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Abstract

A well-known result of Haagerup from 1983 states that every C∗-algebra A is weakly amenable,
that is, every (associative) derivation from A into its dual is inner. A Banach algebra B is said to be
ternary weakly amenable if every continuous Jordan triple derivation from B into its dual is inner.
We show that commutative C∗-algebras are ternary weakly amenable, but that B(H) and K(H) are
not, unless H is finite dimensional. More generally, we inaugurate the study of weak amenability
for Jordan–Banach triples, focussing on commutative JB∗-triples and some Cartan factors.

1. Introduction

Two fundamental questions concerning derivations from a Banach algebra A into a Banach
A-bimodule M are:

(i) Is an everywhere defined derivation automatically continuous?
(ii) Are all continuous derivations inner? If not, can every continuous derivation be approximated

by inner derivations?

One can ask the same questions in the setting of Jordan Banach algebras (and Jordan modules), and
more generally for Jordan–Banach triple systems (and Jordan–Banach triple modules). Significant
special cases occur in each context when M = A or when M = A∗.

In order to obtain a better perspective on the objectives of this paper, we shall give here a compre-
hensive review of the major existing results on these two problems in the contexts in which we will
be interested, namely, C∗-algebras, JB∗-algebras and JB∗-triples. Although we will be dealing with
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1110 T. HO et al.

both the real and complex cases in this paper, in the interest of space this review will be confined to
the complex case.

A derivation on a Banach algebra A into a Banach A-bimodule M is a linear mapping D : A → M

such that D(ab) = a · D(b) + D(a) · b. An inner derivation, in this context, is a derivation of the
form: adx(a) = x · a − a · x (x ∈ M , a ∈ A).

In the context of C∗-algebras, automatic continuity results were initiated by Kaplansky before
1950 (see [27]) and culminated in the following series of results: Every derivation from a C∗-algebra
into itself is continuous [47]; every derivation from a C∗-algebra A into a Banach A-bimodule is
continuous [45].

The major results for C∗-algebras regarding inner derivations read as follows: every derivation from
a C∗-algebra on a Hilbert space H into itself is of the form x �→ ax − xa for some a in the weak
closure of the C∗-algebra in L(H) [26, 48]; every amenable C∗-algebra is nuclear [7]; every nuclear
C∗-algebra is amenable [15]; every C∗-algebra is weakly amenable [15, 16]. For finite-dimensional
C∗-algebras, the last result follows from the work of Hochschild in 1942 [21].

As a bridge to the Jordan algebra setting, we make a slight digression. Sinclair proved in 1970 (cf.
[51]) that a continuous Jordan derivation from a semisimple Banach algebra to itself is a derivation,
although this result fails for derivations of semisimple Banach algebras into a Banach bimodule.
(A Jordan derivation from a Banach algebra A into a Banach A-module is a linear map D satisfy-
ing D(a2) = aD(a) + D(a)a, (a ∈ A), or equivalently, D(ab + ba) = aD(b) + D(b)a + D(a)b +
bD(a), (a, b ∈ A).) Nevertheless, Johnson proved in 1996 (cf. [25]) that every continuous Jordan
derivation from a C∗-algebra A to a Banach A-bimodule is a derivation. A new proof of this fact was
presented by Haagerup and Laustsen [16].

The following subsequent result partially removed the assumption of continuity from this theorem
of Johnson: Every Jordan derivation from a von Neumann algebra, or from a commutative C∗-
algebra, into a Banach bimodule is continuous [1]. More recently, the assumption was completely
removed: Every Jordan derivation from an arbitrary C∗-algebra into a Banach bimodule is continuous
[43, Corollary 22]. Earlier, Cusack [8], completing a study of Sinclair, showed that every Jordan
derivation on a semisimple Banach algebra is continuous, and Villena [56] extended this result to
semisimple Jordan–Banach algebras.

We now move to the context of Jordan–Banach algebras. A derivation from a Jordan–Banach
algebra A into a Jordan Banach module M is a linear mapping D : A → M such that D(a ◦ b) =
a ◦ Db + Da ◦ b, where ◦ denotes both the product in the Jordan algebra and the module action.
(Jordan–Banach algebras and Jordan–Banach modules will be defined below.) An inner derivation
in this context is a derivation of the form:

∑m
i=1(L(xi)L(ai) − L(ai)L(xi)) (xi ∈ M, ai ∈ A). Here,

L(x) is the operator a �→ a ◦ x from A to M and L(a) is either the operator b �→ b ◦ a from A to A

or x �→ a ◦ x from M to M .
In the context of JB∗-algebras, the major automatic continuity results consist of the follow-

ing. Every (Jordan) derivation of a reversible JC∗-algebra extends to a derivation (associative)
of its enveloping C∗-algebra ([53]—this recovers Sinclair’s result in the case of C∗-algebras);
every Jordan derivation from a JB∗-algebra A into A or into A∗ is continuous and every Jordan
derivation from a commutative or a compact C∗-algebra into a Jordan–Banach bimodule is
continuous [17]. This latter result was also extended to arbitrary C∗-algebras in [43, Corollary
21]: Every Jordan derivation from an arbitrary C∗-algebra A into a Jordan–Banach A-bimodule is
continuous.

The major results for JB∗-algebras regarding inner derivations are the following: Every Jordan
derivation from a finite-dimensional JB∗-algebra into a Jordan–Banach module is inner (follows from
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TERNARY WEAKLY AMENABLE C∗-ALGEBRAS AND JB∗-TRIPLES 1111

Jacobson [23, 24]); every Jordan derivation of a purely exceptional or a reversible JBW-algebra is inner
[53]; every Jordan derivation of

⊕
L∞(Sj , Uj ) (Uj spin factors) is inner if and only if supj dim Uj <

∞ [53]. By a structure theorem for JBW-algebras, these theorems of Upmeier completely determine
whether a given JBW-algebra has only inner derivations.

Finally, we move to a discussion of Jordan–Banach triples, which is the proper setting for this paper.
A (triple or ternary) derivation on a Jordan–Banach triple A into a Jordan–Banach triple module M is a
conjugate linear mapping D : A → M such that D{a, b, c} = {Da, b, c} + {a, Db, c} + {a, b, Dc}.
An inner derivation in this context is a derivation of the form:

∑m
i (L(xi, ai) − L(ai, xi)) (xi ∈ M, ai ∈

A), where L(x, a) and L(a, x) denote, respectively, the maps b �→ {x, a, b} and b �→ {a, x, b} arising
from the module action. (Jordan–Banach triple and Jordan–Banach triple module will be defined
below, after which the reason for the conjugate linearity in the complex case of derivations into a
module, as opposed to linearity, will be more transparent.)

In the context of JB∗-triples, automatic continuity results were initiated by Barton and Friedman
in 1990 (cf. [3]) who showed that every triple derivation of a JB∗-triple is continuous. Peralta and
Russo in 2010 (see [43, Theorem 13]) gave necessary and sufficient conditions under which a deriva-
tion of a JB∗-triple into a Jordan–Banach triple module is continuous. As shown in [43], these
conditions are automatically satisfied in the case where the JB∗-triple is actually a C∗-algebra with
the triple product (xy∗z + zy∗x)/2, leading to a new proof (cf. [43, Corollary 23]) of the theorem of
Ringrose quoted above as well as the results of Alaminos–Brešar–Villena and Hejazian–Niknam, also
quoted above.

The known results for JB∗-triples regarding inner derivations are surveyed in the following state-
ments: Every derivation from a finite-dimensional JB∗-triple into itself is inner (follows from Meyberg
[38]); every derivation from a finite-dimensional JB∗-triple into a Jordan–Banach triple module is
inner (follows from Kühn–Rosendahl [31]); every derivation of a Cartan factor of type In,n (n finite or
infinite), type II (with underlying Hilbert space of even or infinite dimension) or type III is inner [20].
Infinite-dimensional Cartan factors of type Im,n, m �= n and type IV have derivations into themselves
which are not inner (cf. [20]).

It is worth noting that, besides the consequences for C∗-algebras of the main result of Peralta and
Russo [43] noted above, another consequence is the automatic continuity of derivations of a JB∗-triple
into its dual [43, Corollary 15], leading us to the study of weak amenability for JB∗-triples, which is
the main focus of this paper.

We conclude this review introduction by describing the contents of this paper. Section 2 sets
down the definitions and basic properties of Jordan triples, Jordan triple modules, derivations and
(ternary) weak amenability that we shall use. Sections 3 and 4 are concerned with C∗-algebras,
considered as JB∗-triples with the triple product (xy∗z + zy∗x)/2. It is proved that commuta-
tive C∗-algebras are ternary weakly amenable, and that the compact operators, as well as all
bounded operators on a Hilbert space H are ternary weakly amenable if and only if H is finite
dimensional.

Sections 5 and 6 are concerned with more general JB∗-triples. It is proved that certain Cartan
factors (Hilbert spaces and spin factors) are ternary weakly amenable if and only if they are finite
dimensional, that infinite-dimensional finite rank Cartan factors of type 1 are not ternary weakly
amenable, and that commutative JB∗-triples are almost weakly amenable in the sense that the inner
derivations into the dual are norm dense in the set of all derivations into the dual. In comparison,
the existing forerunners on the approximation of derivations on C∗-algebras by inner derivations
(immediate consequence of the Sakai–Kadison results [26, 48]), JB∗-algebras [53] and JB∗-triples
[3] involved the topology of pointwise convergence and not the norm topology.
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1112 T. HO et al.

2. Derivations on Jordan triples and Jordan triple modules

2.1. Jordan triples

A complex (respectively, real) Jordan triple is a complex (respectively, real) vector space E equipped
with a non-trivial triple product

E × E × E → E,

(xyz) �→ {x, y, z},

which is bilinear and symmetric in the outer variables and conjugate linear (respectively, linear) in
the middle one satisfying the so-called ‘Jordan Identity’

L(a, b)L(x, y) − L(x, y)L(a, b) = L(L(a, b)x, y) − L(x, L(b, a)y),

for all a, b, x, y in E, where L(x, y)z := {x, y, z}. When E is a normed space and the triple product
of E is continuous, we say that E is a normed Jordan triple. If a normed Jordan triple E is complete
with respect to the norm (i.e. if E is a Banach space), then it is called a Jordan–Banach triple.
Every normed Jordan triple can be completed in the usual way to become a Jordan–Banach triple.
Unless otherwise specified, the term ‘normed Jordan triple’(respectively, ‘Jordan–Banach triple’) will
always mean a real or complex normed Jordan triple (respectively, a real or complex Jordan–Banach
triple).

A subspace F of a Jordan triple E is said to be a subtriple if {F, F, F } ⊆ F . We recall that a
subspace J of E is said to be a triple ideal if {E, E, J } + {E, J, E} ⊆ J. When {J, E, J } ⊆ J, we
say that J is an inner ideal of E.

A real (respectively, complex) Jordan algebra is a (non-necessarily associative) algebra over the
real (respectively, complex) field whose product is abelian and satisfies (a ◦ b) ◦ a2 = a ◦ (b ◦ a2).
A normed Jordan algebra is a Jordan algebra A equipped with a norm, ‖ · ‖, satisfying ‖a ◦
b‖ ≤ ‖a‖ ‖b‖, a, b ∈ A. A Jordan–Banach algebra is a normed Jordan algebra whose norm
is complete.

A Jordan algebra is called special if it is isomorphic to a subspace of an associative algebra which
is closed under ab + ba. Every Jordan algebra is a Jordan triple with respect to

{a, b, c} := (a ◦ b) ◦ c + (c ◦ b) ◦ a − (a ◦ c) ◦ b.

If a Jordan triple arises from a special Jordan algebra, then the triple product reduces to {a, b, c} =
1
2 (abc + cba). Thus, every real or complex associative Banach algebra (respectively, Jordan–
Banach algebra) is a real Jordan–Banach triple with respect to the product {a, b, c} = 1

2 (abc + cba)

(respectively, {a, b, c} = (a ◦ b) ◦ c + (c ◦ b) ◦ a − (a ◦ c) ◦ b).
A real or complex Jordan–Banach triple E is said to be commutative or abelian if the identity

{{x, y, z}, a, b} = {x, y, {z, a, b}} = {x, {y, z, a}, b}

holds for allx, y, z, a, b ∈ E, equivalently,L(a, b)L(c, d) = L(c, d)L(a, b) for everya, b, c, d ∈ E.
A JB∗-algebra is a complex Jordan–Banach algebra A equipped with an algebra involution ∗

satisfying ‖{a, a∗, a}‖ = ‖a‖3, a ∈ A. (Recall that {a, a∗, a} = 2(a ◦ a∗) ◦ a − a2 ◦ a∗.)
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TERNARY WEAKLY AMENABLE C∗-ALGEBRAS AND JB∗-TRIPLES 1113

A (complex) JB∗-triple is a complex Jordan Banach triple E satisfying the following axioms:

(JB∗1) for each a in E, the map L(a, a) is an hermitian operator on E with non-negative spectrum;
(JB∗2) ‖{a, a, a}‖ = ‖a‖3 for all a in A.

Every C∗-algebra (respectively, every JB∗-algebra) is a JB∗-triple with respect to the product
{a, b, c} = 1

2 (ab∗c + cb∗a) (respectively, {a, b, c} := (a ◦ b∗) ◦ c + (c ◦ b∗) ◦ a − (a ◦ c) ◦ b∗).
A summary of the basic facts about JB∗-triples, an important and well-understood class of Jordan–

Banach triples, some of which are recalled here, can be found in [46] and some of the references
therein, such as [13, 14, 28, 54, 55].

We recall that a real JB∗-triple is a norm-closed real subtriple of a complex JB∗-triple (cf. [22]). The
class of real JB∗-triples includes all complex JB∗-triples, all real and complex C∗- and JB∗-algebras
and all JB-algebras.

A complex (respectively, real) JBW∗-triple is a complex (respectively, real) JB∗-triple which is
also a dual Banach space (with a unique isometric predual [4, 37]). It is known that the triple product
of a real or complex JBW∗-triple is separately weak∗ continuous (cf. [4, 37]). The second dual of a
JB∗-triple E is a JBW∗-triple with a product extending the product of E [9, 22].

JB-algebras are precisely the self-adjoint parts of JB∗-algebras [33], and a JBW-algebra is a
JB-algebra that is a dual space.

When E is a (complex) JB∗-triple or a real JB∗-triple, a subtriple I of E is a triple ideal if and
only if {E, E, I } ⊆ I or {E, I, E} ⊆ I or {E, I, I } ⊆ I (cf. [5, Proposition 1.3]).

2.2. Jordan triple modules

Let A be an associative algebra. Let us recall that an A-bimodule is a vector space X, equipped with
two bilinear products (a, x) �→ ax and (a, x) �→ xa from A × X to X satisfying the axioms

a(bx) = (ab)x, a(xb) = (ax)b and (xa)b = x(ab),

for every a, b ∈ A and x ∈ X.
Let A be a Jordan algebra. A Jordan A-module is a vector space X, equipped with two bilinear

products (a, x) �→ a ◦ x and (x, a) �→ x ◦ a from A × X to X, satisfying

a ◦ x = x ◦ a, a2 ◦ (x ◦ a) = (a2 ◦ x) ◦ a

and
2((x ◦ a) ◦ b) ◦ a + x ◦ (a2 ◦ b) = 2(x ◦ a) ◦ (a ◦ b) + (x ◦ b) ◦ a2,

for every a, b ∈ A and x ∈ X. The space A ⊕ X is a Jordan algebra with respect to the product

(a, x) ◦ (b, y) := (a ◦ b, a ◦ y + b ◦ x).

The Jordan algebra (A ⊕ X, ◦) is called the Jordan split null extension of A and X (cf. [24, Section
II.5, p. 82]). When A is a Jordan–Banach algebra, X is a Banach space and the mapping A × X → X,
(a, x) �→ a ◦ x is continuous, then X is said to be a Jordan–Banach module. The Jordan split null
extension is never a JB-algebra since (0, x)2 = 0.
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1114 T. HO et al.

Let E be a complex (respectively, real) Jordan triple. A Jordan triple E-module (also called triple
E-module) is a vector space X equipped with three mappings

{·, ·, ·}1 : X × E × E → X, {·, ·, ·}2 : E × X × E → X

and
{·, ·, ·}3 : E × E × X → X

satisfying the following axioms:

(JTM1) {x, a, b}1 is linear in a and x and conjugate linear in b (respectively, trilinear), {abx}3

is linear in b and x and conjugate linear in a (respectively, trilinear) and {a, x, b}2 is
conjugate linear in a, b, x (respectively, trilinear);

(JTM2) {x, b, a}1 = {a, b, x}3, and {a, x, b}2 = {b, x, a}2 for every a, b ∈ E and x ∈ X;
(JTM3) denoting by {·, ·, ·} any of the products {·, ·, ·}1, {·, ·, ·}2 or {·, ·, ·}3, the identity

{a, b, {c, d, e}} = {{a, b, c}, d, e} − {c, {b, a, d}, e} + {c, d, {a, b, e}}, holds whenever
one of the elements a, b, c, d, e is in X and the rest are in E.

It is obvious that every real or complex Jordan triple E is a real triple E-module. It is problematical
whether every complex Jordan triple E is a complex triple E-module for a suitable triple product.
This is partly why we have defined (in Sections 1 and 2.3) a derivation of a complex JB∗-triple into
a Jordan–Banach triple module to be conjugate linear.

When E is a Jordan–Banach triple and X is a triple E-module which is also a Banach space and,
for each a, b in E, the mappings x �→ {a, b, x}3 and x �→ {a, x, b}2 are continuous, we shall say that
X is a triple E-module with continuous module operations. When the products {·, ·, ·}1, {·, ·, ·}2 and
{·, ·, ·}3 are (jointly) continuous, we shall say that X is a Banach (Jordan) triple E-module.

Hereafter, the triple products {·, ·, ·}j , j = 1, 2, 3, will be simply denoted by {·, ·, ·} whenever the
meaning is clear from the context.

Every (associative) Banach A-bimodule (respectively, Jordan Banach A-module) X over an asso-
ciative Banach algebra A (respectively, Jordan–Banach algebra A) is a real Banach triple A-module
(respectively, A-module) with respect to the ‘elementary’ product

{a, b, c} := 1
2 (abc + cba)

(respectively, {a, b, c} = (a ◦ b) ◦ c + (c ◦ b) ◦ a − (a ◦ c) ◦ b), where one element of a, b, c is in
X and the other two are in A.

It is easy but laborious to check that the dual space E∗ of a complex (respectively, real) Jordan–
Banach triple E is a complex (respectively, real) triple E-module with respect to the products

{a, b, ϕ}(x) = {ϕ, b, a}(x) := ϕ{b, a, x} (1)

and
{a, ϕ, b}(x) := ϕ{a, x, b}, ∀ x ∈ X, a, b ∈ E. (2)

Given a triple E-module X over a Jordan triple E, the space E ⊕ X can be equipped with a struc-
ture of a real Jordan triple with respect to the product {a1 + x1, a2 + x2, a3 + x3} = {a1, a2, a3} +
{x1, a2, a3} + {a1, x2, a3} + {a1, a2, x3}. Consistent with the terminology in [24, Section II.5], E ⊕ X

will be called the triple split null extension of E and X. It is never a JB∗-triple.
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TERNARY WEAKLY AMENABLE C∗-ALGEBRAS AND JB∗-TRIPLES 1115

A subspace S of a triple E-module X is said to be a Jordan triple submodule or a triple submodule
if and only if {E, E, S} + {E, S, E} ⊆ S. Every triple ideal J of E is a Jordan triple E-submodule
of E.

2.3. Derivations

Let X be a Banach A-bimodule over an (associative) Banach algebra A.A linear mapping D : A → X

is said to be a (binary or associative) derivation if D(ab) = D(a)b + aD(b) for every a, b in A. The
symbol Db(A, X) will denote the set of all continuous binary derivations from A to X.

When X is a Jordan–Banach module over a Jordan–Banach algebra A, a linear mapping D : A →
X is said to be a Jordan derivation if D(a ◦ b) = D(a) ◦ b + a ◦ D(b) for every a, b in A. We denote
the set of continuous Jordan derivations from A to X by DJ (A, X). Although Jordan derivations also
are binary derivations, we use the word ‘binary’ only for associative derivations.

In the setting of Jordan–Banach triples, a triple or ternary derivation from a (real or complex)
Jordan–Banach triple E into a Banach triple E-module X is a conjugate linear mapping δ : E → X

satisfying
δ{a, b, c} = {δ(a), b, c} + {a, δ(b), c} + {a, b, δ(c)}, (3)

for every a, b, c in E. The set of all continuous ternary derivations from E to X will be denoted by
Dt (E, X). According to [3, 20], a ternary derivation on E is a linear mapping δ : E → E satisfying
the identity (3).

It should be remarked here that, unlike derivations from E to itself, derivations from E to E∗,
when the latter is regarded as a Jordan triple E-module, are defined to be conjugate linear maps
(in the complex case). The words Jordan or ternary may seem redundant in the expressions ‘Jordan
derivation on a Jordan algebra’ and ‘ternary derivation on a Jordan triple’; nevertheless, we shall
make use of them for clarity.

If E is a real or complex Jordan–Banach triple, we can easily conclude, from the Jordan identity,
that δ(a, b) := L(a, b) − L(b, a) is a ternary derivation on E for every a, b ∈ E. A triple or ternary
derivation δ on E is said to be inner if it can be written as a finite sum of derivations of the form
δ(a, b) (a, b ∈ E). Following [3, 20], we shall say that E has the inner derivation property if every
ternary derivation on E is inner. The just quoted papers study the inner derivation property in the
setting of real and complex JB∗-triples.

The following technical result will be needed later.

Proposition 2.1 Let E be a real or complex JB∗-triple and let δ : E → E∗ be a ternary derivation.
Then δ∗∗ : E∗∗ → E∗∗∗ is a weak∗-continuous ternary derivation satisfying δ∗∗(E∗∗) ⊆ E∗.

Proof . Let δ be a ternary derivation from a real (or complex) JB∗-triple to its dual, which is auto-
matically bounded by Peralta and Russo [43, Corollary 15]. It is known that every bounded linear
operator from a real JB∗-triple to the dual of another real JB∗-triple factors through a real Hilbert
space (cf. [42, Lemma 5]). Thus, δ factors though a real Hilbert space and hence it is weakly compact.
By Hille and Phillips [19, Lemma 2.13.1], we have δ∗∗(E∗∗) ⊂ E∗.

We will prove now that δ∗∗ is a ternary derivation. Clearly, the mapping δ∗∗ : E∗∗ → E∗∗∗ is
σ(E∗∗, E∗)-to-σ(E∗∗∗, E∗∗)-continuous. Let a, b and c be elements in E∗∗. By Goldstine’s Theorem,
there exist (bounded) nets (aλ), (bμ) and (cβ) in E such that (aλ) → a, (bμ) → b and (cβ) → c in
the weak∗-topology of E∗∗.
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1116 T. HO et al.

It should be noted here that, for every net (φλ) in E∗∗∗, converging to some φ ∈ E∗∗∗ in the
σ(E∗∗∗, E∗∗)-topology, the nets ({φλ, a, b}) and ({a, φλ, b}) converge in the σ(E∗∗∗, E∗∗)-topology
to ({φ, a, b}) and ({a, φ, b}), respectively. Having this fact in mind, it follows from the separate
weak∗-continuity of the triple product in E∗∗ together with the weak∗-continuity of δ∗∗ that

δ∗∗{a, bμ, cβ} = w∗- lim
λ

δ{aλ, bμ, cβ}
= w∗- lim

λ
{δ(aλ), bμ, cβ} + {aλ, δ(bμ), cβ} + {aλ, bμ, δ(cβ)},

w∗- lim
λ

{δ(aλ), bμ, cβ} = {δ∗∗(a), bμ, cδ},
w∗- lim

λ
{aλ, δ(bμ), cβ} = {a, δ(bμ), cβ}

and
w∗- lim

λ
{aλ, bμ, δ(cβ)} = {a, bμ, δ(cβ)},

for every μ and β. Therefore,

δ∗∗{a, bμ, cβ} = {δ∗∗(a), bμ, cβ} + {a, δ(bμ), cβ} + {a, bμ, δ(cβ)}, (4)

for every μ and β. By a similar argument, taking weak∗-limits in (4) first in μ and later in β, we get

δ∗∗{a, b, c} = {δ∗∗(a), b, c} + {a, δ∗∗(b), c} + {a, b, δ∗∗(c)},

which concludes the proof. �

2.4. Weakly amenable Jordan–Banach triples

Let X be a Banach A-bimodule over an associative Banach algebra A. Given x0 in X, the mapping
Dx0 : A → X, Dx0(a) = x0a − ax0 is a bounded (associative or binary) derivation. Derivations of
this form are called inner. The set of all inner derivations from A to X will be denoted by Innb(A, X).

Recall that a Banach algebra A is said to be amenable if every bounded derivation of A into a
dual A-module is inner, and weakly amenable if every (bounded) derivation from A to A∗ is inner. In
[15], Haagerup making use of preliminary work of Bunce and Paschke [6] and the Pisier–Haagerup
Grothendieck’s inequality for general C∗-algebras, proved that every C∗-algebra is weakly amenable.
In [16], Haagerup and Laustsen gave a simplified proof of this result.

When x0 is an element in a Jordan–Banach A-module X, over a Jordan–Banach algebra A, for
each b ∈ A, the mapping δx0,b : A → X,

δx0,b(a) := (x0 ◦ a) ◦ b − (b ◦ a) ◦ x0 (a ∈ A)

is a bounded derivation. Finite sums of derivations of this form are called inner. The symbol
InnJ (A, X) will stand for the set of all inner Jordan derivations from A to X.

The Jordan–Banach algebra A is said to be weakly amenable, or Jordan weakly amenable, if every
(bounded) derivation from A to A∗ is inner. It is natural to ask whether every JB∗-algebra is weakly
amenable. The answer is no, as Lemma 4.1 or 4.3 shows.
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TERNARY WEAKLY AMENABLE C∗-ALGEBRAS AND JB∗-TRIPLES 1117

In the more general setting of Jordan–Banach triples, the corresponding definitions read as follows:
Let E be a complex (respectively, real) Jordan triple and let X be a triple E-module. For each b ∈ E

and each x0 ∈ X, we conclude, via the main identity for Jordan triple modules (JTM3), that the
mapping δ = δ(b, x0) : E → X, defined by

δ(a) = δ(b, x0)(a) := {b, x0, a} − {x0, b, a} (a ∈ E) (5)

is a ternary derivation from E into X. Finite sums of derivations of the form δ(b, x0) are called
(ternary) inner derivations. Henceforth, we shall write Innt (E, X) for the set of all inner ternary
derivations from E to X.

A Jordan–Banach triple E is said to be weakly amenable or ternary weakly amenable if every
continuous triple derivation from E into its dual space is necessarily inner.

In the next step, we explore the connections between ternary weak amenability in a real JB∗-triple
and its complexification. Let E be a real JB∗-triple. By Isidro et al. [22, Proposition 2.2], there exists a
unique complex JB∗-triple structure on the complexification Ê = E ⊕ iE, and a unique conjugation
(i.e. conjugate linear isometry of period 2) τ on Ê such that E = Êτ := {x ∈ Ê : τ(x) = x}, that is,
E is a real form of a complex JB∗-triple. Let us consider

τ 	 : Ê∗ → Ê∗,

defined by
τ 	(φ)(z) = φ(τ(z)).

The mapping τ 	 is a conjugation on Ê∗. Furthermore, the map

(Ê∗)τ
	 −→ (Êτ )∗ (= E∗),

φ �→ φ|E

is an isometric bijection, where (Ê∗)τ	 := {φ ∈ Ê∗ : τ 	(φ) = φ}, and thus Ê∗ = E∗ ⊕ iE∗ (cf. [22,
p. 316]).

Our next result is a module version of Martinez-Moreno et al. [20, Proposition 1]. We shall only
include a sketch of the proof.

Proposition 2.2 A real JB∗-triple is ternary weakly amenable if and only if its complexification has
the same property.

Proof . Let E be a real JB∗-triple, whose complexification is denoted by Ê = E ⊕ iE, and let τ

denote the conjugation on Ê satisfying E = Êτ .
According to [43, Remark 13], given a triple derivation δ : E → E∗, the mapping δ̂ : Ê → Ê∗,

δ̂(x + iy) := δ(x) − iδ(y) is a (conjugate linear) triple derivation from Ê into Ê∗. It can be easily
checked that the identity

δ(a + ib, φ1 + iφ2) = δ(a, φ1) − δ(b, φ2) − iδ(a, φ2) − iδ(b, φ1) (6)

holds for every a, b ∈ E ⊆ Ê and φ1, φ2 ∈ E∗ ⊆ Ê∗.
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1118 T. HO et al.

Having in mind the facts proved in the above paragraph, we can see that E is ternary weakly
amenable whenever Ê satisfies the same property.

For the reciprocal implication, we note that if δ̂ : Ê → Ê∗ is a ternary derivation from Ê = E ⊗ iE
to Ê∗ = E∗ ⊗ iE∗, it can be easily checked that the identity

(P ◦ δ̂){a, b, c} = {(P ◦ δ̂)a, b, c} + {a, (P ◦ δ̂)b, c} + {a, b, (P ◦ δ̂)c}

holds for every a, b, c ∈ E = Êτ , where P denotes (IdE∗ + τ 	)/2 or (IdE∗ − τ 	)/2i. Therefore, the
mapping P ◦ δ̂|E : E → E∗ is a ternary derivation. Since every ternary inner derivation δ from E

to E∗ defines a ternary inner derivation from Ê to Ê∗, we can guarantee that Ê is ternary weakly
amenable when E has this property. �

Note that if A is a Banach ∗-algebra, A is ternary weakly amenable if each continuous ternary
derivation from A (considered as a Jordan–Banach triple system) into A∗ is inner. Thus, a Banach
∗-algebra can be weakly amenable and/or ternary weakly amenable, and the two concepts do not
necessarily coincide (cf. Proposition 4.2).

We emphasize again that, unlike derivations from A to itself, derivations from A to A∗ are defined
to be conjugate linear maps (in the complex case).

3. Commutative C∗-algebras are ternary weakly amenable

In this section, we prove that every commutative (real or complex) C∗-algebra is ternary weakly
amenable. Our next results establish some technical connections between associative and ternary
derivations from a Banach ∗-algebra A to a Jordan A-module (respectively, associative A-bimodule).

Following standard notation, given a Banach algebra A, a ∈ A and ϕ ∈ A∗, aϕ, ϕa will denote
the elements in A∗ given by

aϕ(y) = ϕ(ya) and ϕa(y) = ϕ(ay) (y ∈ A).

Lemma 3.1 Let A be an associative unital (Banach) *-algebra (which we consider as a Jordan–
Banach algebra), X be a unital Jordan A-module and δ : Asa → X be a (real) linear mapping.
The following assertions are equivalent:

(a) δ is a ternary derivation and δ(1) = 0;
(b) δ is a Jordan derivation.

Further, a conjugate linear mapping δ : A → X is a ternary derivation with δ(1) = 0 if, and only
if, the linear mapping D : A → X, D(a) := δ(a∗) is a Jordan derivation.

Proof . (a) ⇒ (b) Since X is a unital real Jordan Asa-module and δ(1) = 0, the identity

δ(a ◦ b) = δ{a, 1, b} = {δ(a), 1, b} + {a, δ(1), b} + {a, 1, δ(b)}
= {δ(a), 1, b} + {a, 1, δ(b)} = δ(a) ◦ b + a ◦ δ(b)

gives the desired statement.
For every Jordan derivation δ : Asa → X, we have δ(1) = δ(1 ◦ 1) = 2(1 ◦ δ(1)) = 2δ(1), and

hence δ(1) = 0. The implication (b) ⇒ (a) follows straightforwardly.
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TERNARY WEAKLY AMENABLE C∗-ALGEBRAS AND JB∗-TRIPLES 1119

To prove the last statement, we observe that a conjugate linear mapping δ : A → X is a ternary
derivation with δ(1) = 0 if, and only if, δ|Asa

: Asa → X is a ternary derivation with δ(1) = 0, which,
by (a)⇔ (b), is equivalent to saying that δ|Asa

is a Jordan derivation. It is easy to check that δ|Asa
=

D|Asa
is a Jordan derivation if and only if D is a Jordan derivation from A to X. �

Henceforth, given a unital associative *-algebra A and a Jordan A-module X, we shall write
D o

t (A, X) for the set of all (continuous) ternary derivations from A to X vanishing at the unit
element. We have seen in Lemma 3.1 that, when A and X are unital, we have

DJ (A, X) ◦ ∗ = D o
t (A, X) := {δ ∈ Dt (A, X) : δ(1) = 0}. (7)

Given a Banach *-algebra A, we consider the involution ∗ on A∗ defined by ϕ∗(a) := ϕ(a∗) (a ∈ A,
ϕ ∈ A∗). An element δ ∈ DJ (A, A∗) is called a *-derivation if δ(a∗) = δ(a)∗ for every a ∈ A. The
symbols D ∗

J (A, A∗) and Inn∗
J (A, A∗) (respectively, D ∗

b (A, A∗) and Inn∗
b(A, A∗)) will, respectively,

denote the sets of all Jordan and Jordan-inner (respectively, associative and inner) *-derivations from
A to A∗.

Lemma 3.2 Let X be an A-bimodule over a Banach ∗-algebra A. Then the following statements
hold:

(i) InnJ (A, X) ⊂ Innb(A, X). In particular, Inn∗
J (A, A∗) ⊂ Inn∗

b(A, A∗);
(ii) let D be an element in Innb(A, A∗), that is, D = Dϕ for some ϕ in A∗. Then D is a

*-derivation whenever ϕ∗ = −ϕ. Further, if the linear span of all commutators of the form
[a, b] with a, b in A is norm-dense in A, then D is a *-derivation if, and only if, ϕ∗ = −ϕ.

Proof . (i) Let us consider a Jordan derivation of the form δx0,b, where x0 ∈ X and b ∈ A. For each
a in A, we can easily check that

δx0,b(a) = (x0 ◦ a) ◦ b − (b ◦ a) ◦ x0 = 1
4 ([b, x0]a − a[b, x0]) = D(1/4)[b,x0](a),

where the Lie bracket [·, ·] is defined by [b, x0] = (bx0 − x0b) for every b ∈ A, x0 ∈ X. Since every
inner Jordan derivation D from A to X must be a finite sum of the form D = ∑n

j=1 δxj ,bj
, with xj ∈ X

and bj ∈ A, it follows that D = ∑n
j=1 D(1/4)[bj ,xj ] = D(1/4)

∑n
j=1[bj,xj ] is an inner (associative) binary

derivation.
(ii) Let D = Dϕ, where ϕ ∈ A∗ and ϕ∗ = −ϕ. Let us fix two arbitrary elements a, b in A. The

identities
Dϕ(a∗)(b) = (ϕa∗ − a∗ϕ)(b) = ϕ(a∗b − ba∗)

and
Dϕ(a)∗(b) = (ϕa − aϕ)∗(b) = (a∗ϕ∗ − ϕ∗a∗)(b) = ϕ∗(ba∗ − a∗b)

give Dϕ(a∗) = Dϕ(a)∗, proving that D is a ∗-derivation.
Conversely, suppose now that the linear span of all commutators of the form [a, b] with a, b in

A is norm-dense in A and D = Dϕ is a ∗-derivation. The identity Dϕ(a∗) = Dϕ(a)∗ (a ∈ A) implies
that ϕ[a∗, b] = −ϕ∗[a∗, b] for every a, b ∈ A, therefore ϕ = −ϕ∗ as required. �

Remark 3.3 There exist many examples of Banach algebras A in which the linear span of all
commutators of the form [a, b] with a, b in A is norm-dense in A. This property is never satisfied by
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a commutative Banach algebra. However, the list of examples of C∗-algebras satisfying this property
includes all properly infinite C∗-algebras, all properly infinite von Neumann algebras and the C∗-
algebra of all compact operators on an infinite-dimensional complex Hilbert space [40] (see also the
survey [57]). Fack [10] proved that if the unit of a (unital) C∗-algebra A is properly infinite (i.e. there
exist two orthogonal projections p, q in A Murray–von Neumann equivalent to 1), then any hermitian
element is a sum of at most five self-adjoint commutators. Many other results have been established
to show that all elements in a C∗-algebra that have trace zero with respect to all tracial states can be
written as a sum of finitely many commutators (cf. [34–36, 44], among others).

Let X be a unital Banach A-bimodule over a unital Banach algebra A. Regarding X as a
real Banach triple A-module with respect to the induced triple product {a, x, c} = 1

2 (axc + cxa),
{x, a, c} = 1

2 (xac + cax) (a, c ∈ A, x ∈ X), we can easily see that every ternary derivation δ : A →
X annihilates at 1, that is,

Dt (A, X) = D o
t (A, X).

Indeed, since

δ(1) = δ({1, 1, 1}) = {δ(1), 1, 1} + {1, δ(1), 1} + {1, 1, δ(1)} = 3δ(1),

we have δ(1) = 0. When we consider Banach A-bimodules equipped with ternary products that differ
from the previous one, the identity Dt (A, X) = D o

t (A, X) does not hold in general. Our next lemmas
study the case X = A∗, where A is a unital Banach ∗-algebra.

Lemma 3.4 Let A be a unital Banach ∗-algebra equipped with the ternary product given by
{a, b, c} = 1

2 (ab∗c + cb∗a). Every ternary derivation δ in Dt (A, A∗) satisfies the identity δ(1)∗ =
−δ(1), that is, δ(1)(a∗) = −δ(1)(a), for every a in A.

Proof . Let δ : A → A∗ be a ternary derivation. Since the identity

δ(1)(a) = δ({1, 1, 1})(a) = {δ(1), 1, 1}(a) + {1, δ(1), 1}(a) + {1, 1, δ(1)}(a)

= 2δ(1){1, 1, a} + δ(1){1, a, 1} = 2δ(1)(a) + δ(1)∗(a)

holds for every a ∈ A, we do have δ(1)∗ = −δ(1). �

Lemma 3.5 Let A be a unital Banach ∗-algebra equipped with the ternary product given by
{a, b, c} = 1

2 (ab∗c + cb∗a). Then

Dt (A, A∗) = D o
t (A, A∗) + Innt (A, A∗).

More precisely, if δ ∈ Dt (A, A∗), then δ = δ0 + δ1, where δ0 ∈ D o
t (A, A∗) and δ1, defined by

δ1(a) := δ(1) ◦ a∗ = 1
2 (δ(1)a∗ + a∗δ(1)), is the inner derivation − 1

2δ(1, δ(1)).

Proof . Let δ : A → A∗ be a ternary derivation. The mapping δ1 : A → A∗ δ1(a) := δ(1) ◦ a∗ is a
conjugate linear mapping with δ1(1) = δ(1).We will show that δ1 = − 1

2δ(1, δ(1)). Then, the mapping
δ0 = δ − δ1 is a triple derivation with δ0(1) = 0 and δ = δ0 + δ1, proving the lemma.

Lemma 3.4 implies that δ(1)∗ = −δ(1).
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TERNARY WEAKLY AMENABLE C∗-ALGEBRAS AND JB∗-TRIPLES 1121

Now we consider the inner triple derivation − 1
2δ(1, δ(1)). For each a and b in A, we have

− 1
2δ(1, δ(1))(a)(b) = − 1

2 ({1, δ(1), a} − {δ(1), 1, a})(b)

= − 1
2 (δ(1)({1, b, a}) − δ(1)({1, a, b}))

= − 1
2 (δ(1)∗({1, a, b}) − δ(1)({1, a, b}))

(since δ(1)∗ = −δ(1)) = − 1
2 (−δ(1)({1, a, b}) − δ(1)({1, a, b}))

= δ(1)({1, a, b}) = δ(1)(a∗ ◦ b) = δ1(a)(b).

Thus, δ1 = − 1
2δ(1, δ(1)), as promised. �

Lemma 3.6 Let A be a unital Banach ∗-algebra equipped with the ternary product given by
{a, b, c} = 1

2 (ab∗c + cb∗a) and the Jordan product a ◦ b = (ab + ba)/2, let D : A → A∗ be a
linear mapping and let δ : A → A∗ denote the conjugate linear mapping defined by δ(a) := D(a∗).
Then D lies in DJ (A, A∗) if, and only if, δ{a, 1, b} = {δ(a), 1, b} + {a, 1, δ(b)} for all a, b ∈ A.
Moreover,

Do
t (A, A∗) = {δ : A → A∗ : ∃D ∈ D∗

J (A, A∗) s.t. δ(a) = D(a∗), (a ∈ A)}.

Proof . The first statement follows immediately from the definitions, that is, {δa, 1, b} = D(a∗) ◦ b∗,
{a, 1, δb} = D(b∗) ◦ a∗ and δ{a, 1, b} = D(a∗ ◦ b∗).

Suppose next that δ ∈ Do
t (A, A∗). From the first statement, D lies in DJ (A, A∗). Actually D is

∗-derivation; if a ∈ A, then δ(a∗) = δ{1, a, 1} = {1, δ(a), 1}, and so, for all y ∈ A, we have

〈δ(a∗), y〉 = 〈{1, δ(a), 1}, y〉 = 〈δ(a), {1, y, 1}〉 = 〈(δ(a))∗, y〉,

and hence D(a∗) = δ(a) = (δ(a∗))∗ = (Da)∗.
Suppose now that D ∈ D∗

J (A, A∗). It follows from the definitions and the fact that D ∈ DJ (A, A∗)
that the following three equations hold:

δ{a, b, a} = 2(D(a∗) ◦ b) ◦ a∗ + 2(a∗ ◦ D(b)) ◦ a∗ + 2(a∗ ◦ b) ◦ D(a∗)

− 2(D(a∗) ◦ a∗) ◦ b − (a∗ ◦ a∗) ◦ D(b),

{δ(a), b, a} = D(a∗) ◦ (b ◦ a∗) + (D(a∗) ◦ b) ◦ a∗ − (D(a∗) ◦ a∗) ◦ b

and

{a, δ(b), a} = 2((D(b∗))∗ ◦ a∗) ◦ a∗ − D(b) ◦ (a∗ ◦ a∗).

From these three equations, we have

δ{a, b, a} − 2{δ(a), b, a} − {a, δ(b), a} = 2(a∗ ◦ D(b)) ◦ a∗ − 2((D(b∗))∗ ◦ a∗) ◦ a∗.

Since D is self-adjoint, the right-hand side of the last equation vanishes, and the result follows. �
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Proposition 3.7 Let A be a unital Banach ∗-algebra equipped with the ternary product given by
{a, b, c} = 1

2 (ab∗c + cb∗a) and the Jordan product a ◦ b = (ab + ba)/2. Then

Dt (A, A∗) ⊂ D ∗
J (A, A∗) ◦ ∗ + Innt (A, A∗).

If A is Jordan weakly amenable, then

Dt (A, A∗) = Inn∗
b(A, A∗) ◦ ∗ + Innt (A, A∗).

Proof . Let δ : A → A∗ be a ternary derivation. By Lemma 3.5, δ = δ0 + δ1, where δ0 ∈ D o
t (A, A∗),

δ1(a) = − 1
2δ(1, δ(1))(a) = δ(1) ◦ a∗. Lemmas 3.1 and 3.6 assure that D = δ0 ◦ ∗ is a Jordan

∗-derivation. This proves the first statement.
The assumed Jordan weak amenability of A, together with Lemma 3.2 implies that D = δ0 ◦ ∗

lies in Inn∗
b(A, A∗), which gives δ = D ◦ ∗ + δ1 ∈ Inn∗

b(A, A∗) ◦ ∗ + Innt (A, A∗). Since a simple
calculation shows that Inn∗

b(A, A∗) ⊂ Dt (A, A∗), the reverse inclusion holds, proving the second
statement. �

When a Banach ∗-algebra A is commutative, we have Innb(A, A∗) = {0}. In the setting of unital
and commutative Banach ∗-algebras, Proposition 3.7 implies the following.

Corollary 3.8 Let A be a unital and commutative Banach ∗-algebra. Then A is ternary weakly
amenable whenever it is Jordan weakly amenable.

Every C∗-algebra A is binary weakly amenable (cf. [15]), and by Peralta and Russo [43, Theorem
19 or Corollary 21], every Jordan derivation D : A → A∗ is continuous, and hence an associative
derivation by Johnson’s Theorem [25]. This gives us the next corollary.

Corollary 3.9 Every unital and commutative (real or complex) C∗-algebra is ternary weakly
amenable.

The following corollary of Proposition 3.7 will be used in the next section. The proof consists in
observing that Lemmas 3.1, 3.5 and 3.6 are valid in this context and using [6, Theorem 3.2].

Corollary 3.10 Let M be a semifinite von Neumann algebra and consider the submodule
M∗ ⊂ M∗. Then

Dt (M, M∗) = Inn∗
b(M, M∗) ◦ ∗ + Innt (M, M∗).

Our next proposition shows that Corollary 3.9 remains valid in the setting of non-necessarily-unital
abelian C∗-algebras.

Proposition 3.11 Every commutative (real or complex) C∗-algebra is ternary weakly amenable.

Proof . Let A be a commutative C∗-algebra and δ : A → A∗ be a ternary derivation. By Proposi-
tion 2.1, δ∗∗ : A∗∗ → A∗∗∗ is a weak∗-continuous ternary derivation with δ∗∗(A∗∗) ⊆ A∗. Since A∗∗
is a unital and commutative (real or complex) C∗-algebra, Dt (A

∗∗, A∗∗∗) = Innt (A
∗∗, A∗∗∗) and δ∗∗

may be written in the form δ∗∗ = − 1
2δ(1, δ∗∗(1)) (cf. Corollary 3.9 and Lemma 3.5).
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TERNARY WEAKLY AMENABLE C∗-ALGEBRAS AND JB∗-TRIPLES 1123

Since every C∗-algebra admits a bounded approximate unit (cf. [41, Theorem 1.4.2]), by Cohen’s
Factorization Theorem (cf. [18, Theorem VIII.32.22]), there exist b ∈ A and ϕ ∈ A∗ such that
1
2δ∗∗(1) = ϕb. Finally, for each a in A we have

δ(a) = − 1
2δ(1, δ∗∗(1))(a) = δ(1, ϕb)(a) = {1, ϕb, a} − {ϕb, 1, a}

= (by the commutativity of A) = {b, ϕ, a} − {ϕ, b, a} = δ(b, ϕ)(a),

which gives δ = δ(b, ϕ). �

4. C∗-algebras are not ternary weakly amenable

In this section, we present some examples of C∗-algebras that are not ternary weakly amenable.

Lemma 4.1 The C∗-algebra A = K(H) of all compact operators on an infinite-dimensional
Hilbert space H is not Jordan weakly amenable.

Proof . We shall identify A∗ with the trace-class operators on H .
Supposing that A were Jordan weakly amenable, let ψ ∈ A∗ be arbitrary. Then Dψ would be an

inner Jordan derivation, so there would exist ϕj ∈ A∗ and bj ∈ A such that Dψ(x) = ∑n
j=1[ϕj ◦

(bj ◦ x) − bj ◦ (ϕj ◦ x)] for all x ∈ A.
For x, y ∈ A, a direct calculation yields

ψ(xy − yx) = −1

4

⎛
⎝ n∑

j=1

bjϕj − ϕjbj

⎞
⎠ (xy − yx).

It is known [40, Theorem 1] (see also the excellent survey [57]) that every compact operator on
a separable infinite-dimensional Hilbert space is a finite sum of commutators of compact operators.
Let z be any element in A = K(H). By standard spectral theory, we can find a separable infinite-
dimensional Hilbert subspace H0 ⊆ H such that z ∈ K(H0), that is, z = pz = zp, where p is the
orthogonal projection of H onto H0. By the just quoted theorem of Pearcy and Topping, z can be
written as a finite sum of commutators [x, y] = xy − yx of elements x, y in K(H0) = pK(H)p ⊆
K(H). Thus, it follows that the trace-class operator ψ = − 1

4 (
∑n

j=1 bjϕj − ϕjbj ) is a finite sum of
commutators of compact and trace-class operators, and hence has trace zero. This is a contradiction,
since ψ was arbitrary. �

Proposition 4.2 The C∗-algebra A = K(H) of all compact operators on an infinite-dimensional
Hilbert space H is not ternary weakly amenable.

Proof . Let ψ be an arbitrary element in A∗. The binary inner derivation Dψ : x �→ ψx − xψ may
be viewed as a map from either A or A∗∗ into A∗. Considered as a map on A∗∗, it belongs to
Innb(A

∗∗, A∗), and so, by Corollary 3.10, Dψ ◦ ∗ : a �→ Dψ(a∗), belongs to Dt (A
∗∗, A∗).

Assuming thatA is ternary weakly amenable, the restriction ofDψ ◦ ∗ toAbelongs toInnt (A, A∗).
Thus, there exist ϕj ∈ A∗ and bj ∈ A such that Dψ ◦ ∗ = ∑n

j=1(L(ϕj , bj ) − L(bj , ϕj )) on A.
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For x, a ∈ A, direct calculations yield

ψ(a∗x − xa∗) = 1

2

n∑
j=1

(ϕjbj − b∗
j ϕ

∗
j )(a

∗x) + 1

2

n∑
j=1

(bjϕj − ϕ∗
j b

∗
j )(xa∗).

We can and do set x = 1 to get

0 = 1

2

n∑
j=1

(ϕjbj − b∗
j ϕ

∗
j )(a

∗) + 1

2

n∑
j=1

(bjϕj − ϕ∗
j b

∗
j )(a

∗), (8)

and therefore

ψ(a∗x − xa∗) = 1

2

n∑
j=1

(ϕjbj − b∗
j ϕ

∗
j )(a

∗x − xa∗), (9)

for every a, x ∈ A.
Using [40, Theorem 1] as in the proof of Lemma 4.1, and taking note of (9) and (8), we have

ψ = 1

2

n∑
j=1

(ϕjbj − b∗
j ϕ

∗
j ) = 1

2

n∑
j=1

(ϕ∗
j b

∗
j − bjϕj ).

Hence,

2ψ =
n∑

j=1

(ϕjbj − bjϕj + bjϕj − ϕ∗
j b

∗
j + ϕ∗

j b
∗
j − b∗

j ϕ
∗
j )

=
n∑

j=1

[ϕj , bj ] − 2ψ +
n∑

j=1

[ϕ∗
j , b

∗
j ].

Finally, the argument given at the end of the proof of Lemma 4.1 shows that ψ has trace 0, which
is a contradiction, since ψ was arbitrary. �

Next we study the ternary weak amenability of the C∗-algebra L(H) of all bounded linear operators
on a complex Hilbert space H . We shall recall first some standard theory of von Neumann algebras.

Given a von Neumann algebra M , with predual M∗ and dual M∗, there exists a (unique) cen-
tral projection z0 in M∗∗ satisfying M∗ = M∗z0. Moreover, denoting M⊥∗ = M∗(1 − z0) we have
M∗ = M∗ ⊕�1 M⊥∗ (cf. [52, Theorem III.2.14]). Here M∗ (respectively, M⊥∗ ) is called the normal
(respectively, the singular) part of M∗. Every functional φ in M∗ is uniquely decomposed into the
sum

φ = φn + φs, φn ∈ M∗, φs ∈ M⊥
∗ .

The functionals φn and φs are called, respectively, the normal part and the singular part of φ. Since
z0 is a central projection in M∗∗, we can easily see that

(φa)n = φna, (φa)s = φsa, (aφ)n = aφn, (aφ)s = aφs,

{φ, a, b}n = {φn, a, b}, {φ, a, b}s = {φs, a, b},
{a, φ, b}n = {a, φn, b} and {a, φ, b}s = {a, φs, b},

for every a, b ∈ M and φ ∈ M∗.
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Lemma 4.3 The C∗-algebra M = L(H) of all bounded linear operators on an infinite-dimensional
Hilbert space H is not Jordan weakly amenable.

Proof . Let B = K(H) denote the ideal of all compact operators on H . We note that B∗∗ = M =
L(H) and hence M∗ = B∗ coincides with the trace-class operators on H . Let ψ be an element in B∗
whose trace is not zero. The argument given in the proof of Lemma 4.1 guarantees that the derivation
Dψ : B → B∗, a �→ ψa − aψ does not belong to InnJ (B, B∗).

By Proposition 2.1 and its proof, D∗∗
ψ : B∗∗ = M → B∗ = M∗ ⊆ M∗ is a Jordan derivation whose

image is contained in M∗. It can be easily checked that D∗∗
ψ (x) = ψx − xψ for every x ∈ B∗∗ = M .

We claim that D∗∗
ψ is not an inner Jordan derivation. Otherwise, there exist ϕj ∈ M∗ and bj ∈ M

such that D∗∗
ψ (x) = ∑n

j=1[ϕj ◦ (bj ◦ x) − bj ◦ (ϕj ◦ x)] for all x ∈ M . For each j , let us write ϕj =
φj + ψj , where φj ∈ M∗ and ψj ∈ M⊥∗ are the normal and singular part of ϕ, respectively. Since D∗∗

ψ

remains M∗-valued and, for each x in M ,
∑n

j=1[φj ◦ (bj ◦ x) − bj ◦ (φj ◦ x)] ∈ M∗ and
∑n

j=1[ψj ◦
(bj ◦ x) − bj ◦ (ψj ◦ x)] ∈ M⊥∗ , it follows that D∗∗

ψ (x) = ∑n
j=1[φj ◦ (bj ◦ x) − bj ◦ (φj ◦ x)] for

all x ∈ M , where, in this case, φj ∈ M∗ and bj ∈ M .
Now, we can mimic the argument in the proof of Lemma 4.1 to show that ψ = − 1

4 (
∑n

j=1 bjφj −
φjbj ) is a finite sum of commutators of bounded and trace-class operators, and hence has trace zero,
which is impossible. �

Similar ideas to those applied in the previous lemma give us the following result.

Proposition 4.4 The C∗-algebra M = L(H) of all bounded linear operators on an infinite-
dimensional Hilbert space H is not ternary weakly amenable.

Proof . Let B = K(H) denote the ideal of all compact operators on H (note that B∗∗ = L(H) = M).
Let ψ be an element in B∗ whose trace is not zero. From Proposition 4.2 and its proof, we know that
the mapping Dψ ◦ ∗ : B → B∗, a �→ ψa∗ − a∗ψ is a ternary derivation (see Corollary 3.10) which
does not belong to Innt (B, B∗).

Applying Proposition 2.1 and its proof, the bitranspose D∗∗
ψ : B∗∗ = M → B∗ = M∗ ⊆ M∗ is an

associative derivation whose image is contained in M∗. Moreover, D∗∗
ψ (x) = ψx − xψ for every

x ∈ B∗∗ = M . We will prove that D∗∗
ψ ◦ ∗ is ternary derivation from M to M∗ (cf. Corollary 3.10)

which is not inner. Suppose, on the contrary, that there exist ϕj ∈ M∗ and bj ∈ M such that D∗∗
ψ ◦ ∗ =∑n

j=1(L(ϕj , bj ) − L(bj , ϕj )) on M .
For each j , we write ϕj = φj + ψj , where φj ∈ M∗ and ψj ∈ M⊥∗ are the normal and singular part

of ϕ, respectively. Since D∗∗
ψ (M) ⊆ M∗, and for each x ∈ M ,

∑n
j=1{φj , bj , x} − {bj , φj , x} ∈ M∗

and
∑n

j=1{ψj , bj , x} − {bj , ψj , x} ∈ M⊥∗ , we have D∗∗
ψ ◦ ∗ = ∑n

j=1(L(φj , bj ) − L(bj , φj )) on M ,
where φj ∈ M∗ and bj ∈ M .

Following the lines in the last part of the proof of Proposition 4.2, we derive

4ψ =
n∑

j=1

[φj , bj ] +
n∑

j=1

[φ∗
j , b

∗
j ],

which is impossible because ψ has non-zero trace. �
The techniques in this subsection can be used to show that the Cartan factor Mn(C) of all operators

on a finite-dimensional Hilbert space is ternary weakly amenable. This is of course a special case of
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Proposition 5.1, but we are able to give a direct proof here. Note also that Mn(C) is Jordan weakly
amenable by Jacobson [23] or [24].

Although Lemma 4.1 states that InnJ (A, A∗) �= DJ (A, A∗) when A = K(H) with H infinite
dimensional, nevertheless for A = Mn(C), we shall show directly in the next lemma that the equality
does hold for the subsets of ∗-derivations. This is included in the next lemma (as well as following
from [23] or [24]).

Lemma 4.5 Let A denote the JB∗-triple Mn(C). Then

Inn∗
b(A, A∗) = Inn∗

J (A, A∗) = D∗
J (A, A∗).

Proof . Let D ∈ Inn∗
b(A, A∗) so that D(x) = ψx − xψ for some ψ ∈ A∗. Recall [40, Theorem 1]

that every compact operator is a finite sum of commutators of compact operators. Therefore, by
Lemma 3.2(ii), ψ∗ = −ψ . Also, since every matrix of trace 0 is a commutator [2, 49], we have ψ =
[ϕ, b] + (Tr(ψ)/n)I . Expanding ϕ = ϕ1 + iϕ2 and b = b1 + ib2 into hermitian and skew-symmetric
parts and using ψ∗ = −ψ leads to

ψ = [ϕ1, b1] − [ϕ2, b2] + Tr(ψ)

n
I.

For x, y ∈ A, direct calculation yields

D(x) = ϕ1 ◦ (b1 ◦ x) − b1 ◦ (ϕ1 ◦ x) − ϕ2 ◦ (b1 ◦ x) + b2 ◦ (ϕ2 ◦ x),

so that D ∈ Inn∗
J (A, A∗).

From the theorems of Haagerup (alternatively [21, Theorem 2.2]) and Johnson, and what was just
proved, we have

D∗
J (A, A∗) = D∗

b(A, A∗) = Inn∗
b(A, A∗) ⊆ Inn∗

J (A, A∗) ⊆ D∗
J (A, A∗).

�

Proposition 4.6 The JB∗-triple A = Mn(C) is ternary weakly amenable and Jordan weakly
amenable.

Proof . We have noted above that Mn(C) is Jordan weakly amenable.
By Proposition 3.7,

Dt (A, A∗) = Inn∗
b(A, A∗) ◦ ∗ + Innt (A, A∗),

so it suffices to prove that Inn∗
b(A, A∗) ◦ ∗ ⊂ Innt (A, A∗).

As in the proof of Lemma 4.5, if D ∈ Inn∗
b(A, A∗) so that Dx = ψx − xψ for some ψ ∈ A∗,

then ψ = [ϕ1, b1] − [ϕ2, b2] + (Tr (ψ)/n)I , where b1, b2 are self-adjoint elements of A and ϕ1, and
ϕ2 are self-adjoint elements of A∗. It is easy to see that, for each x ∈ A, we have

D(x∗) = {ϕ1, 2b1, x} − {2b1, ϕ1, x} − {ϕ2, 2b2, x} + {2b2, ϕ2, x},
so that D ◦ ∗ ∈ Innt (A, A∗). �
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5. The case of Cartan factors

Contrary to what happens for (binary) weak amenability in the setting of C∗-algebras, not every
JB∗-triple is ternary weakly amenable. In this section, we shall study weak amenability for some
examples of JB∗-triples.

As was mentioned in Section 1, every finite-dimensional JB∗-triple has the inner derivation property
(cf. [38, Chapter 11] or [32, Chapter 8]), and indeed is ‘super amenable’, meaning that every derivation
into a Jordan–Banach triple module is inner (see [31, III.Korollar 1.6]). In particular, we have the
following proposition.

Proposition 5.1 Every finite-dimensional JB∗-triple is ternary weakly amenable.

5.1. Hilbert spaces and finite rank type I Cartan factors

Let X be a real Hilbert space considered as a real Cartan factor of type I, with respect to the product

{x, y, z} := 1
2 ((x|y)z + (z|y)x) (x, y, z ∈ X), (10)

where (·|·) denotes the inner product of X. Henceforth, J = JX : X → X∗ will denote the Riesz
mapping. We begin with a useful observation.

Proposition 5.2 Let δ : X → X∗ be linear mapping. Then denoting T = J−1δ : X → X, the
following are equivalent:

(a) δ is a ternary derivation;
(b) T is a bounded linear operator with T ∗ = −T .

Proof . (a) ⇒ (b) By Peralta and Russo [43, Corollary 15], we may assume that δ (and hence T ) is
continuous. Let us suppose that δ is a ternary derivation. For each x, y and z in X, we have

δ{x, y, z} = {δ(x), y, z} + {x, δ(y), z} + {x, y, δ(z)}. (11)

Applying the definition (10) to (11) results in

0 = 1
2δ(x)(y)J (z) + 1

2δ(y)(z)J (x) + 1
2δ(y)(x)J (z) + 1

2δ(z)(y)J (x),

for every x, y, z ∈ X. Taking x = z, we see that

0 = (δ(x)(y) + δ(y)(x))J (x),

for every x, y ∈ X, which gives δ(x)(y) + δ(y)(x) = 0 for any x, y ∈ X, or equivalently, (y|T (x)) =
−(x|T (y)) = −(T (y)|x) for any x, y ∈ X, which proves (b).

(b) ⇒ (a) By a direct calculation using (10) and the definition of T , we have δ{x, y, z} =
{δ(x), y, z} + {x, δ(y), z} + {x, y, δ(z)}. �

In the terminology employed above, let x, y be two elements in X. It is not hard to see that
the inner derivation δ(J (x), y) = L(J (x), y) − L(y, J (x)) : X → X∗ is the mapping given by
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δ(J (x), y)(a) = 1
2 (a|y)J (x) − 1

2 (a|x)J (y). Therefore, every inner derivation from X to X∗ is a
finite rank operator. This argument shows the following corollary.

Corollary 5.3 Let δ : X → X∗ be a linear mapping. Then denoting T = J−1δ : X → X, the
following are equivalent:

(a) δ is a ternary inner derivation;
(b) T is a finite rank operator with T ∗ = −T .

We can prove now that every infinite-dimensional real Hilbert space is not ternary weakly amenable.

Proposition 5.4 A real or complex Hilbert space X regarded as a type I Cartan factor is ternary
weakly amenable if, and only if, it is finite dimensional.

Proof . The if implication follows from Propositions 5.1 and 2.2. To see the other implication, suppose
that X is infinite dimensional. Then we can find a bounded linear operator T : X → X having infinite-
dimensional range and satisfying T ∗ = −T . Proposition 5.2 and Corollary 5.3 imply that δ = JXT

is a ternary derivation which is not inner. �
The above results also give new ideas to deal with the ternary weak amenability in other Cartan

factors of type I.
Suppose that H1 and H2 are Hilbert spaces. The symbol K(H1, H2) will denote the set of all

compact operators from H1 to H2. It is known that every a in K(H1, H2) can be written (uniquely)
as a (possibly finite) sum of the form

a =
∞∑

n=1

σn(a)kn ⊗ hn,

where (σn(a)) ⊂ R
+
0 is the sequence of singular values of a, (hn) and (kn) are orthonormal systems

in H1 and H2, respectively, and given ξ ∈ H2, η, h ∈ H1, we define ξ ⊗ η(h) = (h|η)ξ (cf. [50,
Section 1.2]). We denote by S1(H1, H2) the set of all compact operators φ from H1 to H2, whose
sequence of singular values (σi(φ))i∈N ∈ R

+
0 lies in �1. For each ξ ∈ H2 and η ∈ H1, we can define

an element ωξ,η ∈ K(H1, H2)
∗, given by ωξ,η(x) = (x(η)|ξ) (∀x ∈ K(H1, H2)). When we equip

S1(H1, H2) with the norm ‖φ‖1 = ∑
i σi(φ), (S1(H1, H2), ‖.‖1) is a Banach space and S1(H1, H2)

can be identified with K(H1, H2)
∗, via the assignment

ξ ⊗ η �→ ωξ,η

(cf. [50]). We omit the straightforward proof of the following lemma.

Lemma 5.5 Let X and Y be two real Hilbert spaces. Suppose that Y1 and Y2 are two closed
subspaces of Y such that Y = Y1 ⊕⊥ Y2. Then the polar K(X, Y1)

◦, of K(X, Y1) in K(X, Y )∗ =
S1(X, Y ) coincides with S1(X, Y2).
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The following easily verified formulas will facilitate the proof of the next theorem. For real Hilbert
spaces X and Y , and vectors ξ, a, c ∈ Y and η, b, d ∈ X,

2{ωξ,η, a ⊗ b, c ⊗ d} = (b|d)(ξ |a)ωc,η + (a|c)(η|b)ωξ,d

and
2{a ⊗ b, ωξ,η, c ⊗ d} = (η|d)(a|ξ)ωc,b + (η|b)(ξ |c)ωa,d .

Theorem 5.6 Let X and Y be real Hilbert spaces with dim(Y ) < ∞ = dim(X). Then the real
Cartan factor L(X, Y ) is not ternary weakly amenable.

Proof . Since dim(Y ) < ∞, L(X, Y ) = K(X, Y ) = S1(X, Y ) as linear spaces and L(X, Y ) =
K(X, Y ) as Banach spaces. We can also pick T ∈ L(X) with infinite-dimensional range and
T ∗ = −T . Since the elements k ⊗ h (respectively, ωk,h) with h ∈ X, k ∈ Y generate the whole
L(X, Y ) (respectively, S1(X, Y )), the assignment k ⊗ h �→ δ(k ⊗ h) := ωk,T (h) defines a linear oper-
ator δ : L(X, Y ) → L1(X, Y ) = K(X, Y )∗. We claim that δ is a ternary derivation. Indeed, it is
enough to prove that

δ{k1 ⊗ h1, k2 ⊗ h2, k3 ⊗ h3} = {δ(k1 ⊗ h1), k2 ⊗ h2, k3 ⊗ h3}
+ {k1 ⊗ h1, δ(k2 ⊗ h2), k3 ⊗ h3}
+ {k1 ⊗ h1, k2 ⊗ h2, δ(k3 ⊗ h3)},

for every k1, k2, k3 ∈ Y , h1, h2, h3 ∈ X, which follows by direct calculation.
We will finally prove that δ is not inner. Suppose, on the contrary, that δ = ∑p

j=1 δ(φj , aj ) for
suitable φ1, . . . , φp ∈ S1(X, Y ), a1, . . . , ap ∈ K(X, Y ). Let us fix a norm-1 element k0 ∈ Y and an
arbitrary h ∈ X, so that we have δ(k0 ⊗ h) = ωk0,T (h). On the other hand, each φj can be written in
the form

φj =
mj∑
n=1

αj
nωk

j
n,h

j
n
,

where mj ≤ dim(Y ), αj
n > 0, and (k

j
n)n and (h

j
n)n are orthonormal systems in Y and X, respectively.

Now, we can check that

ωk0,T (h) = δ(k0 ⊗ h) =
p∑

j=1

δ(φj , aj )(k0 ⊗ h) =
p∑

j=1

δ

(
mj∑
n=1

αj
nωk

j
n,h

j
n
, aj

)
(k0 ⊗ h)

=
p∑

j=1

mj∑
n=1

αj
n

(
1

2
(aj (h

j
n)|k0) ω

k
j
n,h

+ 1

2
(aj (h)|kj

n) ω
k0,h

j
n

)

+
p∑

j=1

mj∑
n=1

αj
n

(
−1

2
(hj

n|h) ω
k0,a

∗
j (k

j
n)

− 1

2
(k0|kj

n) ω
aj (h

j
n),h

)
.
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Write Y = Rk0 ⊕⊥ Y2, where Y2 = {k0}⊥. Since, for every ξ ∈ X, ωk0,ξ lies in K(X, Y2)
◦ =

S1(X, Rk0) (cf. Lemma 5.5), it follows from the above identities that the functional

ψ :=
p∑

j=1

mj∑
n=1

(
1

2
(aj (h

j
n)|k0) ω

k
j
n,h

− 1

2
αj

n(k0|kj
n)ωaj (h

j
n),h

)

belongs to K(X, Y2)
◦ = S1(X, Rk0).

Therefore, there exists a scalar λ such that ψ = ωλk0,h = λωk0,h. Thus,

ωk0,T (h) = λωk0,h +
p∑

j=1

mj∑
n=1

αj
n

(
1

2
(aj (h)|kj

n)ωk0,h
j
n
+ 1

2
(hj

n|h)ω
k0,a

∗
j (k

j
n)

)
.

In particular,

T (h) = λh +
p∑

j=1

mj∑
n=1

αj
n

(
1

2
(aj (h)|kj

n)h
j
n + 1

2
(hj

n|h)a∗
j (k

j
n)

)
.

Since h was arbitrary, T is a multiple of the identity plus a finite rank operator, that is, T = λIdX + F,

where F : X → X is a finite rank operator. Finally, applying that T ∗ = −T , we get λ = 0, and hence
T = F is a finite rank operator, which is impossible. �

Let H and K be two complex Hilbert spaces. Every rectangular complex Cartan factor of type I
of the form L(H, K) with dim(H) = ∞ > dim(K) admits a real form that coincides with L(X, Y ),
where X and Y are real Hilbert spaces with dim(X) = ∞ > dim(Y ) (cf. [29]). The following corollary
follows straightforwardly from Proposition 2.2 and Theorem 5.6.

Corollary 5.7 Let H and K be two complex Hilbert spaces with dim(H) = ∞ > dim(K). Then
the rectangular complex Cartan factor of type I, L(H, K) and all its real forms are not ternary weakly
amenable.

5.2. Spin factors

A (complex) JB∗-triple A, which can be equipped with an inner product (·|·) and a conjugation 	,
satisfying the following conditions is called a (complex) spin factor:

(a) the norm on A is given by ‖x‖2 = (x|x) + √
(x|x)2 − |(x|x	)|2;

(b) the triple product satisfies

{a, b, c} = 1
2 [(a|b)c + (c|b)a − (a|c	)b	].

Throughout this section, A will be a (complex) spin factor and the duality of A with A∗ will be
denoted by 〈·, ·〉, while J : A → A∗ will stand for the Riesz map.

The following lemma shows that ternary derivations from A to A∗ are in bijective correspondence
with the (linear) ternary derivations on A.
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Lemma 5.8 Let D : A → A be a linear mapping. Then denoting δ = J ◦ D, the identities

(i) 〈{δ(a), b, a}, c〉 = (c|{D(a), b, a}),
(ii) 〈{a, δ(b), a}, c〉 = (c|{a, D(b), a}),

hold for every a, b, c in A. Consequently, D is a (linear) ternary derivation on A if, and only if, δ

lies in Dt (A, A∗).

Proof . To prove the first two statements, note that, for a, b, c ∈ A,

2〈{δ(a), b, a}, c〉 = 2〈δ(a), {b, a, c}〉 = 2({b, a, c}|D(a))

= ((b|a)c + (c|a)b − (b|c	)a	|D(a))

= ((b|a)c|D(a)) + ((c|a)b|D(a)) − ((b|c	)a	|D(a))

= (c|(a|b)D(a)) + (c|(D(a)|b)a) − (c|(D(a)|a	)b	)

= (c|[(a|b)D(a) + (D(a)|b)a − (D(a)|a	)b	])
= 2(c|{D(a), b, a})

and

〈{a, δ(b), a}, c〉 = 〈δ(b), {a, c, a}〉 = (D(b)|{a, c, a})
= (D(b)|[(a|c)a − 1

2 (a|a	)c	])
= (c|[(a|D(b))a − 1

2 (a|a	)D(b)	]) = (c|{a, D(b), a}).

Finally, if D is a (linear) ternary derivation on A and x ∈ A, by (i) and (ii), we have

〈δ{a, b, a}, x〉 = (x|D{a, b, a})
= (x|2{D(a), b, a}) + (x|{a, D(b), a})
= 〈2{δ(a), b, a}, x〉 + 〈{a, δ(b), a}, x〉,

so that δ ∈ Dt (A, A∗). Similarly, if δ ∈ Dt (A, A∗), then D is a (linear) ternary derivation on A. �
We deal now with inner ternary derivations.

Lemma 5.9 For each element a in A, let ϕ = J (a) ∈ A∗. Then, for all b, x, y ∈ A, we have:
(i) 〈{b, ϕ, x}, y〉 = (y|{b, a, x}),

(ii) 〈{ϕ, b, x}, y〉 = (y|{a, b, x}).
It follows that a linear mapping D : A → A is an inner ternary derivation if, and only if, δ = J ◦ D ∈
Innt (A, A∗).
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Proof . The first two statements follow by straightforward calculations. If D is an inner (linear)
derivation on A of the form D = δ(b, a) with a, b ∈ A, then, for x, y ∈ A,

〈δ(x), y〉 = (y|D(x))

= (y|{b, a, x} − {a, b, x})
= 〈{b, J (a), x}, y〉 − 〈{J (a), b, x}, y〉
= 〈δ(b, J (a))(x), y〉,

so that δ ∈ Innt (A, A∗). Similarly, if δ ∈ Innt (A, A∗), then D is an inner (linear)
derivation on A. �

Proposition 5.10 A spin factor is ternary weakly amenable if, and only if, it is finite dimensional.

Proof . Combining Lemmas 5.8 and 5.9, A is ternary weakly amenable if, and only if, A has the
inner derivation property. Thus, applying [20, Theorem 3] and the fact that every finite-dimensional
JB∗-triple has the inner derivation property (cf. Proposition 5.1), we get the desired equivalence. �

The real forms of (complex) spin factors are called real spin factors. The next corollary is a direct
consequence of Propositions 2.2 and 5.10.

Corollary 5.11 A real spin factor is ternary weakly amenable if, and only if, it is finite dimensional.

The following questions have been intractable up to this moment.

Problem 5.12 Are Cartan factors of type II and III ternary weakly amenable?

Problem 5.13 Does there exist an infinite-rank rectangular Cartan factor of type I which is ternary
weakly amenable?

6. Commutative JB∗-triples are almost ternary weakly amenable

In this section, we prove that every commutative real or complex JB∗-triple is almost ternary weakly
amenable. More concretely, we prove that every ternary derivation from a commutative real or complex
JB∗-triple into its dual can be approximated in norm by an inner derivation.

We shall make use of the Gelfand representation theory for commutative JB∗-triples (cf. [12,
28, Section 1]). Let us define T := {α ∈ C : |α| = 1}. Given a commutative (complex) JB∗-triple E,
there exists a principal T-bundle � = �(E), i.e. a locally compact Hausdorff space � together with a
continuous mapping T × � → �, (t, λ) �→ tλ such that s(tλ) = (st)λ, 1λ = λ and tλ = λ ⇒ t = 1,
satisfying that E is JB∗-triple isomorphic to

CT

0 (�) := {f ∈ C0(�) : f (tλ) = tf (λ), ∀t ∈ T, λ ∈ �}.

We note that CT

0 (�) is a JB∗-subtriple of the commutative C∗-algebra C0(�). Every commutative
JB∗-triple is a C∑ -space and hence a complex Lindenstrauss space in the terminology of Olsen [39].
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An element e in a Jordan triple E is called tripotent if {e, e, e} = e. Each tripotent e in E induces
a decomposition of E (called Peirce decomposition) in the form

E = E0(e) ⊕ E1(e) ⊕ E2(e),

where Ek(e) = {x ∈ E : L(e, e)x = (k/2)x} for k = 0, 1, 2.
The Peirce space E2(e) is a unital JB∗-algebra with unit e, product x ◦e y := {x, e, y} and

involution x	e := {e, x, e}.
A tripotent e in E is said to be unitary if L(e, e) coincides with the identity map on E, equivalently,

E2(e) = E. When E0(e) = {0}, the tripotent e is called complete.
The proof given in Lemma 3.4 remains valid in the following setting.

Lemma 6.1 Let E be a JB∗-triple containing a unitary tripotent u. Every ternary derivation δ in
Dt (E, E∗) satisfies the identity δ(u)	u = −δ(u), that is, δ(u)(a	u) = −δ(u)(a) for every a in E.

The following lemma summarizes some basic properties of commutative JB∗-triples; an implicit
proof can be found by combining Theorems 2 and 4 in [11].

Lemma 6.2 Let u be a norm-1 element in a commutative JB∗-triple E ∼= CT

0 (�(E)). The following
statements are equivalent:

(a) u is a complete tripotent;
(b) u is a unitary element;
(c) u is an extreme point of the unit ball of E.

If u satisfies one of the above conditions, then E is a commutative C∗-algebra with unit u, product
and involution given by a ◦u b := {a, u, b} and a	u := {u, a, u} (a, b ∈ E), respectively.

Corollary 6.3 Every commutative JB∗-triple E containing a complete tripotent u is ternary
weakly amenable. Further, every ternary derivation δ : E → E∗ can be written in the form δ =
− 1

2δ(u, δ(u)) = {δ(u), u, ·}.
Proof . Lemma 6.2 shows that E is a commutative C∗-algebra with product and involution given by
a ◦u b := {a, u, b} and a	u := {u, a, u} (a, b ∈ E), respectively. By the proof of Lemma 3.5 (see also
Corollary 3.9), every ternary derivation δ : E → E∗ may be written in the form δ = − 1

2δ(u, δ(u)).
Given a, b in E, since {uba}	u = {uab}, we have

δ(a)(b) = − 1
2δ(u, δ(u))(a)(b) = − 1

2 {u, δ(u), a}(b) + 1
2 {δ(u), u, a}(b)

= 1
2 (δ(u){u, a, b} − δ(u){u, b, a}) = 1

2 (δ(u){u, a, b} − δ(u)	u{u, a, b})
= (by Lemma 6.1) δ(u){u, a, b} = {δ(u), u, a}(b),

which proves the last identity. �

Corollary 6.4 Every commutative JBW∗-triple E is (isometrically JB∗-triple isomorphic to) a
commutative von Neumann algebra, and thus it is ternary weakly amenable. Moreover, every ternary
derivation δ : E → E∗ can be written in the form δ = − 1

2δ(u, δ(u)) = {δ(u), u, ·}, where u is any
complete tripotent in E.
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Proof . Let E be a commutative JBW∗-triple. The first assertion follows, indirectly, from [12, Remark
2.7] (see also [11] or Lemma 6.2). Since E is a dual Banach space, it follows from the Krein–Milman
Theorem that the closed unit ball of E contains an extreme point. Lemma 6.2 assures that every
extreme point of the unit ball of E is a complete tripotent in E. Therefore, E is a commutative
JB∗-triple containing a complete tripotent and the desired statement follows from Corollary 6.3. �

Corollary 6.5 Let E be a commutative JB∗-triple. Then every derivation δ in Dt (E, E∗) may be
written in the form δ = − 1

2δ(u, δ∗∗(u)) = {δ∗∗(u), u, ·}, where u is any complete (unitary) tripotent
in E∗∗ and δ∗∗(u) ∈ E∗.

Proof . Let δ : E → E∗ be a ternary derivation. Since the triple product of E∗∗ is separately
weak∗-continuous, it follows from Goldstine’s Theorem that E∗∗ is a commutative JBW∗-triple.
Proposition 2.1 guarantees that δ∗∗ : E∗∗ → E∗∗∗ is a weak∗-continuous ternary derivation with
δ∗∗(E∗∗) ⊆ E∗. Corollary 6.4 gives the desired statement. �

From now on, let E be a commutative JB∗-triple that is identified with CT

0 (�). For later use, we
highlight the following properties: Let C1

0(�) denote the C∗-subalgebra of C0(�) of all T-invariant
functions, that is,

C1
0(�) := {f ∈ C0(�) : f (tλ) = f (λ), ∀ t ∈ T, λ ∈ �}.

It is clear that, for every a, b in E and c in C1
0(�), the products ab∗ and ac lie in C1

0(�) and in E,
respectively.

The mapping

E × E → C1
0(�),

(a, b) �→ ab∗

is sesquilinear and positive (aa∗ ≥ 0 and aa∗ = 0 ⇐⇒ a = 0). The products

E × C1
0(�) → E,

(a, c) �→ ac

and

E∗ × C1
0(�) → E∗,

(φ, c) �→ (φc)(a) = φ(ac)

equip E and E∗ with a structure of Banach C1
0(�)-bimodules. We also have two mappings E∗ ×

E → C1
0(�)∗ and C1

0(�)∗ × E → E∗ defined by φa(c) := φ(ac) and ψa(b) = ψ(a∗b) (φ ∈ E∗,
ψ ∈ C1

0(�)∗, c ∈ C1
0(�), a, b ∈ E), respectively.

We shall regard E = CT

0 (�) and C1
0(�) as norm-closed JB∗-subtriples of the C∗-algebra A =

C0(�). We shall identify the weak∗ closure, in A∗∗, of a closed subspace Y of A with Y ∗∗. It follows
from the separate weak∗-continuity of the triple product in A∗∗, that, for every a, b in E∗∗ and c

in C1
0(�)∗∗, the products ab∗ and ac lie in C1

0(�)∗∗ and in E∗∗, respectively. Clearly, the mappings
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TERNARY WEAKLY AMENABLE C∗-ALGEBRAS AND JB∗-TRIPLES 1135

defined in the previous paragraph extend to E∗∗ × E∗∗ and E∗∗ × C1
0(�)∗∗ and E∗ × E∗∗, respec-

tively.
One of the main consequences of the Gelfand theory for JB∗-triples provides a structure theorem

for the JB∗-subtriples generated by a single element. Concretely speaking, for each element a in a
JB∗-triple F , the JB∗-subtriple of F generated by the element a, Fa , is JB∗-triple isomorphic (and
hence isometric) to C0(L) for some locally compact Hausdorff space L contained in (0, ‖a‖], such
that L ∪ {0} is compact, where C0(L) denotes the Banach space of all complex-valued continuous
functions vanishing at 0. It is also known that there exists a triple isomorphism � from Fa onto
C0(L), such that �(a)(t) = t (t ∈ L) (cf. [28, Corollary 1.15]). Consequently, for each element a

in F there exists a (unique) element b ∈ Fa satisfying {b, b, b} = a. This element b is usually called
the cube root of a.

The following proposition shows that, in the parlance of ternary rings of operators (TROs [30]),
C1

0(�) identifies with the left and right linking C∗-algebras of the TRO CT

0 (�). The proof is included
here for reasons of completeness.

Proposition 6.6 Let E = CT

0 (�) be a commutative JB∗-triple. The norm-closed linear span of the
set

Ē · E := {a∗b : a, b ∈ E}
coincides with C1

0(�).

Proof . Let B denote the norm-closed linear span of the set Ē · E. Given a, b, c and d in E, the
product bc∗d lies in E and hence (a∗b)(c∗d) = a∗(bc∗d) belongs to Ē · E. Thus, Ē · E is multi-
plicatively closed and clearly self-adjoint (i.e. (Ē · E)∗ = Ē · E). We deduce that B is a norm-closed
*-subalgebra of C1

0(�).
We observe that C1

0(�) is triple isometrically isomorphic to C0(�/T) (via the canonical identi-
fication c �→ ĉ, where ĉ(λ + T) := c(λ) for every c ∈ C1

0(�), λ ∈ �). We shall identify C1
0(�) and

C0(�/T). We claim that, under this identification, B is a norm-closed *-subalgebra of C0(�/T),
separates the points of �/T and vanishes nowhere.

To this end, we claim first that E separates the points of � and vanishes nowhere; that is, given
λ ∈ �, there exists a ∈ E with a(λ) = 1. By Urysohn’s lemma, there exists f ∈ C0(�) satis-
fying f (tλ) = 1 for every t ∈ T. Let dμ denote the unit Haar measure on T; the assignment
g �→ π(g)(λ) := ∫

T
t−1g(tλ) dμ(t) defines a contractive projection on C0(�) whose image coin-

cides with E. It is clear that a = π(f ) ∈ E and a(λ) = π(f )(λ) = 1. Take λ1 �= λ2 in �. We may
assume that λ1 + T �= λ2 + T, that is, the orbits of λ1 and λ2 are two compact disjoint subsets of �.
Applying Urysohn’s lemma, we find an element f ∈ C0(�) satisfying f (tλ1) = 1 and f (tλ2) = 0
for every t ∈ T. The element a = π(f ) satisfies a(λ1) = 1 and a(λ2) = 0.

Let us now take λ1 + T �= λ2 + T in �/T. Suppose that a∗b(λ1) = a∗b(λ2) for every a, b ∈ E.
In particular, a∗a(λ1) = a∗a(λ2), and hence aa∗a(λ1) = aa∗a(λ2) for every a ∈ E. Since every
element b in E admits a cube root a ∈ Eb satisfying {a, a, a} = b, we deduce that b(λ1) = b(λ2) for
every b ∈ E, which is impossible because λ1 �= λ2. By the same argument, B vanishes nowhere, so
the Stone–Weierstrass theorem assures that B = C1

0(�). �

Theorem 6.7 Every commutative (real or complex) JB∗-triple E is almost ternary weakly amenable,
that is, Innt (E, E∗) is a norm-dense subset of Dt (E, E∗).
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Proof . By Proposition 2.2, we may assume that E is a commutative complex JB∗-triple. We write
E = CT

0 (�(E)) and A = C0(�(E)). Let δ : E → E∗ be a ternary derivation. By Corollary 6.5, δ∗∗ =
− 1

2δ(u, δ∗∗(u)), where u is a unitary in E∗∗ ⊆ A∗∗ and ψ = δ∗∗(u) ∈ E∗. In this case,

δ(a)(b) = − 1
2 (ψ(ub∗a) − ψ(ua∗b)),

for every a, b ∈ E, where the products are taken in C0(�(E))∗∗.
The mapping c �→ ψ(uc) defines a functional in the dual of C1

0(�(E)). Since the latter is a C∗-
algebra, by Cohen’s Factorization Theorem (cf. [18, TheoremVIII.32.22]), there exist ϕ ∈ C1

0(�(E))∗
and d ∈ C1

0(�(E)) such that ψ(uc) = ϕ(dc) for every c ∈ C1
0(�(E)). Therefore, for each a, b ∈ E

we have
δ(a)(b) = − 1

2 (ψ(ub∗a) − ψ(ua∗b)) = − 1
2 (ϕ(db∗a) − ϕ(da∗b)).

Given ε > 0, by Proposition 6.6, there exist x1, y1, . . . , xn, yn ∈ E satisfying ‖d − ∑n
j=1 y∗

j xj‖ <

ε. Let φj = ϕy∗
j ∈ E∗ (j = 1, . . . , n). The sum − 1

2

∑n
j=1 δ(xj , φj ) defines an inner ternary derivation

from E to E∗. Given a, b ∈ E, we have∣∣∣∣∣∣δ(a)(b) + 1

2

n∑
j=1

δ(xj , φj )(a)(b)

∣∣∣∣∣∣
=

∣∣∣∣∣∣−
1

2
(ϕ(db∗a) − ϕ(da∗b)) + 1

2

n∑
j=1

(φj (xjb∗a) − φj (xja
∗b))

∣∣∣∣∣∣
=

∣∣∣∣∣∣−
1

2
(ϕ(db∗a) − ϕ(da∗b)) + 1

2

n∑
j=1

(ϕ(y∗
j xjb∗a) − ϕ(y∗

j xja
∗b))

∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
1

2
ϕ

⎛
⎝

⎛
⎝ n∑

j=1

y∗
j xj − d

⎞
⎠ b∗a

⎞
⎠ + 1

2
ϕ

⎛
⎝

⎛
⎝d −

n∑
j=1

y∗
j xj

⎞
⎠ a∗b

⎞
⎠

∣∣∣∣∣∣∣
≤ 1

2
‖ϕ‖ ‖a‖ ‖b‖

∥∥∥∥∥∥d −
n∑

j=1

y∗
j xj

∥∥∥∥∥∥ < ε‖ϕ‖ ‖a‖ ‖b‖/2.

Thus, ‖δ − (− 1
2

∑n
j=1 δ(xj , φj ))‖ < ε‖ϕ‖/2. �

The proof given in the above theorem shows that, under additional hypothesis on the set E · Ē :=
{ab∗ : a, b ∈ E}, a commutative JB∗-triple E is ternary weakly amenable.

Corollary 6.8 Let E = CT

0 (�(E)) be a commutative JB∗-triple. Suppose that the linear span of
the set E · Ē := {ab∗ : a, b ∈ E} coincides with C1

0(�(E)). Then E is ternary weakly amenable.

The question clearly is whether the additional hypothesis in Corollary 6.8 is automatically satisfied
for every commutative JB∗-triple E. We do not know the answer; the best result we could obtain in
this line is Proposition 6.6.
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Related to this topic, we can say that, given a commutative JB∗-triple E = CT

0 (�(E)), the mapping
E × E → C1

0(�(E)), (a, b) �→ ab∗ need not be, in general, surjective. Indeed, let L be a locally
compact Hausdorff space. We shall say that L is a locally compact principal T-bundle if there exists a
continuous mapping T × L → L, (t, λ) �→ tλ satisfying s(tλ) = (st)λ and 1λ = λ for every s, t ∈ T,
λ ∈ L. We write

CT

0 (L) := {f ∈ C0(L) : f (tλ) = tf (λ) (t ∈ T, λ ∈ L)}.
It is known that CT

0 (L) is isometrically isomorphic to C0(L
′) for some locally compact L′ if, and only

if, L is a trivial T-bundle, i.e. L/T × T ∼= L (cf. [28, Corollary 1.13]). The set S := {z ∈ C
n+1 :

‖z‖2 = 1} is compact and a non-trivial principal T-bundle. Let E = CT(S) ⊂ C(S) and C1(S) :=
{f ∈ C(S) : f (t z) = f (z) (t ∈ T, z ∈ S)}. We can obviously identify S with a closed subset of
�(E) which satisfies TS = S.

If the mapping E × E → C1
0(�(E)), (a, b) �→ ab∗ were surjective, then, applying Urysohn’s

lemma, there would exist functions a, b ∈ E satisfying ab∗ = v, where v ∈ C1
0(�(E)) ∼=

C0(�(E)/T) is a function satisfying v(z) = 1 for every z ∈ S. In this case, the function z �→ u(z) =
a(z)/|a(z)| (z ∈ S) would be a unitary element in E, and hence, by Lemma 6.2, E would be an
abelian C∗-algebra, which is impossible because S is a non-trivial principal T-bundle.
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