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We introduce the notion of Banach Jordan triple modules and de-
termine the precise conditions under which every derivation from
a JB∗-triple E into a Banach (Jordan) triple E-module is continuous.
In particular, every derivation from a real or complex JB∗-triple
into its dual space is automatically continuous, motivating the
study (which we have carried out elsewhere) of weakly amenable
JB∗-triples. Specializing to C∗-algebras leads to a unified treatment
of derivations and Jordan derivations into modules, shedding light
on a celebrated theorem of Barry Johnson.
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1. Introduction

Results on automatic continuity of linear operators defined on Banach algebras comprise a fruitful
area of research intensively developed during the last sixty years. The monographs [44,11,13] review
most of the main achievements obtained during the last fifty years.

A linear mapping D from a Banach algebra A to a Banach A-bimodule is said to be a derivation if
D(ab) = D(a)b +aD(b), for every a,b in A. The pioneering work of W.G. Bade and P.C. Curtis (see [2])
studies the automatic continuity of a module homomorphism between bi-modules over C(K )-spaces.
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Some techniques developed in the just quoted paper were exploited by J.R. Ringrose to prove that
every (associative) derivation from a C∗-algebra A to a Banach A-bimodule M is continuous (compare
[39]). The case in which M = A was previously treated by S. Sakai [41] by way of spectral theory in
A (= M).

We consider the class of Banach (Jordan) triple modules, a class which includes, besides Banach
modules over Banach algebras and Banach Jordan modules over Banach Jordan algebras, the dual
space of every real or complex JB∗-triple. In this setting, a conjugate linear (resp., linear) mapping δ

from a complex (resp., real) Jordan triple E to a triple E-module is called a derivation if

δ{a,b, c} = {
δ(a),b, c

} + {
a, δ(b), c

} + {
a,b, δ(c)

}
, (1)

for every a,b, c ∈ E , where {., ., .} denotes the triple product in E on the left side of (1), and the
module actions on the right side of (1).

We determine (in Theorem 8) the precise conditions in order that a derivation from a complex
JB∗-triple, E , into a Banach (Jordan) triple E-module is continuous. We subsequently show that every
derivation from a real or complex JB∗-triple into its dual space is automatically continuous, a fact
which has significance for the recent study by the present authors (and a third author) of ternary
weak amenability [25].

From one point of view (another is through infinite dimensional holomorphy) the theory of
JB∗-triples may be viewed as parallel to the theory of C∗-algebras. The analog of the theorem of
Sakai mentioned above, namely, the automatic continuity of a derivation from a JB∗-triple into itself,
that is, a linear map satisfying the derivation property (1), was proved by T.J. Barton and Y. Friedman
[3] in the complex case and extended to the real case in [24]. Among the consequences of our main
results, we obtain a completely different proof for the automatic continuity results obtained in the
just quoted papers [3] and [24] as well as the automatic continuity result of Ringrose.

A Jordan derivation from a Banach algebra A into a Banach A-module is a linear map D satisfying
D(a2) = aD(a)+ D(a)a, (a ∈ A), or equivalently, D(ab+ba) = aD(b)+ D(b)a+ D(a)b+bD(a), (a,b ∈ A).
Sinclair proved that a bounded Jordan derivation from a semisimple Banach algebra to itself is a
derivation [42, Theorem 3.3], although this result fails for derivations of semisimple Banach algebras
into a Banach bi-module. Nevertheless, a celebrated result of B.E. Johnson states that every bounded
Jordan derivation from a C∗-algebra A to a Banach A-bimodule is an associative derivation (cf. [29]).
We are also able to remove the continuity assumption in the result of Johnson, a result which wasn’t
explicitly stated in the literature.

In Section 2 of this paper we recall the definition and basic properties of Jordan triples, define Jor-
dan triple modules and submodules, and introduce and study a basic tool in our paper: the quadratic
annihilator of a submodule. In Section 3 we prove the automatic continuity results by relating triple
derivations to triple module homomorphisms and using the well known technique of separating
spaces. The final section contains the consequences of our main results, both for JB∗-triples and for
C∗-algebras.

All of our results, excepting Theorem 8, are valid for real or complex JB∗-triples. It should be
noted however that in Section 4 we use the fact that Theorem 8 is valid for the self-adjoint part of a
C∗-algebra, considered as a (reduced) real JB∗-triple (see Proposition 13).

2. Jordan triple modules

2.1. Jordan triples

A complex (resp., real) Jordan triple is a complex (resp., real) vector space E equipped with a triple
product

E × E × E → E,

(xyz) �→ {x, y, z}



962 A.M. Peralta, B. Russo / Journal of Algebra 399 (2014) 960–977
which is bilinear and symmetric in the outer variables and conjugate linear (resp., linear) in the
middle one satisfying the so-called “Jordan Identity”:

{
a,b, {c,d, e}} = {{a,b, c},d, e

} − {
c, {b,a,d}, e

} + {
c,d, {a,b, e}} (2)

for all a,b, c,d, e in E . When E is a Banach space and the triple product of E is continuous, we say
that E is a Banach Jordan triple. Given x, y in E , the symbol L(x, y) will denote the operator defined
by L(x, y)z := {x, y, z}.

Some of the basic facts about Jordan algebras, triples, and modules that we refer to are in [25,
2.1, 2.2], which the reader is encouraged to review. A summary of the basic facts about the important
subclass of JB∗-triples (defined below) can be found in [40] and some of the references therein, such
as [30,17,18,45,46].

An element e in a Jordan triple E is called a tripotent if {e, e, e} = e. Each tripotent e in E induces
two decompositions of E (called Peirce decompositions) in the form:

E = E0(e) ⊕ E1(e) ⊕ E2(e) = E1(e) ⊕ E−1(e) ⊕ E0(e)

where Ek(e) = {x ∈ E: L(e, e)x = k
2 x} is the k/2-eigenspace of L(e, e), for k = 0,1,2 and Ek(e) is the

k-eigenspace of the operator Q (e)x = {e, x, e} for k = 1,−1,0. The projection onto Ek(e), which is
contractive, is denoted by Pk(e) for k = 0,1,2. The following Peirce rules are satisfied:

(a) E2(e) = E1(e) ⊕ E−1(e) and E0(e) = E1(e) ⊕ E0(e),
(b) {Ei(e), E j(e), Ek(e)} ⊆ Eijk(e) if i jk �= 0,
(c) {Ei(e), E j(e), Ek(e)} ⊆ Ei− j+k(e), where i, j,k = 0,1,2 and El(e) = 0 for l �= 0,1,2,
(d) {E0(e), E2(e), E} = {E2(e), E0(e), E} = 0.

A (complex) JB∗-triple is a complex Jordan Banach triple E satisfying the following axioms:

(JB∗1) For each a in E the map L(a,a) is a hermitian operator on E with non-negative spectrum.
(JB∗2) ‖{a,a,a}‖ = ‖a‖3 for all a in A.

Every C∗-algebra (resp., every JB∗-algebra) is a JB∗-triple with respect to the product {a,b, c} =
1
2 (ab∗c + cb∗a) (resp., {a,b, c} := (a ◦ b∗) ◦ c + (c ◦ b∗) ◦ a − (a ◦ c) ◦ b∗).

We recall that a real JB∗-triple is a norm-closed real subtriple of a complex JB∗-triple (compare
[27]). The class of real JB∗-triples includes all complex JB∗-triples, all real and complex C∗- and
JB∗-algebras and all JB-algebras.

A complex (resp., real) JBW∗-triple is a complex (resp., real) JB∗-triple which is also a dual Banach
space. It is a non-trivial result that the second dual of a JB∗-triple E is a JBW∗-triple.

A tripotent e in a real or complex JB∗-triple E is called minimal if E1(e) = Re. In the complex
setting this is equivalent to say that E2(e) = Ce, because E−1(e) = iE1(e), whereas in the real situation
the dimensions of E1(e) and E−1(e) need not be correlated.

2.2. Jordan triple modules

Motivated by the theory of modules over a Jordan algebra due to Jacobson [28], we introduce
Jordan triple modules. Let E be a complex (resp. real) Jordan triple. A Jordan triple E-module (also
called triple E-module) is a vector space X equipped with three mappings

{., ., .}1 : X × E × E → X, {., ., .}2 : E × X × E → X,

and {., ., .}3 : E × E × X → X

satisfying the following axioms:
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(JTM1) {x,a,b}1 is linear in a and x and conjugate linear in b (resp., trilinear), {a,b, x}3 is linear in
b and x and conjugate linear in a (resp., trilinear) and {a, x,b}2 is conjugate linear in a,b, x
(resp., trilinear).

(JTM2) {x,b,a}1 = {a,b, x}3, and {a, x,b}2 = {b, x,a}2 for every a,b ∈ E and x ∈ X .
(JTM3) Denoting by {., ., .} any of the products {., ., .}1, {., ., .}2 and {., ., .}3, the Jordan identity (2)

holds whenever one of the elements a,b, c,d, e is in X and the rest are in E .

When the products {., ., .}1, {., ., .}2 and {., ., .}3 are (jointly) continuous we shall say that X is a
Banach (Jordan) triple E-module. Hereafter, the triple products {., ., .} j , j = 1,2,3, which occur in the
definition of Jordan triple module will be denoted simply by {., ., .} whenever the meaning is clear
from the context.

A subspace S of a triple E-module X is said to be a Jordan triple submodule or a triple submodule if
{E, E, S} ⊆ S and {E, S, E} ⊆ S . In particular, every triple ideal J of E (i.e. {E, E, J } ⊆ J and {E, J , E} ⊆
J ) is a Jordan triple E-submodule of E .

It is obvious that every real or complex Jordan triple E is a real triple E-module. It is problematical
whether every complex Jordan triple E is a complex triple E-module for a suitable triple product. We
shall see later that triple modules have a priori a different behavior than bi-modules over associative
algebras and Jordan modules over Jordan algebras (see Remark 12).

It is a bit laborious to check that the dual space, E∗ , of a complex (resp., real) Jordan Banach triple
E is a complex (resp., real) triple E-module with respect to the products:

{a,b,ϕ}(x) = {ϕ,b,a}(x) := ϕ{b,a, x}, and, {a,ϕ,b}(x) := ϕ{a, x,b},

for all ϕ ∈ E∗ , a,b, x ∈ E .
Given a triple E-module X over a Jordan triple E , the space E ⊕ X can be equipped with a structure

of real Jordan triple with respect to the product {a1 + x1,a2 + x2,a3 + x3}s = {a1,a2,a3}+{x1,a2,a3}+
{a1, x2,a3} + {a1,a2, x3}. Consistent with the terminology in [28, §II.5], E ⊕ X will be called the triple
split null extension of E and X . In order to simplify notation, we shall write {., ., .}s = {., ., .} when no
confusion arises.

As noted above, our definition of Jordan triple module is motivated by the theory of modules over
a Jordan algebra due to Jacobson [28]. Subsequently, we noticed that Jordan triple modules over a
commutative ring were defined in [33] in a form more suitable to a purely algebraic setting. Our
definition is more suitable for the applications to C∗-algebras.

2.3. Quadratic annihilator

Given an element a in a Jordan triple E , we shall denote by Q (a) the conjugate linear operator on
E defined by Q (a)(b) := {a,b,a}. The following formula is always satisfied

Q (a)Q (b)Q (a) = Q
(

Q (a)b
)

(a,b ∈ E),

and remains true for Q (·) acting on a triple E-module X :

{
a,

{
b, {a, x,a},b

}
,a

} = {{a,b,a}, x, {a,b,a}}, x ∈ X . (3)

For each submodule S of a triple E-module X , we define its quadratic annihilator, AnnE(S), as the
set {a ∈ E: Q (a)(S) = {a, S,a} = 0}. Since S is a triple submodule of X , it follows by (3) that

{a, E,a} ⊂ AnnE(S), ∀a ∈ AnnE(S), and (4){
b,AnnE(S),b

} ⊆ AnnE(S), ∀b ∈ E. (5)
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Consequently, AnnE (S) is an inner ideal of E (that is, a linear subspace J with { J , E, J } ⊂ J )
whenever it is a linear subspace of E . Further, AnnE(S) is a triple ideal of E whenever E is a JB∗-triple
and AnnE (S) is a linear subspace of E since for JB∗-triples, (5) implies {E,AnnE (S), E} ⊂ AnnE(S).

Let E be a Jordan triple. Two elements a and b in E are said to be orthogonal (written a ⊥ b) if
L(a,b) = L(b,a) = 0.

Given an element a in a Jordan triple E , we denote a[1] = a, a[3] = {a,a,a} and a[2n+1] :=
{a,a[2n−1],a} (∀n ∈ N). Jordan triples are power associative, that is, {a[k],a[l],a[m]} = a[k+l+m] (k, l,m ∈
2N+ 1). The element a is called nilpotent if a[2n+1] = 0 for some n.

Let a be an element in a real (resp., complex) JB∗-triple E . The symbol Ea will denote the
JB∗-subtriple generated by the element a.

Let X be a triple module over a Jordan triple E . We shall say that X has the property of lifting
orthogonality (LOP for short) if

{a,b, x} = 0, for every x ∈ X, a,b ∈ E with a ⊥ b.

It is easy to see that for every Jordan Banach triple E , the Jordan triple E-module E∗ satisfies LOP.
When a Jordan triple E is regarded as a real triple E-module with its natural products, then E also has
LOP (see Corollary 5, which is where this concept is used). However, not every triple module has this
property. Let A be a C∗-algebra regarded as a complex JB∗-triple with respect to {a,b, c} := 1

2 (ab∗c +
cb∗a). The vector space X = A is a real triple A-module with respect to the products {a,b, x}3 :=
1
2 (abx + xba) and {a, x,b}2 := 1

2 (axb + bxa). Two elements a and b in a C∗-algebra A are orthogonal if
and only if ab∗ = b∗a = 0 (compare [21, p. 18], see also [8, Lemma 1]). Every real JB∗-triple E is a real
form of a complex JB∗-triple, more concretely, there exists a unique complex JB∗-triple structure on
the complexification Ê = E ⊕ iE , and a unique conjugation (i.e., conjugate-linear isometry of period 2)
τ on Ê such that E = Êτ := {x ∈ Ê: τ (x) = x} (cf. [27, Proposition 2.2]). Therefore, elements a,b ∈ E
are orthogonal in E if and only if they are orthogonal in Ê . In particular, results on orthogonality for
elements of complex JB∗-triples can be also used for the real case. On the other hand, it is not hard
to find a C∗-algebra A containing two orthogonal elements a,b with {a,b, x}3 �= 0, for some x ∈ A.

We now give an example of the quadratic annihilator. Let J be a triple ideal of a real or complex
JB∗-triple E regarded as a Jordan triple E-submodule. We clearly have

AnnE( J ) := {
a ∈ E: Q (a)( J ) = 0

} ⊇ J⊥ := {a ∈ E: a ⊥ J }.

Suppose now that a ∈ AnnE ( J ). Replacing J with its weak∗-closure in E∗∗ , we may assume that E is
a JBW∗-triple, J is a weak∗-closed triple ideal and Q (a)( J ) = 0. By [26, Theorem 4.2(4)], there exists
a weak∗-closed triple ideal K in E such that E = J ⊕ K and J ⊥ K . Writing a = a1 + a2 with a1 ∈ J
and a2 ∈ K , we deduce, by orthogonality, that a[3]

1 = Q (a)(a1) ∈ Q (a)( J ) = 0, and hence a = a2 ⊥ J . It
should be remarked that [26, Theorem 4.2(4)] is established only for complex JBW∗-triples. However,
every real JBW∗-triple E can be regarded as a real form of a complex JBW∗-triple B with respect to a
weak∗-conjugation τ on B (cf. [35]). Furthermore, a subset J ⊆ E is a weak∗-closed ideal of E if and
only if J ⊕ i J is a weak∗-closed ideal of B . This argument shows that [26, Theorem 4.2(4)] remains
valid for real JBW∗-triples. We state the above example as:

Remark 1. Let E be a JB∗-triple (resp., a real JB∗-triple). For each triple ideal J in E we have
AnnE ( J ) = J⊥ is a norm-closed triple ideal of E . �
3. Triple derivations and triple module homomorphisms

3.1. Triple derivations

Separating spaces have been revealed as a useful tool in results of automatic continuity. This tool
has been applied by many authors in the study of automatic continuity of binary and ternary homo-
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morphisms, derivations and module homomorphisms (see, for example, [37,2,48,9,43,44,11,12,23,14],
among others).

Let T : X → Y be a linear mapping between two normed spaces. Following [38, p. 70], the
separating space, σY (T ), of T in Y is defined as the set of all z in Y for which there exists a se-
quence (xn) ⊆ X with xn → 0 and T (xn) → z. The separating space, σX (T ), of T in X is defined by
σX (T ) := T −1(σY (T )).

A straightforward application of the closed graph theorem shows that a linear mapping T between
two Banach spaces X and Y is continuous if and only if σY (T ) = {0}. It is known that σX (T ) and
σY (T ) are closed linear subspaces of X and Y , respectively. For each bounded linear operator R from
Y to another Banach space Z , the composition RT is continuous if, and only if, σY (T ) ⊆ ker(R).
Further, there exists a constant M > 0 (which does not depend on R nor Z ) such that ‖RT ‖ � M‖R‖,
whenever RT is continuous (compare [44, Lemma 1.3]).

Let E be a complex (resp., real) Jordan triple and let X be a triple E-module. We recall that a
conjugate linear (resp., linear) mapping δ : E → X is said to be a derivation if it satisfies (1).

Note that derivations on complex JB∗-triples to themselves are linear mappings but that a deriva-
tion from a complex JB∗-triple into a complex triple module is conjugate linear by this definition. This
is not inconsistent, since as we have noted earlier, it is not clear that a complex JB∗-triple E can be
made into a complex triple E-module.

Lemma 2. Let δ : E → X be a triple derivation from a Jordan Banach triple to a Banach (Jordan) triple
E-module. Then σX (δ) is a norm-closed triple E-submodule of X and σE (δ) is a norm-closed subtriple of E.

Proof. Given a,b in E and x ∈ σX (δ), there exists a sequence (cn) in E with (cn) → 0 and δ(cn) → x in
norm. The sequence ({a,b, cn}) (resp., ({a, cn,b})) tends to zero in norm and δ{a,b, cn} = {δa,b, cn} +
{a, δb, cn} + {a,b, δ(cn)} → {a,b, x} (resp., δ{a, cn,b} → {a, x,b}), which proves the first statement.

If a,b, c ∈ σE (δ), then δ(a), δ(b), δ(c) ∈ σX (δ) and hence, by the first statement, δ{a,b, c} ∈ σX (δ),
as required. �

Let δ : E → X be a triple derivation from a Jordan Banach triple E to a Banach triple E-module.
Since σX (δ) is a norm-closed triple E-submodule of X , AnnE (σX (δ)) is a norm-closed inner ideal of
E whenever it is a linear subspace of E (actually, in such a case, it is a triple ideal when E is a real
or complex JB∗-triple).

Let us take a in E . Since δ is in particular a conjugate linear mapping, σX (δ) ⊆ ker(Q (a)) if, and
only if, Q (a)δ is a continuous linear mapping from E to X , and we deduce that

AnnE
(
σX (δ)

) = {
a ∈ E: Q (a)δ is continuous

}
.

Moreover, for each a in E , δQ (a) = Q (a)δ + 2Q (a, δa), and it follows that Q (a)δ is continuous if, and
only if, δQ (a) is.

3.2. Triple module homomorphisms

Let X and Y be two triple E-modules over a real or complex Jordan triple E . A linear mapping
T : X → Y is said to be a triple E-module homomorphism if the identities

T {a,b, x} = {
a,b, T (x)

}
and T {a, x,b} = {

a, T (x),b
}
,

hold for every a,b ∈ E and x ∈ X .
As above,

AnnE
(
σY (T )

) = {
a ∈ E: Q (a)T is continuous

}
,



966 A.M. Peralta, B. Russo / Journal of Algebra 399 (2014) 960–977
and since a triple E-module homomorphism T : X → Y commutes with Q (a) (acting on X), we have

AnnE
(
σY (T )

) = {
a ∈ E: T Q (a) is continuous

}
,

where Q (a) acts on Y .
The argument applied in the proof of Lemma 2 is also valid to prove the following result.

Lemma 3. Let E be a Jordan Banach triple and let T : X → Y be a triple E-module homomorphism between
two Banach spaces which are triple E-modules with continuous module operations. Then σY (T ) and σX (T )

are norm-closed triple E-submodules of Y and X, respectively. �
The following lemma provides a key tool needed in our main result.

Lemma 4. Let E be a Jordan Banach triple, X a Banach triple E-module satisfying LOP, Y a Banach space which
is a triple E-module with continuous module operations and T : X → Y a triple module homomorphism. Then
for every sequence (an) of mutually orthogonal non-zero elements in E, we have:

(a) Q (an)2T is continuous for all but a finite number of n;
(b) a[3]

n belongs to AnnE (σY (T )) for all but a finite number of n;
(c) the set

{‖Q (a[3]
n )T ‖

‖an‖6
: Q

(
a[3]

n
)
T is continuous

}

is bounded.

Proof. Suppose that the statement (a) of the lemma is false. Passing to a subsequence, we may as-
sume that Q (an)2T is an unbounded operator for every natural n. In this case we can find a sequence
(xn) in X satisfying ‖xn‖ � 2−n‖an‖−2, and ‖Q (an)2T (xn)‖ > n Kn , where Kn is the norm of the
bounded conjugate linear operator Q (an) : Y → Y , Q (an)y = {an, y,an}. Since Q (an)2T is discontinu-
ous Kn = ‖Q (an)‖ �= 0, for every n. (Note that ‖Q (a)‖ � M‖a‖2 for some constant M .)

The series
∑∞

k=1 Q (ak)(xk) defines an element z in the Banach triple module X . For n �= k, the LOP
and the identity

{
x,an, {ak,an,ak}

} + {
ak, {an, x,an},ak

} = {{x,an,ak},an,ak
} + {

ak,an, {x,an,ak}
}

shows that {ak, {an, x,an},ak} = 0. That is, Q (ak)Q (an) = 0 for k �= n and the same argument shows
that for any b ∈ E ,

Q (ak,b)Q (an) = 0 for n �= k. (6)

Hence, for each natural n, we have

Kn
∥∥T (z)

∥∥ �
∥∥Q (an)T (z)

∥∥ = ∥∥T Q (an)(z)
∥∥

= ∥∥T Q (an)
2(xn)

∥∥ = ∥∥Q (an)
2T (xn)

∥∥ > Knn,

which is impossible. This proves (a).
Since Q (an)2T is continuous for all but a finite number of n and the module operations are

continuous on Y , it follows that Q (an)Q (an)2T = Q (an)3T = Q (a[3]
n )T is continuous (and hence,

a[3]
n ∈ AnnE (σY (T ))) for all but a finite number of n. This proves (b).
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In order to prove (c) we may assume that Q (an)2T is continuous for every natural n. Arguing

by reduction to the absurd, we assume that { ‖Q (a[3]
n )T ‖

‖an‖6 : n ∈ N} is unbounded. There is no loss of

generality in assuming that ‖an‖ = 1, for every n. By the Cantor diagonal process we may find a
doubly indexed family (ap,q)p,q∈N of mutually different elements from (an) and a doubly indexed

family (xp,q) in the unit sphere of X such that ‖Q (a[3]
p,q)T (xp,q)‖ > 42qqp. Let bp := ∑+∞

q=1 2−qap,q ∈ E .
We observe that ap,q ⊥ al,m for every (p,q) �= (l,m). It is therefore clear that (bp) is a sequence of
mutually orthogonal elements in E . Having in mind that X satisfies LOP, we deduce from (3) and (6)
that Q (bp)2 Q (ap,q)(x) = 4−2q Q (a[3]

p,q)(x), for every x in X . Thus,

∥∥Q (bp)2T Q (ap,q)(xp,q)
∥∥ = ∥∥T Q (bp)2 Q (ap,q)(xp,q)

∥∥
= 4−2q

∥∥T Q
(
a[3]

p,q
)
(xp,q)

∥∥ = 4−2q
∥∥Q

(
a[3]

p,q
)
T (xp,q)

∥∥ > qp,

for every p,q in N, which shows that Q (bp)2T is unbounded for every p ∈ N. This contradicts the
first statement of the lemma and proves (c). �

Let E be a complex (resp., real) Jordan triple and let X be a triple E-module. It is not hard to see
that for every derivation δ : E → X the mapping

Θδ : E → E ⊕ X,

a �→ a + δ(a)

is a real linear Jordan triple monomorphism from the real Jordan triple E to the triple split null ex-
tension (E ⊕ X, {., ., .}s). (We observe that, in this case, E is regarded as a real Jordan triple whenever
it is a complex Jordan triple.)

When X is a Jordan Banach triple E-module over a real or complex JB∗-triple E , we define a norm,
‖.‖0, on the triple split null extension of E and X by the assignment a + x �→ ‖a + x‖0 := ‖a‖ + ‖x‖.
The real Jordan triple E ⊕ X becomes a real Jordan Banach triple. It is not hard to see that, in this
setting, a derivation δ is continuous if, and only if, the triple monomorphism Θδ is. Moreover, the
separating spaces σX (δ) and σE⊕X (Θδ) and their quadratic annihilators are linked by the following
identities

σE⊕X (Θδ) = {0} × σX (δ)
(
and hence, AnnE

(
σE⊕X (Θδ)

) = AnnE
(
σX (δ)

))
. (7)

The linear space E ⊕ X and is made into a real triple E-module for the new products

{a,b, c + x}′ = {c + x,b,a}′ := Θδ

({a,b, c}) = {
Θδ(a),Θδ(b),Θδ(c)

}
,

{a,b + x, c}′ := Θδ

({a,b, c})
(a,b, c ∈ E, x ∈ X). Clearly the ‖.‖0-closure, Θδ(E), of Θδ(E) is a Jordan Banach real triple E-module
with respect to the product {., ., .}′ , and satisfies the LOP. Under this point of view, the mapping
Θδ : E → (Θδ(E), {., ., .}′) is a triple E-module homomorphism. The following result derives from the
previous Lemma 4, since Q (a)Θδ = Q (a) ⊕ Q (a)δ and every JB∗-triple E satisfies LOP as a real triple
E-module.

Corollary 5. Let E be a complex (resp., real) JB∗-triple, X a Banach space which is a triple E-module with con-
tinuous module operations and let δ : E → X be a triple derivation. Then for every sequence (an) of mutually
orthogonal non-zero elements in E, Q (an)2δ is continuous for all but a finite number of n. It follows that a[3]

n
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belongs to AnnE (σX (δ)) for all but a finite number of n. Moreover, the set

{‖Q (a[3]
n )δ‖

‖an‖6
: Q

(
a[3]

n
)
δ is continuous

}

is bounded. �
Let E be a real or complex JB∗-triple. We shall say that E is algebraic if all singly-generated sub-

triples of E are finite dimensional. If in fact there exists m ∈N such that all single-generated subtriples
of E have dimension � m, then E is said to be of bounded degree, and the minimum such an m will
be called the degree of E .

Corollary 6. Let E be a complex (resp., real) JB∗-triple, X a Banach triple E-module and let δ : E → X be a triple
derivation. Suppose that AnnE(σX (δ)) is a norm-closed triple ideal of E. Then every element in E/AnnE(σX (δ))

has finite triple spectrum, in other words, the JB∗-triple E/AnnE(σX (δ)) is isomorphic to a Hilbert space or,
equivalently, it is algebraic of bounded degree.

Proof. Let a be an element in the JB∗-triple F = E/AnnE (σX (δ)). Let Ia denote the intersection of Ea
with AnnE (σX (δ)). It is clear that Ia is a norm-closed triple ideal of Ea . Moreover, the subtriple Fa is
JB∗-triple isomorphic to the quotient of Ea with Ia .

Ea is JB∗-triple isomorphic (and hence isometric) to C0(L) = C0(L,C) (resp., C0(L) = C0(L,R)) for
some locally compact Hausdorff space L ⊆ (0,‖a‖] (called the triple spectrum of a) such that L ∪ {0}
is compact (compare [30, Lemma 1.14] and [31, Proposition 3.5]). We shall identify Ea with C0(L). It
is known (compare [16, Proposition 3.10]) that Ea/Ia ∼= C0(Λ) where

Λ = {
t ∈ L: b(t) = 0, for every b ∈ Ia

}
.

We claim that the set Λ is finite. Otherwise, there exists an infinite sequence (tn) in Λ. We find a
sequence ( fn) of mutually orthogonal elements in C0(L) such that fn(tn) �= 0 and hence fn /∈ Ia and
f [3]
n /∈ Ia . Since orthogonality is a “local” concept, (compare Lemma 1 in [8], whose proof remains valid

for real JB∗-triples), ( fn) is a sequence of mutually orthogonal elements in E and ( f [3]
n ) /∈ AnnE (σX (δ)),

we have a contradiction to Corollary 5. It follows that Ea/Ia ∼= Fa is finite dimensional. The final
statement is derived from [6, §4] and [4, §3, Theorems 3.1 and 3.8]. �
3.3. Automatic continuity results

Our main result (Theorem 8) will be proved in two steps, the first being the following proposition.

Proposition 7. Let E be a complex (resp., real) JB∗-triple, X a Banach triple E-module, and let δ : E → X be a
triple derivation. Assume that AnnE(σX (δ)) is a (norm-closed) linear subspace of E and that in the triple split
null extension E ⊕ X,

{
AnnE

(
σX (δ)

)
,AnnE

(
σX (δ)

)
,σX (δ)

} = 0. (8)

Then δ|AnnE (σX (δ)) : AnnE (σX (δ)) → X is continuous.

Proof. By Lemma 2, σX (δ) is a triple E-submodule of X . By assumptions the set AnnE (σX (δ)) is a
norm-closed subspace of E , then, as we commented before, it is a norm-closed triple ideal of E .

Fix two arbitrary elements a,b in AnnE (σX (δ)). Since a + b ∈ AnnE(σX (δ)), for every x in σX (δ),
we have

2{a, x,b} = {a + b, x,a + b} − {a, x,a} − {b, x,b} = 0.
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Hence, in addition to our assumption (8), we also have

{a, x,b} = 0, for every x ∈ σX (δ), a,b ∈ AnnE
(
σX (δ)

)
,

that is,

{
AnnE

(
σX (δ)

)
,σX (δ),AnnE

(
σX (δ)

)} = 0. (9)

Considering L(a,b) and Q (a,b) as linear mappings from X to X defined by L(a,b)(x) = {a,b, x}
and Q (a,b)(x) = {a, x,b} (x ∈ X), we deduce from (8) and (9) that σX (δ) ⊂ ker L(a,b) ∩ ker Q (a,b)

and therefore that L(a,b)δ, Q (a,b)δ : E → X are continuous operators for every a,b ∈ AnnE (σX (δ)).
When L(a,b) and Q (a,b) as considered as (real) linear operators from E to E , the compositions

δL(a,b) and δQ (a,b) satisfy the identities

δL(a,b)(c) = {
δ(a),b, c

} + {
a, δ(b), c

} + {
a,b, δ(c)

}
= {

δ(a),b, c
} + {

a, δ(b), c
} + L(a,b)δ(c)

and

δQ (a,b)(c) = {
δ(a), c,b

} + {
a, δ(c),b

} + {
a, c, δ(b)

}
= {

δ(a), c,b
} + Q (a,b)δ(c) + {

a, c, δ(b)
}
,

for an arbitrary c ∈ E , where the terms in the right-hand sides are defined in terms of the module
triple product. Since X is a Banach triple E-module, the continuity of L(a,b)δ and Q (a,b)δ as opera-
tors from E to X implies that the assignments c �→ δ({a,b, c}) and c �→ δ({a, c,b}) define continuous
mappings from E to X . In summary, we have proved that given a,b in E , the mappings E → X ,
c �→ δ({a,b, c}) and c �→ δ({a, c,b}) are continuous.

Let W : AnnE (σX (δ)) × AnnE (σX (δ)) × AnnE (σX (δ)) → X be the real trilinear mapping defined
by W (a,b, c) := δ({a,b, c}). We have already seen that W is separately continuous whenever we fix
two of the variables in (a,b, c) ∈ AnnE (σX (δ))× AnnE (σX (δ))× AnnE (σX (δ)). By repeated applications
of the uniform boundedness principle, W is (jointly) continuous. Therefore, there exists a positive
constant M such that ‖δ{a,b, c}‖ � M ‖a‖‖b‖‖c‖, for every a,b, c ∈ AnnE(σX (δ)).

Finally, since AnnE(σX (δ)) is a JB∗-subtriple of E , for each a in AnnE (σX (δ)), there exists b in
AnnE (σX (δ)) satisfying that b[3] = a. In this case

∥∥δ(a)
∥∥ = ∥∥δ{b,b,b}∥∥ � M‖b‖3 = M

∥∥{b,b,b}∥∥ = M‖a‖,

which shows that the restriction of δ to AnnE (σX (δ)) is continuous. �
We can state now the main result of the paper.

Theorem 8. Let E be a complex JB∗-triple, X a Banach triple E-module, and let δ : E → X be a triple derivation.
Then δ is continuous if and only if AnnE (σX (δ)) is a (norm-closed) linear subspace of E and

{
AnnE

(
σX (δ)

)
,AnnE

(
σX (δ)

)
,σX (δ)

} = 0,

in the triple split null extension E ⊕ X.



970 A.M. Peralta, B. Russo / Journal of Algebra 399 (2014) 960–977
Proof. If δ is continuous AnnE (σX (δ)) = AnnE ({0}) = E is a linear subspace of E and {E, E,0} = 0.
Conversely, let us suppose that E is a complex JB∗-triple and that AnnE (σX (δ)) is a norm-closed

subspace of E and hence a norm-closed triple ideal of E .
In order to simplify notation, we denote J = AnnE (σX (δ)), while the projection of E onto E/ J will

be denoted by a �→ π(a) = a.
By Corollary 6, E/ J is algebraic of bounded degree m. Thus, for each element a in E/ J there exist

mutually orthogonal minimal tripotents e1, . . . , ek in E/ J and 0 < λ1 � · · · � λk with k � m such that
a = ∑k

j=1 λ je j . We shall show in the next two paragraphs that e1, . . . , ek ∈ J , and hence, a ∈ J . This
will show that E = J and application of Proposition 7 will complete the proof.

Suppose that e is a minimal tripotent in E/ J , where e ∈ E is a representative in the class e. In this
case (E/ J )2(e) = Ce. Take an arbitrary sequence (an) converging to 0 in E . For each natural n, there
exists a scalar μn ∈ C such that

π
(

Q (e)(an)
) = Q (e)

(
π(an)

) = Q (e)(an) = μne = π(μne).

The continuity of π and the Peirce-2 projection P2(e) assure that μn → 0. Thus, the sequence
Q (e)(an) − μne lies in J and tends to zero in norm.

By Proposition 7, δ| J is continuous. Therefore,

δ
(

Q (e)(an)
) = δ

(
Q (e)(an) − μne

) + μnδ(e) → 0.

Since (an) is an arbitrary norm null sequence in E , the linear mapping δQ (e) : E → X is continuous,
and hence e ∈ AnnE (σX (δ)) = J , or equivalently, e = 0. �
4. Applications

4.1. Applications to JB∗-triples

Let E be a real JB∗-triple. By [27, Proposition 2.2], there exists a unique complex JB∗-triple struc-
ture on the complexification Ê = E ⊕ iE , and a unique conjugation (i.e., conjugate-linear isometry
of period 2) τ on Ê such that E = Êτ := {x ∈ Ê: τ (x) = x}, that is, E is a real form of a complex
JB∗-triple. Let us consider

τ 
 : Ê∗ → Ê∗

defined by

τ 
( f )(z) = f
(
τ (z)

)
.

The mapping τ 
 is a conjugation on Ê∗ . Furthermore the map

(̂
E∗)τ 
 → (̂

Eτ
)∗ (= E∗),

f �→ f |E

is an isometric bijection, where (̂E∗)τ 
 := { f ∈ Ê∗: τ 
( f ) = f } (compare [27, p. 316]).

Remark 9. Let δ : E → E∗ be a triple derivation from a real JB∗-triple to its dual. It is not hard (but
tedious) to see that, under the identifications given in the above paragraph, the mapping δ̂ : Ê → Ê∗ ,
δ̂(x + iy) := δ(x) − iδ(y) is conjugate linear and a triple derivation from Ê to Ê∗ , when the latter is
seen as a triple E-module.
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Actually, although the calculations are tedious, the triple products of every real triple E-module,
X , can be appropriately extended to its algebraic complexification X̂ = X ⊕ i X to make the latter a
complex triple Ê-module. Further, every (real linear) triple derivation δ : E → X can be extended to a
(conjugate linear) triple derivation δ̂ : Ê → X̂ .

The first statement of the following corollary was already established in [3, Corollary 2.2] and [24,
Remark 1]. The proof given below is completely independent. The second statement is new and has
significance in the recent study of weak amenability for JB∗-triples [25].

Corollary 10. Let E be a real or complex JB∗-triple.

(a) Every derivation δ : E → E is continuous.
(b) Every derivation δ : E → E∗ is continuous.

The proof of this important corollary requires some preparation.
Let E be a JB∗-triple (resp., a real JB∗-triple). For each x in E , E(x) will denote the norm-closure

of {x, E, x} in E . It is known that E(x) coincides with the norm-closed inner ideal of E generated
by x and Ex ⊆ E(x) (see [7]). By [7, Proposition 2.1], E(x) is a JB∗-subalgebra of the JBW∗-algebra
E(x)∗∗ = E(x)w∗ = E∗∗

2 (r(x)), where r(x) is the (so-called) range tripotent of x in E∗∗ . It is also known
that x ∈ E(x)+ .

For each functional ϕ ∈ E∗ , there exists a unique tripotent s = s(ϕ) in E∗∗ satisfying that ϕ =
ϕP2(s) and ϕ|E∗∗

2 (s) is a faithful normal positive functional on E∗∗
2 (s) (compare [17, Proposition 2] and

[35, Lemma 2.9] and [36, Lemma 2.7], respectively). The tripotent s(ϕ) is called the support tripotent
of ϕ in E∗∗ .

Proposition 11. Let E be a JB∗-triple (resp., a real JB∗-triple). For each triple submodule S ⊂ E∗ ,

(a) the quadratic annihilator AnnE(S) is a norm-closed triple ideal of E,
(b) AnnE (S) = E ∩ (

⋂
ϕ∈S E∗∗

0 (s(ϕ))),
(c) {AnnE (S),AnnE (S), S} = 0 in the triple split null extension E ⊕ E∗ .

Proof. We prove (b) first. For each a ∈ AnnE (S) and each ϕ ∈ S , we have by definition, {a,ϕ,a} = 0
and hence ϕQ (a)(E) = 0. It follows that E(a) ⊆ ker(ϕ) for every ϕ ∈ S , a ∈ AnnE (S). In particular,
ϕ(a) = 0. Since S is a triple submodule, for every b ∈ E , {ϕ,b,a} ∈ S , so {ϕ,b,a}(a) = 0, that is,
ϕ{a,a,b} = 0.

Fix ϕ ∈ S . We have already seen that ϕ{a,a,b} = 0 for every b ∈ E . Since E is weak∗-dense in E∗∗
and ϕ{a,a, .} is weak∗-continuous on E∗∗ , we deduce that ϕ{a,a,b} = 0, for every b ∈ E∗∗ . Thus,

ϕ
{

a,a, s(ϕ)
} = 0, (10)

where s = s(ϕ) ∈ E∗∗ denotes the support tripotent of ϕ in E∗∗ .
By [17, Proposition 2, Lemma 1.5] together with Peirce arithmetic, the mapping

(x, y) �→ ϕ{x, y, s} = ϕ
{

P2(s)x, P2(s)y, s
} + ϕ

{
P1(s)x, P1(s)y, s

}
is faithful and positive on E∗∗

2 (s) ⊕ E∗∗
1 (s), that is, ϕ{x, x, s} � 0 for every x ∈ E∗∗

2 (s) ⊕ E∗∗
1 (s) and

ϕ{x, x, s} = 0 if and only if x = 0. By (10),

0 = ϕ
{

a,a, s(ϕ)
} = ϕ

{
P2(s)a + P1(s)a, P2(s)a + P1(s)a, s

}
,

which implies that P2(s)a = P1(s)a = 0.
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We have shown that AnnE (S) ⊆ E ∩ E∗∗
0 (s(ϕ)), for every ϕ ∈ S . This assures that

AnnE(S) ⊆ E ∩
( ⋂

ϕ∈S

E∗∗
0

(
s(ϕ)

))
. (11)

To prove the reverse inclusion, let b belong to the right side of (11), let ϕ ∈ S and let c ∈ E have Peirce
decomposition c = c2 + c1 + c0 with respect to s(ϕ). From Peirce arithmetic, {b,ϕ,b}(c) = ϕ{b, c,b} =
ϕ{b, c0,b} = 0, proving equality in (11) and establishing (b).

To prove (c), let b, c ∈ AnnE (S) and ϕ ∈ S . Then for x = x2 +x1 +x0 ∈ E (where xi = Pi(s(ϕ))(x)), by
Peirce rules and properties of the support tripotent, {b, c,ϕ}(x) = ϕ{c,b, x} = ϕ{c,b, x2}+ϕ{c,b, x1}+
ϕ{c,b, x0} = 0, which proves (c).

Because of (4) and (5), to prove (a) it remains to show that AnnE (S) is a linear subspace of E .
Take a,b ∈ AnnE (S). Since, by Peirce arithmetic, with 2Q (a,b) = Q (a+b)− Q (a)− Q (b), Q (a,b)(E) ⊆
E ∩ E∗∗

0 (s(ϕ)), and L(a,b)(E) ⊆ E ∩(E∗∗
0 (s(ϕ))⊕ E∗∗

1 (s(ϕ))), for every ϕ ∈ S , it follows that {a,ϕ,b} = 0,
and {a,b,ϕ} = 0, for every ϕ ∈ S . Therefore (using only the first of these two facts),

Q (a + b)ϕ = Q (a)ϕ + Q (b)ϕ + 2Q (a,b)ϕ = 0,

for every a,b ∈ AnnE (S) and ϕ ∈ S , which implies that AnnE(S) is a linear subspace of E and com-
pletes the proof. �

We can now prove Corollary 10. The proof in the complex case follows now from Proposition 11
and Theorem 8. (In Theorem 8, we consider E as a real triple and as a real triple E-module, and δ

as a real-linear map.) The statements in the real setting are, by Remark 9, direct consequences of the
corresponding results in the complex case.

Recall that every (associative binary) derivation of a complex C∗-algebra A into a Banach
A-bimodule is automatically continuous [39]. The class of Banach triple modules over real or com-
plex JB∗-triples is strictly wider than the class of Banach bimodules over C∗-algebras. Our next remark
shows that, in the more general setting of triple derivations from real or complex JB∗-triples to Banach
triple modules the continuity is not, in general, automatic.

Remark 12. Let H be a real Hilbert space with inner product denoted by (., .). Suppose that
dim(H) � 2. Let J denote the Banach space C1 ⊕�1 H . It is known that J is a JB-algebra with re-
spect to the product

(λ11 + a1) ◦ (λ21 + a2) := λ1a2 + λ2a1 + (
λ1λ2 + (a1,a2)

)
1.

The JB-algebra ( J ,◦) is called a spin factor (see [20]). It follows that J is a real JB∗-triple via {a,b, c} :=
(a ◦ b) ◦ c + (c ◦ b) ◦ a − (a ◦ c) ◦ b, (a,b, c ∈ J ).

It was already noticed by Hejazian and Niknam (see [22, Definition 3.2]) that every Banach space
X can be considered as a (degenerate) Jordan J -module with respect to the products

(λ11 + a1) ◦ x = x ◦ (λ11 + a1) = λ1x (x ∈ X, λ1 ∈ R,a1 ∈ H).

Since every linear mapping D : J → X with D(1) = 0 is a Jordan derivation (i.e. D(a ◦ b) = D(a) ◦ b +
a◦ D(b), ∀a,b ∈ J ), for every infinite dimensional spin factor J , there exists a discontinuous derivation
from J to a degenerate Jordan J -module.

Each degenerate Banach Jordan J -module X is a Banach triple J -module with respect to {a,b, x} :=
(a ◦ b) ◦ x + (x ◦ b) ◦ a − (a ◦ x) ◦ b and {a, x,b} = (a ◦ x) ◦ b + (b ◦ x) ◦ a − (a ◦ b) ◦ x (a,b ∈ J , x ∈ X), and
each linear mapping δ : J → X with δ(1) = 0 is a triple derivation. Thus, for each infinite dimensional
spin factor J there exists a discontinuous triple derivation from J to a Banach triple J -module.
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4.2. Applications to C∗-algebras

In view of the intense interest in automatic continuity problems in the past half century, it was
natural to ask if the assumption of boundedness can be removed in Johnson’s result, stated earlier,
affirming that every bounded Jordan derivation from a C∗-algebra A into a Banach A-bimodule is a
derivation (compare [47, Question 14.i.] and [1]). In this section, we give a positive answer to this
question, as well as a Jordan module version of it, as consequences of a more general theorem on
triple derivations (Theorem 16 below). We shall also note how the answer also follows from results
already in the literature.

The above Theorem 8 has been established only for complex JB∗-triples and we shall need a tech-
nical reformulation of it. Actually, the proof given in Section 3 is not valid for real JB∗-triples. The
obstacles appearing in the real setting concern the structure of the Peirce-2 subspace associated with
a minimal tripotent. We have already commented that, in case of E being a complex JB∗-triple, the
identity E−1(e) = iE1(e) holds for every tripotent e in E , whereas in the real situation the dimensions
of E1(e) and E−1(e) are not, in general, correlated. For example, every infinite dimensional rank-one
real Cartan factor C contains a minimal tripotent e satisfying that C1(e) = Re and dim(C−1(e)) = +∞
(compare [15, Remark 2.6]).

Following [34, 11.9], we shall say that a real JB∗-triple E is reduced whenever E2(e) = Re (equiv-
alently, E−1(e) = 0) for every minimal tripotent e ∈ E . Reduced real Cartan factors were studied and
classified in [34, 11.9] and in [32, Table 1]. Reduced real JB∗-triples played an important role in the
study of the surjective isometries between real JB∗-triples developed in [15].

Having the above comments in mind, it is not hard to check that, in the particular subclass of
reduced real JB∗-triples the proof of Theorem 8 remains valid line by line. We therefore have:

Proposition 13. Let E be a reduced real JB∗-triple, X a Banach triple E-module, and let δ : E → X be a triple
derivation. Then δ is continuous if, and only if, AnnE(σX (δ)) is a (norm-closed) linear subspace of E and

{
AnnE

(
σX (δ)

)
,AnnE

(
σX (δ)

)
,σX (δ)

} = 0,

in the triple split null extension E ⊕ X. �
Every closed triple ideal of a reduced real JB∗-triple is a reduced real JB∗-triple. It is also true that

the self-adjoint part, Asa , of a C∗-algebra, A, is a reduced real JB∗-triple with respect to the product

{a,b, c} := abc + cba

2
(a,b, c ∈ Asa). (12)

Indeed, writing e = p − q for a minimal partial isometry e ∈ Asa with p and q orthogonal projections,
it is easy to check that e = p or e = −q and it follows that if exe = −x, then x = 0. In particular, for
each closed triple ideal J of Asa , the quotient Asa/ J is a reduced real JB∗-triple.

Our next result is a consequence of the previous proposition. Note that the fact that Asa is a
reduced JB∗-triple is only needed in the case that A is an abelian C∗-algebra.

Proposition 14. Let A be an abelian C∗-algebra whose self-adjoint part is denoted by Asa. Then, every triple
derivation from Asa to a real Jordan–Banach triple Asa-module is continuous. Hence, every triple derivation
from A into a real Jordan–Banach triple A-module is continuous.

Proof. Let δ : Asa → X be a triple derivation from Asa into a real Jordan triple Asa-module. The state-
ment of the proposition will follow from Proposition 13 as soon as we prove that Ann(σX (δ)) =
AnnAsa (σX (δ)) is a (norm-closed) linear subspace of Asa and

{
Ann

(
σX (δ)

)
,Ann

(
σX (δ)

)
,σX (δ)

} = 0.
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Let us take a ∈ Ann(σX (δ)). Having in mind that a ∈ Ann(σX (δ)) if, and only if, Q (a)δ (or equiv-
alently, δQ (a)) is a continuous operator from Asa to X (see the comments after Lemma 2), we
observe that δQ (a) is a continuous mapping from Asa to X . Obviously, for each b in Asa , the operator
Lb : Asa → Asa , c �→ cb = bc is continuous. Since A is abelian we have L(a2,b) = Q (a)Lb = Lb Q (a).
Therefore δL(a2,b) = δQ (a)Lb is a continuous operator from Asa to X . The identity

δL
(
a2,b

) = L
(
δ
(
a2),b

) + L
(
a2, δ(b)

) + L
(
a2,b

)
δ

shows that L(a2,b)δ is continuous. It is easy to check, from the definition of σX (δ), that {a2,b, x} = 0,
for every x ∈ σX (δ). It follows that

{
a2,b, x

} = 0, for every a ∈ Ann
(
σX (δ)

)
, b ∈ Asa and x ∈ σX (δ). (13)

Let us write a in the form a = a1 − a2, where a1 and a2 are two orthogonal positive elements
in Asa . It is also known that Q (a)(Asa) ∈ Ann(σX (δ)). Therefore, a3

1 = Q (a)(a1) ∈ Ann(σX (δ)) and
hence a6

1 Asa = Q (a3
1)(Asa) ⊆ Ann(σX (δ)). This implies that the ideal of Asa generated by a6

1 lies
in Ann(σX (δ)), which guarantees that a1 ∈ Ann(σX (δ)). We can similarly show that a2 belongs to

Ann(σX (δ)). A similar argument shows that a
1
2
1 ,a

1
2
2 ∈ Ann(σX (δ)). Now, we deduce from (13) that

{a,b, x} = {a1,b, x} − {a2,b, x} = 0, (14)

for every a ∈ Ann(σX (δ)), b ∈ Asa and x ∈ σX (δ), or equivalently, δL(a,b) and L(a,b)δ are continuous
operators for every a ∈ Ann(σX (δ)) and b ∈ Asa .

Since A is abelian, L(a,b) = Q (a,b) in Asa , and it follows from (14), that δQ (a,b) and Q (a,b)δ

are continuous operators from Asa to X for every a ∈ Ann(σX (δ)) and b ∈ Asa . This implies that

{a, x,b} = 0, for every a ∈ Ann
(
σX (δ)

)
, b ∈ Asa and x ∈ σX (δ). (15)

Finally, given a, c in Ann(σX (δ)), we deduce from (15) that

Q (a + c)
(
σX (δ)

) = Q (a)
(
σX (δ)

) + Q (c)
(
σX (δ)

) + 2Q (a, c)
(
σX (δ)

) = 0,

which shows that a + c ∈ Ann(σX (δ)), and hence the latter is a linear subspace of Asa . �
Given any element x in a C∗-algebra A, we shall denote by C(x) the C∗-subalgebra of A generated

by x.
The following theorem, due to J. Cuntz (see [10]) is instrumental to our proof of Theorem 16.

Theorem 15. (See [10, Theorem 1.3].) Let A be a C∗-algebra and f a linear functional on A. If f is continuous
on C(h) for all h = h∗ in A, then f is continuous on A. Hence, by the uniform boundedness theorem, a linear
mapping T from A to a normed space X is continuous if, and only if, it restriction to C(h) is continuous for all
h = h∗ in A. �

Let δ : A → X be a triple derivation from a C∗-algebra to a Banach triple A-module. For each
self-adjoint element h in A, the Banach space X can be regarded as a Jordan Banach C(h)-module by
restricting the module operation from A to C(h). Since δ|C(h) : C(h) → X is a triple derivation from an
abelian C∗-algebra into a Banach triple C(h)-module, Proposition 14 assures that δ|C(h) is continuous.
Combining this argument with the above Cuntz’s theorem we have:

Theorem 16. Let A be a C∗-algebra. Then every triple derivation from A (resp., from Asa) into a complex (resp.,
real) Jordan Banach triple A-module is continuous. �
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It is due to B.E. Johnson that every continuous Jordan derivation from a C∗-algebra A to a Ba-
nach A-bimodule is a derivation (cf. [29, Theorem 6.2]). Since every Banach A-bimodule over a
C∗-algebra A, is a real Jordan triple A-module, and the restriction of a Jordan derivation to the self-
adjoint part of a C∗-algebra is a triple derivation, we have:

Corollary 17. Let A be a C∗-algebra. Then every Jordan derivation from A into a Banach A-bimodule X is
continuous. In particular, every Jordan derivation from A to X is a derivation, by Johnson’s theorem. �

Corollary 17 was already conjectured in [47, Question 14.i]. According to [5, §5], it “is an intriguing
open question”. In 2004, J. Alaminos, M. Brešar and A.R. Villena gave a positive answer to the above
problem for some classes of C∗-algebras including the class of von Neumann algebras and the class
of abelian C∗-algebras (cf. [1]). In the setting of general C∗-algebras the question had remained open
and never explicitly solved.

Corollary 17 has a natural generalization to the setting of Banach Jordan algebras. We recall that a
linear mapping D from a JB∗-algebra J to a Jordan Banach J -bimodule is said to be a Jordan derivation
if D(a ◦ b) = D(a) ◦ b + a ◦ D(b), for every a,b in J , where ◦ denotes the Jordan product in J and the
action of J on the Jordan J -module. Since every Jordan derivation is a triple derivation, and every
Jordan module is a Jordan triple module, we have:

Corollary 18. Let A be a C∗-algebra. Then every Jordan derivation from A into a Jordan–Banach A-module X
is continuous. �

In the category of JB∗-algebras, S. Hejazian and A. Niknam established in [22] that every Jordan
derivation from a JB∗-algebra J into J or into J∗ is automatically continuous. They also proved a
theorem which provides necessary and sufficient conditions to guarantee that a Jordan derivation
from a JB∗-algebra J into a Jordan Banach J -module is continuous (cf. [22, Theorem 2.2]). When the
domain JB∗-algebra is a commutative or a compact C∗-algebra A, the same authors proved that every
Jordan derivation from A into a Jordan Banach A-module is continuous (cf. [22, Theorem 2.4 and
Corollary 2.7]). In the setting of general C∗-algebras, however, the question had remained open.

Prior to the writing of this paper, it apparently had escaped the attention of functional analysts
that combining a theorem of Cuntz ([10], see Lemma 15 above) with the theorems just quoted from
[1] and [22] concerning commutative C∗-algebras yielded proofs of Corollaries 17 and 18.

In [19], U. Haagerup and N.J. Laustsen presented a new proof of Johnson’s Theorem. Applying a
result of automatic continuity in [22, Corollary 2.3], the just quoted authors proved that every Jordan
derivation from a C∗-algebra A to A∗ is bounded and hence an inner derivation (cf. [19, Corollary 2.5]).
This result can be improved now replacing A∗ with a Banach A-bimodule or with a Jordan–Banach
A-module.

Let D : A → X be an associative (resp., Jordan) derivation from a C∗-algebra to a Banach
A-bimodule. The space X , regarded as a real Banach space, is a real Banach triple Asa-module with
respect to the product defined in (12), where, in this case, one element in (a,b, c) is taken in X and
the other two in Asa . The restriction of D to Asa , δ = D|Asa : Asa → X is a (real linear) triple deriva-
tion. Hence, Theorem 16 implies that δ (and hence D) is continuous. We thus have a new proof of a
celebrated result of Ringrose.

Corollary 19 (Ringrose). Let A be a C∗-algebra. Then every derivation from A into a Banach A-bimodule X is
continuous. �

In [5], M. Brešar studied a more general class of Jordan derivations from a C∗-algebra A to an
A-bimodule X . An additive mapping d : A → X satisfying d(a ◦ b) = d(a) ◦ b + a ◦ d(b), for every
a,b ∈ A, is called an additive Jordan derivation. An additive Jordan derivation is said to be proper when
it is not an associative derivation. Every (linear) Jordan derivation D : A → X is an additive Jordan
derivation. However, the reciprocal implication is, in general, false. Actually, from [5, Theorem 5.1],
for each unital C∗-algebra A, there exists a proper additive Jordan derivation from A into some unital
A-bimodule if, and only if, A contains an ideal of codimension one.
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