).] .
Now if z € Aj(vy) and f € Ba(v), is arbitrary, (f,¢*(z)) = <w(f),x> =0
and therefore ¢*(r) € Bi(v) + Bo(v). This proves (a).
Now let = € Ap(vy) and suppose ||z|| = 1. Then |lvy £ z|| =1 and therefore
by Lemma 3.11,

[o £ Po(v)d* ()| = [[Pa(v)y (vy) + Po(v)™ ()|
< 9*(vy) £ 9% (@) = 97 (v £ )| <1,

and since v is an extreme point of the unit ball of Bs(v), we have Pa(v)y*(z) = 0.
We now have [[v+ Py (v)¢"(z) + Po(v)¢™ (2)|| = [lo+¢" ()] = [[¢"(vp +2)[ <1
and, by Lemma 2.1, P (v)y*(z) = 0.

LEMMA 3.13: Suppose *(x) = v for a tripotent v € B and an element x € A
with ||z|| = 1. Then x = vy + ¢ for some g L vy.

Proof. Let w be a maximal tripotent of B majorizing v and let v be a maximal
tripotent of A with ¢¥*(v') = w.

If z € Ay(vy), then z = {vy{vypzvytvy}. Since vy is a multiplier with re-
spect to Aa(v'), for all ¢ € Az(v') we have Py(w)i* (vy 0 ¢) = v o Pa(w)y*(c).
Using this and the general formula {zyz} = 2z 0 (z o y*) — y* 0 22 we obtain
Py(w)y*{vyzvy} = {v, Pa(w)yY*(z),v}. For the same reason, Po(w)y*(z) =

{v, Po(w)p*{vypzvy},v} = {v{v, Pa(w)y*(z),v}v} € Ba(v), proving that
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Py (w)y*[Az(vy)] C Ba(v). In fact, Po(w)y*[As(vy)] = Bz2(v), since if p is any
projection in Ba(v), then py < vy, so that py € Aa(vy) and Po(w)y*(py) = p.

Decomposing x = x2 + x1 + x¢ with respect to vy, we notice that by Lemma
3.12, Py(v)Y* (z2) = v, and since P(v)y* is a contractive unital, hence positive,
hence self-adjoint map of As(vy) onto Ba(v), Pa(v)y*(ah) = v where x5 is the
self-adjoint part of x5 in As(vy).

Now 24 is a norm one self-adjoint element of the JBW *-algebra Az (v, ) which
P5(v)y* maps to the identity v of Ba(v). Thus by Lemma 3.2, we see that z,
is a multiplier with respect to Az (vy).

We show next that vy is the support of the map P»(v)y*. Let p < vy be a
projection with Py (v)y*(p) = v. Then Ps(w)y*(p) = v, so that by Lemma 3.4,
p € Ms(s), and since Pp(w)y* is one-to-one there, p = vy.

Now, since v, is the support of the map P»(v)y*, it is a multiplier with
respect to As(vy), and we have x4 = vy, by Lemma 3.5 (replacing Bs(w) there
by Ba(v) and A2(v) by Aa(vy)).

Thus zo = x4 + iz = vy + ixf with 2§ self-adjoint and, by a familiar
argument, if 25 # 0, then ||z2| = ||vy + iz5|| > 1, a contradiction. We now
have z3 = vy and the proof is completed by applying Lemma 2.1 to show that
x1 = 0.

Definition 3.14: Suppose z lies in B and let w be a maximal tripotent majorizing
r(x). The Jordan*-isomorphism (¢*|Ma(s))™! of Ba(w) onto Ms(s) carries
By(r(x)) onto Ma((r(x)y). We let xy, denote the image of = under this map so
that ¢*(xy) = . This is an extension of the pullback of a tripotent defined in
Definition 3.10.

The following lemma shows that z, may be computed using any maximal
tripotent w for which x € Ba(w), that is, r(x) need not be majorized by w.
This fact will be critical in the proofs of Theorem 2 and elsewhere in this paper
(for example, Lemmas 5.7 and 6.2).

LEMMA 3.15: Suppose z is an element in Bo(w), where w is a maximal tripo-
tent not necessarily majorizing r(x). Let M be the space of multipliers cor-
responding to a choice of maximal tripotent v such that ¢*(v) = w. Then

2y = (V[ Ma(wy)) " (x).

Proof. We shall consider first the case that x = u is a tripotent. Let w’ be
a maximal tripotent majorizing u, so that by Lemma 3.12, *|Mi(s') is a
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Jordan*-isomorphism onto Ba(w'), uy = (*|M4(s"))"(u) and let m denote
(*|My(s))~ ' (u). Here, of course, s = wy, and s = w,.

Since ¢*(m) = u, by Lemma 3.13, m = uy + ¢ with ¢ L uy. Furthermore,
¥ (q) = 0.

Note that since m and uy are tripotents, cubing the relation m = uy + ¢
shows that ¢ is also a tripotent. We claim that u, and ¢ belong to As(s). First
of all, since m € As(s), we have Az(m) C As(s), and since uy < m and ¢ < m,
Uy, q € Az(m) C Az(s), proving the claim.

It remains to show that ¢ = 0. To this end, note first that in As(s), {ggs} =
goq* and {mgs} = mo ¢*. Using this and the fact that m is a multiplier, with
V = Py(w)y*, we have

V(goq®) = V{qqs} = V{mgs} = V(moq") = V(m)oV(qg*) = V(m)oV(q)" = 0.

Now we have V(s — g o ¢*) = w so that, by Lemma 3.4, s — g o ¢* € Ma(s).
Thus g o ¢* € Ms(s) and, since V' is bijective on Ms(s), go¢* =0 and ¢ = 0.

Having proved the lemma for tripotents, we now let x = [ Aduy be the
spectral decomposition of  and let w’ be a maximal tripotent majorizing r(z).
Then for any spectral tripotent ug, we have ug € Bo(w) and ug < w' so
that, by the special case just proved, (us)y = ¢(us) where ¢ = (v*|Ma(s)) L.
Approximating « by y = > Ajug,, we have

yo = (1M 7 (D0 Asus, ) = D N M) (us,)
= Nio(us,)
=¢(y),

which completes the proof, as the maps in question are continuous.

Remark 3.16: We will henceforth refer to elements x, as multipliers without
specifying the Peirce 2-space containing x. By embedding two orthogonal ele-
ments z and y of B into B(w) for some maximal tripotent w, it follows that
2y L yyp. This fact will be used explicitly in the rest of this paper.

4. Analysis of tripotents and pullback of the Peirce 1-space

Our next goal is to prove, in the case where B has no summand isometric to
L>(Q, H), that the pullback map respects Peirce 1-spaces, that is, if u is any
tripotent in By (w) for some maximal tripotent w, then u, € A;(wy). This
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will be achieved in this section (see Theorem 2 below) after some analysis of
tripotents in a JBW*-triple.

4.1. RIGID COLLINEARITY.

PROPOSITION 4.1: If u is a tripotent in By(w) and w is a maximal tripotent,
then the element 2{uuw}, which we shall denote by w,,, is a tripotent in Ba(w)
which is collinear to v and < w. Moreover, u and w,, are rigidly collinear.

The proof will be contained in Lemmas 4.2 to 4.6 in which the standing
assumption is that w is a tripotent in B and w is a tripotent in By (w). This
proposition was proved in [23, Lemma 2.5] for w not necessarily maximal but
under the additional assumption that Ba(u) C Bj(w), which follows from the
maximality of w. On the other hand, Lemmas 4.3 and 4.4 are stated here with
an assumption weaker than maximality and will be used in that form later on.
For this reason, we include the proof of Proposition 4.1 here.

LEMMA 4.2: If w is maximal, then Bs(u) C By (w).

Proof. If x € Ba(u), then z = Py(u)x = {u{uzu}u} € By(w) by Peirce calculus
with respect to w and the maximality of w.

LEMMA 4.3: If {uwu} = 0 (in particular, if w is maximal), then w, € Bi(u).
Proof. By the main identity,
{wuu} = {wu{vuu}} = {wuuluu} — {u{vwutu} + {uu{wuu}}
and the middle term is zero by assumption. Hence
wy /2 = {wyuu} /2 + {uuw, } /2 = {uuw, }.

LEMMA 4.4: If {uwu} = 0 and u # 0 (in particular, if w is maximal), then w,
is a nonzero tripotent and w, < w.

Proof. Clearly w, is non-zero since u # 0 does not lie in By(w). By the main
identity,

{vu{www}} = {uvwlww} — {w{vvwlw} + {ww{uwvw}}
so that
{w{vuwlw} = 2{{uvwlww} — {uuw} = 2{uuw} — {vuw} = {vuw},

proving that w,, is a self-adjoint element of Ba(w).
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It remains to show that w,, is an idempotent in By(w). To this end use the
main identity to obtain

{wywwy, } = 2{w,w{uuw}}
(2) =2 [{{wywutuw} — {uf{ww,utw} + {uvu{w,ww}} .

Since w, € Ba(w), the third term in the bracket on the right is equal to
{vuw,} = w, /2 by Lemma 4.3. It remains to show that the first two terms on
the right side of (2) cancel out. In the first place, by the main identity

u/2 = {uu{wwu}}
= {{uww}wu} — {w{vuwiu} + {ww{uuu}}
= {{uvw}wu} — {w{vuwlu} + u/2,
so that {{vuww}wu} = {w{wuww}u}, that is, {ww,u} = {w,wu}.
On the other hand, by the main identity,
fuww,} = 2{uw{wuu})

= 2[{{uwwluu} — {w{wvwutu} + {wuf{uwu}}]
= 2[u/2 — {ww,u}/2+0] = u — {wwyu},

and it now follows that {vww,} = {ww,u} = u/2, proving that the first two
terms in (2) do cancel out.

LEMMA 4.5: If w is maximal, then Ba(u) C B1(wy,).

Proof. By the joint Peirce decomposition and Lemma 4.2,
Bs(u) C By(w) = Bi(wy) N Bo(w — wy,) + B1(w — wy,) N Bo(wy,).
Now
2D(u, u)(w — wy) = wy, — 2D(u, w)wy, = wy, — wy =0,
so that v L (w — w,) and therefore By(u) L (w — w,). This shows that
Ba(u) C By(wy) N Bo(w — wy,) C Byr(wy,).

LEMMA 4.6: If w is maximal, then By(w,) C Bi(u) (this completes the proof
of the rigid collinearity of w,, and u).

Proof. Let # € By(w,). By Lemma 4.3 and Peirce calculus with respect to u,
{wy, Po(u)z,wy,} € Ba(u) and, by Lemma 4.5, Ba(u) C By(w,). By compat-
ibility of u and w,, Py(u)xr € Baz(w,) and, by Peirce calculus with respect to
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Wy, Po(u)z = {wy{wy, Po(u)x,w, tw,} = 0, since the middle term belongs to
Bi(wy), as just shown. On the other hand, by Lemma 4.5, Py (u)z € By(w,,) so
that Py(u)x = 0 also.

The next two lemmas give important properties of w,. Note that by defini-
tion, w = w, if and only if w € By (u).

LEMMA 4.7: If u € By(w) and w is maximal, then By(w) N Bo(u) C Bo(wy).
In particular, if w,, = w (hence uTw), then u is maximal.

Proof. The first statement holds by Lemma 2.4.

Suppose now that w = w,, so that uTw. We shall show that By(u) C Bo(w),
which implies the second assertion. By Lemma 4.6, Ba(w) = Ba(w,) C Bi(u).
If © € By(u) = [Bo(u) N Ba(w)] + [Bo(u) N Bi(w)], say & = x2 + 1 with respect
to w, then by the first statement, 1 € Bo(w,) = Bo(w) = 0. On the other
hand, z2 € B2(w) N Bo(u) C Bi(u) N By(u), so zg = 0.

LEMMA 4.8: Suppose that tripotents uy,us € By(w) with w a maximal tripo-
tent in B. If u; < ug then wy, < wy, and Wy, —y; = Wy, — Wy, -
Proof. If uy < ug, then us — uy L uy, {wujus} = {wuiu;} and
Wyg—u = 2{10, U2 — U, U2 — ul}
= 2{w,us — u1,us} — 2{w, us — uy, u1}
= 2{wugus} — 2{wurur} — 0 = wy, — Wy, .
On the other hand, if v;,v2 € Bi(w) and v1 L vy, then by Lemma 4.7,
ve L w,, and, since w,, L w — w,,,
{w'Ul W, wvz} = 2{wU1wU1 {MUQUQ}}
= 2{{w7jlwvlw}v2v2} - 2{w{wv1wv1’02}’02} + 2{wv2{w7jlwvlv2}}
= 2{{wy, Wy, Wy, }v2v2} — 0+ 0 = 2{w,, v2v2} = 0.
Combining the results of the previous two paragraphs, if u; < wus, then
up L ug — Uy, Wyy—ny L Wy, (Wyy — Wy, ) L wy, s0 that wy, < wy,.

4.2. CENTRAL TRIPOTENTS.

LEMMA 4.9: Let w be a maximal tripotent of B and suppose that v
is a tripotent < w, w is a tripotent in Bj(w) and uTw. Then either
Bi(w) N Bi(u) N By(v) # 0 or u Is a central tripotent in B.
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Proof. If v = w then we are in the situtation of the second sentence in Lemma
4.7, so u is maximal, hence central. So we assume v # w. Suppose that
Bi(w) N Bi(u) N Bo(v) = 0 and let e € B1(v) N By(w —v) C By(w) be a
tripotent. We proceed to show, using Peirce calculus, that e = 0 and then that
u 18 central.

We first note that, by the joint Peirce decomposition,
Bi(w) = By(v) N Bo(w — v) + Bi(w — v) N By(v),

and therefore u € Bi(w) N Bi(v) C Bo(w —v) so w —v € By(u). Then
{u,e,w — v} € By(w) N Bi(u) N Byp(v) = 0 and {uev} € Ba(v) N By(w) C
By(w) N Bi(w) = 0, so that {uew} = {u,e,w — v} + {uev} = 0. Clearly
{euw} = 0 as well.

We next show that u L e. By the main identity, {uee} = {ue{eww}} =
{{ueetww} — {e{evw}w} + {ew{uew}}. The last two terms are zero and, since
{uee} € By(w), the first term is equal to {uee}/2. Hence {uee} =0 and u L e.

Finally, we show that e = 0. Note that {uve} € By(w) N By(u) N By(v) so
{uve} = 0 and, by Peirce calculus with respect to w, {vue} = 0. Hence, by
the main identity, 0 = {vu{uve}} = {{vuu}ve} — {uf{uvvie} + {uv{vue}} =
{vve}/2 — {uue}/2+ 0 = e/4.

From the fact just proved, namely, that By(v) N Bi(w — v) = 0, it follows
from the joint Peirce decomposition that Be(w) = Ba(v) @ B2(w — v), which by
[22, Theorem 4.2(2)] implies that B = C @& D where C and D are orthogonal
weak*-closed ideals generated by Ba(v) and Bs(w—wv), respectively. Again from
[22, Theorem 4.2 (3)], C = By(v) @ Bi(v) so that v is a maximal tripotent in
C. Since uTv, Lemma 4.7 assures that u is a maximal tripotent of C, so that
C = By (u) ® B1(u), showing that u is a central tripotent.

The proof of the following remark is identical to the proofs of Lemmas 4.3
and 4.4. Recall that, as noted above, those two lemmas are valid without
assuming the maximality of w there and u here.

Remark 4.10: Let w be a maximal tripotent and let u € B;(w) be a tripotent.
Assume that u is not a central tripotent of B and that w, # w. Let a be a
non-zero tripotent of By (u)N Bo(w,,)NB1(w) (which is non-zero by Lemma 4.9).
Then u, (:= 2{aau}) is a tripotent < u by Lemma 4.4, noting that {aua} =0
by Peirce calculus with respect to w,. Also, u, lies in By(a) by Peirce calculus
since Py(a)u = {a{aua}a} = 0.
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LEMMA 4.11: With the notation of Remark 4.10, w,, T uq.

Proof. By assumption, a € Bj(w). Therefore u, := 2{uaa} € B;(w) and the
result follows from Proposition 4.1.

PRrROPOSITION 4.12: Let B be a JBW*-triple with no direct summand of the
form L*>°(Q, H), where H is a Hilbert space of any positive dimension. Then
every tripotent of B is the supremum of the non-central tripotents that it ma-

jorizes.

Proof. Given a tripotent u in B, let v denote the supremum of all non-central
tripotents majorized by u, or zero, if there are none. Let us suppose that u # v.
By the definition of v, u — v is a central tripotent and any tripotent majorized
by u — v is also a central tripotent. Hence u — v is an abelian tripotent, that is,
Bs(u — v) is associative and hence a commutative C*-algebra.

We thus now know that Ba(u —v) @ By (u — v) is a weak*-closed ideal which
is an £°° summand of B containing a complete (=maximal) abelian tripotent,
namely u — v. By [23, Theorem 2.8] (see also [23, p. 277] for the definition of
type I and [23, Proposition 2.3] for the other terminology used in this theorem),
By(u—v)® By (u—w) is a direct sum of spaces of the form L (Q,,, H,,) where
H,, is a Hilbert space of dimension m for a family of cardinal numbers m. This
contradicts our assumption, proving that u = v

4.3. PULLBACK OF THE PEIRCE 1-SPACE. We are now ready to prove the main
result of this section.

THEOREM 2: Assume that the JBW™*-triple B has no direct summand of the
form L>°(Q), H), where H is a Hilbert space of dimension at least two. Suppose
w € B is a maximal tripotent and u is a tripotent in By(w). If A is a JBW*-
triple and ¢ : B, — A, Is an isometry into, then uy € Aq(wy).

Proof. Since commutative J BW *-triples have no Peirce 1-spaces, it follows eas-
ily using a joint Peirce decomposition of w that we may assume B also has no
summands L>(£2), so that the hypothesis of Proposition 4.12 holds. Thus we
can write u = sup,¢, ux where each uy is a non-central tripotent belonging to
B (w), by Lemma 4.2. Then by Lemma 4.9 and Definition 4.10, for each A € A,
vy = sup, (uy), exists, where the supremum is over all non-zero tripotents a in
Bi(ux) N Bo(wy, ) N By (w).
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We claim that u = supyc, v . Indeed, setting v = supy vy, if v # u we
would have that u — v is the supremum of non-central tripotents majorized by
u — v and hence by u. Let uy, be one of these non-central tripotents. Then
Uy, < Uy, < u— v, which contradicts v = sup, vx. This proves the claim.

Explicitly, we have proved

u = supsup{(ux)a, : ax € Bi(w) N By(ur) N Bo(wuy, )}

A ax

and this is the same as
u = sup{(un)a, : A € A,ax € By(ux) N Bo(wy, ) N Bi(w)}.

In the rest of this proof, we shall use the fact, just established, that w is the
supremum of a family of tripotents v, for certain v < w and certain tripotents
a € By(v)NBy(wy,) N By (w) where, by the argument at the end of Remark 4.10,
Vg lies in Bj(a). Note that Lemma 3.15 will be used several times, as indicated
below.

We note first that w,,, v, € Ba(w,+a) and v, € By(w,). Indeed, from v, < v
we have from Lemma 4.8 that w,, < w, sow,, € Ba(w,) C Ba(w,+a). On the
other hand, by Lemma 4.5, v, € B1(a)NBz(v) C B1(a)NB1(wy,) C Ba(w, +a).

We claim next that (ve)y € A1((wy)y). Indeed, since by Lemma 4.8,
wy L wy, — w,, we have, by Remark 3.16 and the joint Peirce decomposition,

3) Ar((wy)y) N Ao ((wu = wy)y) C Ax((Wa)y)-

Since wy,v, € Ba(w, + a) and {w,w,v,} = v,/2, it follows (using Lemma

3.15) that {(wy)y, (Wy)y, (Va)p} = (Va)y/2 80 (V4)y lies in Aj((wy)y). Also,
v L w—w, since

{w — wy, w — wy, v} = {wwv} — {wywv} — {ww,ul + {w,w,v}

= {wwv} — {w,wyv} — {w,wyv} + {w,wyv}

= {wwv} — {w,w,v} =v/2—-v/2=0.

Hence v, < v lies in Ag(w — w,) C Ag(w,, — wy,). Embedding v, and w,, — w,
in By(vq + wy, — wy), we see that (vg)y lies in Ag((wy, — wy)y) and the claim
follows from (3).

We now have from Lemma 3.7 and Lemma 2.2 that uy € A1((wy)y). As
before, u L (w — w,), so application of Lemma 3.15 and Remark 3.16 yields
Uy € Ao((w—wy)y). Finally, uy € A1 ((wu)y) VA (w—wy)y) C Ai(wy).
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5. The space of local multipliers

In this section, we establish some deeper properties of Jordan multipliers.

We retain the notation of the previous two sections, that is, ¥ : B, — A, is
a linear isometry, where A and B are JBW™*-triples and w is an extreme point
of B giving rise to the objects v, M, s in A. We also assume that B satisfies the
condition in Theorem 2, that is, it has no direct summand of the form L>°(Q, H)
where H is a Hilbert space of dimension at least two.

LEMMA 5.1: ¢[B1(w).] C A1(8)«.

Proof. If f € Bi(w)«, then vy € Bj(w) and, by Lemma 3.8 and Theorem 2,
vy(p) = (vp)y € Ax(s).

To show that (f) € A1(s)«, let g = ¥(f) and Peirce decompose it with
respect to st g = g2 +g1+g0. Since (go, Ao(s) = (9, Ao(s)) = (f.4"[Ao(s)]) = 0
we have go = 0. It remains to show go = 0. We may assume that || f|| = 1.

Since g = g2 + g1 and vy € Ai(s), g1(vg) = g(vg) =1 = [|g]| = [g1] so that
llg1ll = 1 and g1 € Az2(vg).. Since obviously g € A2(vg)«, we have g2 € Aa(vg).
By [18, Lemma 1.1], we have |[[Ag2 4+ g1|| = ||g2 + g1]| = 1 for every complex X of
modulus 1. The local argument given in [1, Theorem 3.1] can be easily extended
to apply to JBW*-algebras to show that g; is a complex extreme point of the
unit ball of the predual of the JBW*-algebra As(v,), and thus we must have
g2 = 0.

COROLLARY 5.2: ¢*(Az(s)) C Ba(w).

Proof. If © € As(s), let ¥*(x) = y2 + y1 be the Peirce decomposition of ¢*(x)

with respect to w. If f € By(w)x, then (f,y1) = (f, ¥*(z) — y2) = (f, ¥*(x))
((f),z) =0 since ¢¥(f) € A1(s)« and = € As(s). Thus y; = 0.

In view of this Corollary, we may improve the statement of Lemma 3.4 by
replacing V' by ¥* We restate this improved lemma here.

LEMMA 5.3: Let © € As(s) be such that 0 < z < s and ¥*(x) Is a projection
in Bo(w). Then x € Ms(s).

The following is the announced improvement of Lemma 3.12.

LEMMA 5.4: Let u be a tripotent in B. Then
(a) ¥ (Ai(uy)) C Bi(u) + Bo(u),
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(b) ¥*(Aj(uy)) C Bj(u) for j =0,2.

Proof. Part (a) and the case j = 0 of part (b) have been proved in Lemma 3.12.

To prove the case j = 2 of (b), note first that by Lemma 5.3 uy € Ma(s).
(Recall that uy < s < v where v is a maximal tripotent of A with ¢*(v) = w
and w is a maximal tripotent majorizing u.)

If z € Ay(uy), then x = {ugp{uypzuy}uy} and, by definition of multiplier
and using Corollary 5.2, ¥*(uy o ¢) = uwo ¢*(c) for all ¢ € Ay(v). Using this
and the general formula {zyz} = 2z o (x 0 y*) — y* o 2% we obtain *{uyzuy}
= {u,¥*(z),u}. For the same reason, ¥*(z) = {u, ¥ {uypzruy},u} =
{uw{u,y¥*(z),u}u} € Ba(u), proving the case j = 2 of (b).

LEMMA 5.5: Suppose x € A. If ¢*(2?"*1) = (¢*(x))* T for all positive
integers n, then x = (¢Y*(x))y + q, where ¢ L (¢*(x))y.-

Proof. We may assume ||z|| = 1. Let W(z) be the JBW*-triple generated by x.
By assumption and weak*-continuity, ¢* restricts to an isomorphism of W (x)
onto W (1*(z)). For each closed subset S of (0,1], if we let ug € W(x) be the
corresponding spectral tripotent for z, then *(ug) is the spectral tripotent vg
of *(x) (or zero, if S has no intersection with the spectrum of ¢*(z)).

Choose a maximal tripotent w > r(¢p*(x)). If ¥*(ug) is not zero, then by
Lemma 3.13, us = (vs)y +¢s where gg is a tripotent which is perpendicular to
(v$)y-

Now suppose SNT = () and us and ur are non-zero. Then ur 1 ug and hence
(ur)y and g are each orthogonal to (vs)y and gg (subtripotents of orthogonal
tripotents are orthogonal).

We now use approximation to show that = (¢*(x))y+¢, where g L (¢*(2)) .
Indeed, approximate x as a norm limit of finite sums y = > \;ug, with the S;
disjoint, and Y ug, = r(z) = r(y). Then y = > Nus, = > Ni[(vs,)y + gs,] =
(>oAivs, )y + Do Aigs; = (¥*(y))y + q where, since qg, L (vs;)y for all 4,7,
the element ¢ = )" A\;qg, is orthogonal to > Ai(vs,)y = (¥*(y))y. The result
follows from continuity.

Note that by the spectral theorem, Theorem 2 is valid for arbitrary elements
x € Bi(w). We now extend Theorem 2 to not necessarily maximal tripotents.

LEMMA 5.6: If u is any tripotent of B and if x € Bi(u), then x4 € A1 (uy).
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Proof. Consider first a tripotent v € By(u). Write
vy = Pa(up)vy + Pr(ug)oy + Po(ug)vy = (vg)2 + (0p)1 + (vg)o-
Then for any f € Bi(u). with f(v) =1 = f]|, by Lemma 5.4

1

|
~

(v) = P(f)(vy) = D(f)((vy)2 + (V)1 + (vy)o)
F@" [(vg)2] + ¥ [(vg)1] + ™ [(vy )o])
0" [(vg)1]] = D (f)[(vy)1]-

Moreover, by [12, Theorem 4.6] and Lemma 3.8, (vy)1 = vy(5) +bf = (vf)y +by

where by L vy(p)-

Let us now write, as in Lemma 3.9, v = sup, vg, where {gx} is an orthogonal
family of normal functionals on Bj(u). Note that gx(v) = ga(vg,) = 1 = [|ga||
so that, for each A, (vy)1 = vy(gy) + bx, Where by L wvy(g,). This implies
that the associated tripotent w((vy)1) defined as in Subsection 2.1 verifies
u((vy)1) > vy(gy) and therefore u((vy)1) > supy vy(g,)- Indeed, by orthogonal-
ity, ((vy)1)2" ! = vy(gy) + 05" so that in the limit, u((vy)1) = vy(gy) + u(br).

For notation’s sake, in this paragraph, let x := (vy)1 and w := supy vy(g,)-
From the property {u(z),z,u(x)} = u(x), we have Py(u(x))z = u(z), so that
by Lemma 2.1, x = u(z) 4+ ¢ with ¢ L u(z). Since u(z) > w, say u(z) = w + w’
where w’ is a tripotent orthogonal to w, we now have x = w+ w’ + ¢, with both
w’ and ¢ orthogonal to w. Thus

(4) (vy)1 = SUP Uy(g3) + b

for some element b L supy vy (g,)-

By Lemma 3.7, we now have
(5)  supvy(g,) = sup(ug, )y = (5UP Vg, )y = vy = (vp)2 + (vp)1 + (vy)o-

For notation’s sake, in this paragraph, let y = vy,. It follows from (4) and (5)
that —b = (y2+yo) L y, or D(ya+yo, y2+yo)(y2+y1+yo) = 0. This yields, upon
expansion and comparison of Peirce components, that {yay2y2} = 0 = {yoyoyo}
so that yo = yo = 0. Thus, vy lies in Aj(uy).

The lemma follows easily for an arbitrary « € Bj(u) by considering the
spectral decomposition of x.
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LEMMA 5.7: Let u and v be compatible tripotents in B (in particular, if u is a
tripotent in By(v)) and let x be an element in Bs(v). Then

Pj(uy)zy = (Pj(u)z)y for j=0,1,2.

In particular, Pj(uy)zy is a multiplier for j = 0,1, 2.
Proof. Since u and v are compatible, P;(u)x = Pa2(v)Pj(u)z € Ba(v) so that,
by Lemma 3.15,
(6) @y = (P2(w)z+ Pr(u)x+ Po(u)z)y = (Pa(u)x)y + (PL(w)z)y + (Fo(u)x)y.-

From Lemma 5.6, (Pi(u)x)y € Ai(uy) and, by Remark 3.16, (Po(u)x)y €
Ap(uy). Again by Lemma 3.15,

(Po(w)x)y = ({u{uzutul)y = ({u{u, Po(u)z, utu})y
= ({ug{wp, (Po(u))p, g Yy }),

so that (Py(u)x)y € Aa(uy).
By the uniqueness of Peirce decompositions and (6), P;(uy)Ty = (P;(u)x)y.

6. Proof of the main results (Theorems 3 and 1)

We again assume in this section that the JBW *-triple B satisifes the condition
in Theorem 2, that is, it has no direct summands of the form L>°(£2, H), where
H is a Hilbert space of dimension at least two.

LEMMA 6.1: Suppose v is a tripotent in B. Further suppose that x is a tripotent
in By(v) with {z,v,x} = 0 and {zy,vy,xyp} = 0. Then Y*{zy,zy,vyp} =
{z,z,v}. Furthermore, {xy, Ty, vy} = yy for some y € B.
Proof. We note first that, as shown in Lemma 4.4, p := 2D(z,z)v is a
self-adjoint projection in Bs(v). By Peirce arithmetic, using the assumption
{zvx} =0, p lies in By(z) and, by Lemma 5.6, py lies in A;(xy). By this fact,
the compatibility of p, and x,, and the fact that py < vy, we have
2D(py, pu) D (@, wp)vy = 2Dy, 1) D(py, pu)vy = 2D (g, Ty)py = Py
Similarly to the calculation above,
q = 2{wy, 2y, 05}

is a self-adjoint projection in As(vy) and, since g o py = 2{{zyTyvy vy} =
2D(py, py)D(zy, y)vy = Py, ¢ > py and it follows that ¢*(¢) > p.
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Now D(z,z)(v—p) = {zav}—{zzp} = p/2—p/2 = 0. Hence, x, is orthogonal
to vy — py. By this orthogonality and compatibility, and since py < vy < wy
(w is a maximal tripotent majorizing v) so that {pypyvy} = Dy,

D(vy — py, vy — py) D@y, ) vy = D(@, 2p) D(Vg — Py, Vg — Pyp) Vg
= D(zy, y)(vy —py) =0,

showing vy, — py is orthogonal to g. We then have

lo =p £ Y™ (@ < llvy —py £qll =1

so that v —p is orthogonal to ©*(g). Since, as shown above, ¥*(q) > p, it follows
(using Lemma 5.4 to ensure that ¢*(q) € Ba(v)) that ¢*(q) = p. This proves
the first statement. The second follows immediately from Lemma 5.3, since vy
is majorized by w, for a maximal tripotent w € B and 9™ takes the positive
element 2{xy, Ty, vy} € Az(wy) to a projection in By (w).

LEMMA 6.2: Suppose that y and z lie in Bo(w) for a maximal tripotent w and
that x lies in B1(w). Then

{zp: g, 20}

is a multiplier belonging to Ay (wy)NAa([r(x) + 7(20)]y) (Where zo=FPy(r(x))z),
and Y™ {wy,yy, 2y} = {2,y, 2}.

Proof. Suppose first that z is a tripotent. Let y; denote Pj(z)y and (yy); =
Pj(xy)yy for j =0,1,2. Similarly for z. By Lemma 5.7, replacing u, v, z there
by z,w, y, respectively, we have (y;)y = (yy); and similarly (z;)y = (2y);, for
j=0,1,2.

Note that in the expansion

{zg, yp, 29} = {wwaZ(yw)uZ(Zw)j} = {aw, o)is (20)5},

% J %]

seven of the nine terms are zero, five of them since yo = Po(x)y = {a{z,y, z}z}
= 0 by the maximality of w (so also zo = 0), and two others since x, is
orthogonal to (yy)o and (zy)o. Hence

(7) {2y, yps 20} = {@g, (Y1) (21)p} + {2y, (Y1)y, (20)y }-

Let ug be a spectral tripotent of y;. By Peirce calculus with respect to w
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and wy, {us,z,us} = 0 and {(us)y, Ty, (us)y} = 0. Therefore, by Lemma

6.1, {xy, (us)y, (us)y} is a multiplier in As(zy) and Y*{xy, (ug)y, (us)y} =
{rusug}. Passing to the limit using the spectral theorem shows that

{zy, (Y1), (y1)y } is a multiplier in Ao (zy) and Y*{zy, (y1)v, (Y1)v} = {zv101}.
Of course, the same holds for z: {xy, (21)y, (#1)} is a multiplier in As(xy) and

P{ay, (21), (21)p} = {z2121}.
By Lemma 3.15, (y1)y + (21)y = (y1 + #1)y. Hence the same statement
holds for {@y, (y1)y + (#1)y, Y1)y + (21)p}. Thus the statement holds for

{2y, (W1)es (21)p} + {2y, (21)y, (Y1)y }. Explicitly,
{2y, 1)y, (21)p} + {2y, (21)y, (V1)y }

is a multiplier in As(zy) and

O {y, (1), (20)u} + {zy, (20w, (1)e}) = {zpnz1} + {221}

Replacing z by iz shows that the statement holds for {xy, (y1)y, (21)y} and
{zy, (21)y, (Y1)} individually. This proves, in the case that x is a tripotent,
that the first term in the right side of (7) is a multiplier in Ag(xy) N Aq(wy)
and ¥* is multiplicative on this term.

We now consider the second term in the right side of (7), still in the case
that x is a tripotent. Since z L zy (recall that zg = Py(x)z), we can choose a
maximal tripotent w’ such that Ba(x + r(z0)) C Ba(w'), so that zy and (z0)y
are multipliers in As(zy +7(20)y) = A2([z +1(20)]y) C A2(wj,). We next note
that for every a € A,

(8) Vg, a,(20)p} = {2, 9"(a), 20}

Indeed, by Peirce calculus {zy,a, (20)y} = {zy, P2(w})a, (20)y} and, by prop-
erties of multipliers and the Jordan algebra relation,

(9) {abc} = (aob*)oc+ (cob*)oa—(aoc)obd

(cf. Lemma 3.5), and Lemma 5.4,

Yy, a,(20)y} = D {xy, Po(wy)a, (20)p} = {2, 9" (P2(w))a), 20}
= {z, Py(w")¥"(a), 20}
={z,¢9"(a), 20},
proving (8). In particular, ¥*{xy, (y1)y, (20)w} = {x,y1, 20} so that

1/)*{517%%1),21#} = {xvylvzl} + {z,yl,ZO} = {SC,y,Z}.
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We still must show that {xy, (Y1), (20)y} is a multiplier. By the joint Peirce
decomposition and the relation D(u,u) = Pa(u) + P1(u)/2,

Py(xy +1(20)y) 1)y = [P2(@y) + Pa(r(z0)y) + Pr(wy) Pr(r(z0)v)](y1)y
= P1(r(z0)p)(y1)y
= [2D(r(20)y, 7(20)y) — 2P2(r(20)y)] (1)
=2D(r(20)y,7(20)p) (Y1)y-

The right side of the preceding equation is a triple product of multipliers
in As(wy), and is hence a multiplier in A(wy) by (9) and the fact that the
multipliers form a Jordan algebra. Hence P (zy + r(20)y) (Y1) is a multiplier
in Ay(wy). Since {zy(y1)y(20)p} = {2y, Pa(zy + 7(20)4)(41)y, (20)4}, using
Lemma 3.15, {zy(y1)y(20)y} is a multiplier in As([x 4+ r(20)]y). This proves
the lemma in the case that z is a tripotent.

Now let = be an arbitrary element of By (w). Approximate it by sums & =
> Aiug, where the elements u; € By(w) are orthogonal spectral tripotents with
> u; = r(x). Decomposing y and z with respect to r(z) = r(Z), it follows as in
(7) that

(10) {Zypypzy} = {Tp, (Y1)p, (21)p} +{Zy, (Y1), (20)y}-

By the previous discussion surrounding (7), with y, z there replaced by y1, 21 €
By (w) and since u; € By(w), {(wi)y, (Y1)w, (21)y}, which lies in As(r(z)y) by
Peirce calculus, is a sum of a multiplier in As((u;)y) C A2(r(x)y) and a mul-
tiplier belonging to A;(wy) which must also lie in As((r(z))y). Also, ¥* is
multiplicative on these products. Hence the first term in the right side of (10)
is a multiplier in Ay(r(z)y) C Ao([r(x) + 7(20)]y) and ¥* is multiplicative on
it.

The second term equals > X\i{(w;)y, (Y1), (20)y }. Since zo L u; (recall that
20 = Po(r(z))z), the same argument used above shows that {(u;)y, (y1)y, (20)y }
is a multiplier in As([u; + 7(20)]y) € Aa([r(x) + 7(20)]y) and that ¢* is mul-
tiplicative on these products. Hence the second term in (10) is a multiplier in
As(r(z)y) C Aa([r(z) + r(20)]y) and ¢* is multiplicative on it. The lemma is
proved.

LEMMA 6.3: If ¢ lies in Ag(vy) for some maximal tripotent v € B, then
v*{q,z,y} = 0 for all z,y € A; in particular, 1*{q,q,x} = 0 for all x € A.
Also, g L zy for all x € B, that is, Ao(vy) L {zy : ¢ € B}.
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Proof. Let z be a maximal tripotent in Ag(vy) such that ¢/||¢| is a self-adjoint
element with respect to z (see [22, Lemma 3.12(1)]). Clearly vy, + 2 is maximal.
Because 1* preserves orthogonality with vy, and v is maximal, ¥*(¢) = ¢*(z) =
0 and therefore ¢* maps the self-adjoint element v,;+¢/||g|| to the unit v of By (v)
and maps vy, + 2 to v. By Corollary 3.3, vy +¢/| ¢l is a multiplier in A (vy + 2).
Since vy, is a multiplier there, so is ¢. On the other hand, if we let z = zo+z14+29
be its Peirce decomposition with respect to vy, then {gqz} = {¢, ¢, z1 + x0} so
that ¥*{qqz} = ¥*{qqz1} since {qqzo} € Ao(vy). If we now expand z; in its
Peirce decomposition with respect to z, say 1 = (x1)2 + (21)1 + (21)0, then
{ggz1} = {q, ¢, (z1)2+(x1)1} and, since vy, and z are compatible, (z1)2+(x1)1 €
As(z) + A1(2) N A1 (vy) C Aa(vy + 2). Since ¢ is a multiplier in As(vy + 2),
we now have ¢*{ggz1} = {9*(@), ¥ (q), 6" ((z1)2 + (1)1)} = 0, proving that
¥*{qqz} = 0.

Letting x,y € A and Peirce decomposing them with respect to vy, we have

(11) ¥*{qzy} = ¥ {q, x1 + 20, y2 + y1 + vo} = ¥*{q. z0, y1 + yo} + ¥ *{qz1y2}.

Since {qz1y2} € A1(2) (by Peirce calculus), we have

{gz1y2} = 2{2, 2, {qz1y2}} = 2{2, vy + 2, {qr1Y2}}

and therefore, since z is a multiplier in As(vy + 2), ¥*{gr1y2} =
¥*(2) o p*{qr1y2} = 0. Thus the second term on the right side of (11) is zero.
For the first term on the right side of (11), we have

(]‘2) w*{Qa$07y1+y0} :w*{Qa$anl}+¢*{q7any0}

and the second term in (12) is zero since {gq,zo,y0} € Ao(vy). Peirce decom-
posing zp and y; with respect to z and expanding the first term in (12) leads
to

Vg, 0,51} =0 {q, (z0)2, (y1)2} + ¥ {q, (x0)2, (1)1}
+*{q, (zo)1, (y1)1} + ¥ {q, (¥o)1, (¥1)o}-

The first and third terms here are zero since (y1)2 and {q, (o)1, (y1)1} belong
to Ai(vy) N Aa(z), which is zero since vy L z. The second term is zero since

{4; (w0)2, (y1)1} lies in Aj(vy) N A1(2) C Az(vy + 2) and {q, (z0)2, (y1)1} =
2{z,2,{q, (w0)2, (y1)1}} = 2{2, vy + 2,{q, (w0)2, (y1)1}} so that

¥™{q, (xo)2, (Y1)1} = ¢7(2) o ¥™{q, (x0)2, (y1)1} = 0.
The proof that the fourth term is zero is similar. This proves that ¢¥*{qzy} = 0.
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To prove the last statement, it may be assumed that both ¢ and z are tripo-
tents. Decompose z, with respect to ¢: zy = (xy)2 + (z¢)1 + (xy)o and
note that by the first two parts of this lemma, ¥*((zy)2 + (zy)1) = 0, so
that ¢*((zy)o) = x. By Lemma 3.13, (xy)o = zy + ¢ where § L zy. Thus
G§ = —(xy)2 — (xy)1 is orthogonal to (xy)2 + ()1 + (zy)o. Considering the
components of

0= D((wp)2 + (wy)1; (Tp)2 + (2y)1 + (Ty)o) (Ty )2
we immediately see that {(xy)2(zy)2(xy)1} = 0, so that (xy)2 L (z4)1 and

therefore {(zy)1(zy)1(zy)2} = 0 and ((z4)2)® =0, (z4)2 = 0. Considering 0 =
D((zy)1, (zy)1 + (xy)o)(xy)1 we see that (z4)1 = 0. The lemma follows.

COROLLARY 6.4: If x € By(w) for a maximal tripotent w and y,z € By(w),
then {yy, xy, 2y} = 0.

Proof. Let « := {yy, Ty, 2y }. By Peirce calculus with respect to wy, a €
Ap(wy) so, by Lemma 6.3, yy, 2y, Ty L . By the main identity,

{aaa} ={aa{yyzypzy}} = {aayytoypzy} — {yp{aazy fzy} + {yypzy {aazy }}
and each term is zero, hence a = 0.

LEMMA 6.5: Suppose xy is a multiplier belonging to A;(w,) for a maximal
tripotent w € B and that y, is a multiplier belonging to As(wy). Then
{zy, Ty, yyp} is a multiplier and ¥* is multiplicative on this product.

Proof. Suppose first that z is a tripotent. By Corollary 6.4, {zyyyxy} = 0 and
hence Py(zy)yy = 0. Then by Lemma 5.7,

{zyryyy} = D(Ty, vy)yy = (Po(2y) + Pr(x¢)/2) Y
= Pi(xy)yp/2 = (P1(2)y)y /2,

proving that {xy, Ty, Yy} is a multiplier. Moreover, Y*{zyxyyy} = P1(2)y/2 =
(2D(z,x) — 2P2(x))y/2 = {xxy}, since by Peirce calculus with respect to the
maximal tripotent w, {zyxz} = 0.

For the general case it suffices to assume that x is a finite sum > A\;x; of
pairwise orthogonal tripotents z; in Bj(w). By the special case just proved,
{(zs)p(zi)ypyyp} is a multiplier and ¥* is multiplicative on it. Therefore,

{wy, wy,yp} =Y A{(@i)w(@i)pye}
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is also a multiplier and * is multiplicative on it.

LEMMA 6.6: Suppose that z is a tripotent in B and that w is maximal tripotent
in B. Then, letting zo = Py(w)z and z1 = Py(w)z, we have zy = (22)y + (21)y-

Proof. 1t follows from Corollary 6.4 and Lemmas 6.2 and 6.5 that

V*((22)g + (21)9)°] = 2.
Indeed,

2
((z2)y + (20)0)* = D ) (2)w (r)w ),

i,5,k=1

and ¢* is multiplicative on each term on the right side as follows. For the
terms corresponding to (i,7,k) = (2,2,2) and (1,1,1), this is because ¥* is
a Jordan homomorphism on the set of local multipliers. For the terms corre-
sponding to (4,7, k) = (2,2,1) and (1, 2,2) (which are the same), this is because
of Lemma 6.2. For the terms corresponding to (i,7,k) = (2,1,1) and (1,1, 2)
(which are the same), this is because of Lemma 6.5. For the term corresponding
to (1,2,1), this is because of Corollary 6.4 and the maximality of w. For the
term corresponding to (2,1, 2), this is because of Peirce calculus. Thus

2
(13) (22w + (21)0)% = D {zzia} = (2 +2)° =2° =2,
i,4,k=1
as required.
Now if we Peirce decompose ((22)y + (21)y)? with respect to w,, we obtain

(14) Py(wy)[((22)y + (21)8)°] = ((22)4)° + 2{(22) > (21) > (1)},

(15) Pl(w’lﬁ)[((z2)d} + (Zl)qp)g] = ((Zl)qb)g + 2{(22)¢7 (22)¢7 (Zl)w},
and
Po(wy)[((22)y + (21)4)?] = 0.

By Lemma 6.5, the right side of (14) is a sum of three multipliers, and hence
a multiplier itself in As(wy).

On the other hand, the first term on the right side of (15) is obviously a
multiplier in As(r(z1)y) C A2([r(z1) + r(Po(r(z1))#2)]y). By Lemma 6.2, the
second term is also a multiplier in Ay ([r(z1)+7(FPo(r(z1))z2)]y). Hence the sum
is a multiplier. It follows that ((22)y + (21))? is again a sum of two multipliers
(29)y + (21)y, where the indices indicate Peirce components of 2z’ with respect to
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w. Since ¥*((24)y+(21)y) = 25+ 21, (13) tells us that z = 25+ 21, and therefore
2o = 24,21 = 21 and (22)y + (21)y is a tripotent. We may use Lemma 5.5 (with
x there equal to the tripotent (22)y + (21)y) to see that (22)y + (21)y = 2¢ + ¢,
where ¢ L z, and ¥*(¢) = 0.

To show that ¢ = 0, suppose first that z is maximal. It follows from Lemma
6.3 that ¢ L [(22)y + (21)¢], from which it follows that ¢ = 0. Now suppose z
is a general tripotent less than a maximal tripotent v. Let uw = v — z. Then
(22)p+(21)p+ (u2)y+(u1)y = zp+q+uy+p = vy +p+q= (v2)y+(v1)y+p+4.

Note that (z2)y + (u2)y = (22 + u2)y = (v2)y and therefore

(v2)y + (21)y + (u1)y = (V2)y + (V1)y +p+q,

which tells us that p + ¢ € A1(wy). Repeating this argument with —u instead
of u shows that p — ¢ € A;(wy) so that both p and ¢ belong to A;(wy).

From (z2)y + (21)y = 2y + ¢ with ¢ € Ao(zy) N Ai(wy) and zy =
(2y)2+(2y) 1+ (2y)o (Peirce decomposition with respect to wsy, ) we have ¢ L (zy)1;
indeed, 0 = {zyqq} = {(2¢)299} + {(z)199} + {(2y4)ogq} and all three terms
are zero since they lie in different Peirce spaces.

Thus (z1)yp = (2y)1 + ¢ with ¢ L (zy)1 and therefore

(16) 7(21)y = r((24)1) +q with ¢ L r((2y)1)-

By (16), ©*(r((#¢)1)) = r(z1) showing, by Lemmas 3.4 and 3.5(c), that
r(z1)yp = r((z¢)1), that is ¢ = 0.

THEOREM 3: Let 1 denote an isometry of B, into A, where A and B are
JBW*-triples. Assume that B has no L>°(Q, H) summand, where H is a Hilbert
space of dimension at least two. Let C' be the weak*-closure of the linear span of
all multipliers: C = sp”*{xy|x € B}. Then C is a JBW*-subtriple of A, and
* restricted to C' is a weak™ bi-continuous isomorphism onto B with inverse
x — xy forx € B.

Proof. We first consider three tripotents u,v and w in B and show that
{ty, vy, wy} is a sum of multipliers and that 1* is multiplicative on this prod-
uct. Choose a maximal tripotent z > v and decompose with respect to it:
u = uz +u; and w = we + wy. It follows from Lemma 6.6 and Corollary 6.4
that the above product equals

{(u2)y, vy, (w2)y } + {(u1)p, vy, (W2)y } + {(u2)p, vy, (W1)y}-
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The first product satisfies the desired conditions by the work in Section 3.
The second and third products also satisfy these conditions by Lemma 6.2. It
follows from Section 3 and separate weak*-continuity of the triple product that
C is a weak*-closed subtriple of A and that * restricted to C is a weak™-
continuous homomorphism onto B. Let C = I & K where K denotes the kernel,
which is a weak*-closed ideal and I is the complementary ideal K. Suppose u
is a tripotent in B. Let P and P+ be the projections of C onto I and K. P(uy)
and P~ (uy) are orthogonal tripotents that sum to uy and ¥*(P(uy)) = u. By
Lemma 3.13, P(uy) = uy +q where ¢ L uy. Hence ¢ = —P~+(uy), which forces
q® = 0 because ¢ L Puy —uy =¢q. Thus K =0 and ¢* is a weak*-continuous
isomorphism from C' onto B.

An immediate consequence of the proof is the following corollary.
COROLLARY 6.7: Retain the notation of the theorem. Then C = {zy|z € B}.
The next two corollaries constitute a proof of Theorem 1.

COROLLARY 6.8: Suppose that A, B, C' and 1 are as in Theorem 3. Let
¢ denote the inverse of *|C and let P : A, — A, be the linear map with
P* = ¢ oyp* (which exists by the automatic weak* continuity of JBW™*-triple
isomorphisms). Then P is a contractive projection of A, onto ¢ (B.)

Proof. Yor f € B, and a € A, (P(¥(f)),a) = (f,v" (¥ (a))) = (f,¢"(a)) =
(¢(f),a). The statement follows.

In the next corollary we use the following fact from the structure theory of
JBW*-triples: every JBW*-triple U can be decomposed into an £°°-direct sum
of orthogonal weak*-closed ideals Uy and Us, where Uj is a direct sum of spaces
of the form L>°(Q, (), with C' a Cartan factor, and Us has no abelian tripotents
(see [24, (1.16)] and [23, (1.7)]). In particular, since Hilbert spaces are Cartan
factors, we can write B = B; @ By where (B7), is an ¢' direct sum of spaces
isomorphic to L(Qy, Hy), where H) is a Hilbert space of dimension at least
two, and (Bs). has no non-trivial /!-summand of the from L!(Q, H), with H a

Hilbert space of dimension at least two.

COROLLARY 6.9: Suppose that A and B are JBW*-triples and 1 is an isom-
etry from B, into A, and let B = By @ By be the decomposition described
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above. Then there is a contractive projection P from A, onto ¢((Bsz).) which
annihilates ¥ ((B1)«)

Proof. Denote by 1; the restriction of ¢ to (B;)«. It is immediate from the
previous corollary that there exists a contractive projection P from A, onto
Y2((B2)«) with P* = ¢9 o5 . Suppose f € ¢1((B1)«). Pick a tripotent
u € Bs. Using Lemmas 3.7 and 3.8,

Ugpy = ¢2 (u) = ¢ (Sl)l\p ’UQA) = Sl)l\p b2 (vgx) - Sl)\lp Uspa(gx)

for a family of pairwise orthogonal normal functionals gy € (Bz). (see the proof
of Lemma 3.9). Since f L 2(gx), f(vy,g,)) = 0 and so, by [22, (3.23)],
f(uy,) = 0. Hence f(¢2(u)) = 0. It follows that f(¢p2((¢2)*(A))) = 0 and
P(f) = 0.
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