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1. Introduction

In ring theory and in the context of algebras, idempotents have many well-established
uses. In particular, if e € R is an idempotent of a ring R, then the subring eRe has
unit e and there is an eRe-bimodule projection z — exe from R onto eRe. The kernel
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eR(1—e)+(1—e)Re+(1—e)R(1—e) of the projection is a complementary e Re-submodule
of R.

In probability theory, and in the theory of von Neumann algebras, the notion of
conditional expectation (as a completely positive map E : M — M on a von Neumann
algebra M, with M commutative in the case of probability theory) satisfies similar
algebraic properties as the Peirce projections on a ring R or on an algebra A. A result
of J. Tomiyama states that a unital and bounded projection £ : A — A with range
S = E(A) a C*-subalgebra of A must have norm one, must be positive, must satisfy the
conditional expectation property E(s1zs2) = s1E(x)se (for s1,s2 € S,z € A) and also
the Schwarz type inequality E(z)? < E(z?) for self-adjoint = (see [1, 11.6.10.2]). In one of
the themes of recent research, the notion of injective operator space, a similar algebraic
‘conditional expectation’ property plays a significant role, interacting with the notion of
a ternary ring of operators (TRO, see [11]).

In [7], T. Y. Lam proposed abstracting the algebraic properties of the Peirce projection
E. : R — R associated with an idempotent e in a ring R, which is given by FE.(z) = exe,
(z € R), and investigating algebraic properties that hold in this more general context. His
proposal is to consider (additive) maps E: R — R with EoE = E, S = F(R) a subring
of R under the assumption that E is an S-bimodule map (which means that it satisfies
the conditional expectation property E(sjxss) = s1E(x)sqe for s1,s0 € S,z € R). Lam
refers to such subrings S as ‘corners’.

We counsider this notion principally in the context of a (complex) C*-algebra A in place
of a ring R and with the assumption that the corner S = E(A) is a complex subalgebra.
Our aim is to characterize such corners as fully as we can, ideally by establishing that they
are related to the ranges of the more well-known completely positive (unital) conditional
expectations.

In the general approach of Lam (in the context of rings), although a ring-theoretic
Lam corner S of a unital algebra A need not be a subalgebra, if S is a subalgebra then
the corresponding projection E must be linear (that is, homogeneous), which justifies
the definition of corner algebra we use (Definition 2.1). Thus we adopt a definition
modified from the ring-theoretic one (which insists that we deal with corners that are
subalgebras and have vector space complements, or equivalently we deal only with linear
projections E).

While simple examples show that Lam corners S in C*-algebras need not be self-
adjoint subalgebras, Peirce corners in C*-algebras and certain ‘generalized’ Peirce corners
behave like self-adjoint corners (see [10, section 3.6]). In Proposition 2.5, we character-
ize corners in finite dimensional C*-algebras that contain the diagonal and use that in
Theorem 1 to characterize corners of von Neumann algebras that contain the diagonal
in some basis for H. A consequence of this result is a version where the range of the

projection on B(H) is a weakly closed ternary ring of operators (Theorem 2).
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2. Main result

Let B(H) be the algebra of bounded linear operators on a Hilbert space H, with
inner product (-,-), and with an orthonormal basis (§;);c; (which may be countable or
uncountable). For any ¢ € I, consider the diagonal operator & ® & € B(H) defined
by (& ® &)(&) = (£,&) & for £ € H, which is the orthogonal self-adjoint projection of
H onto the one-dimensional subspace of H spanned by &;. This terminology for such
operators &; ® & recalls the notion of ‘diagonal matrices’ e;; € M(C) with 1 on the (7, 1)
position and 0 elsewhere. We shall call a (self-adjoint) projection p € B(H) a diagonal
projection if p¢; € C&; for each i € I.

The objects of study in this section are corner algebras S of C*-subalgebras of B(H),
with S containing the diagonal operators &; ® £7. We need the following definitions.

Definition 2.1. Let A be an algebra. A subalgebra S of A is called a corner algebra (or
simply a corner) of A if there exists a vector subspace M of A such that

A=Se M, SMcM, MScCM.
M is called a complement of S.

Corners of concrete C*-algebras need not be closed in any of the operator topologies
(see [10, section 3.2]), but our main examples of corners will be closed subalgebras of

B(H).

Definition 2.2. Corners of the form pAp, where p is an idempotent in A are called Peirce
corners. If eq, ..., e, are idempotents in an algebra A with e;e; = 0 for i # j, then the
corner G} ;e;Ae; is called a generalized Peirce corner.

It is shown in [7, Proposition 2.1] that S is a corner of A if and only if there exists a
linear S-bimodule map £: A — A with £(A) =S and E0 & = €.

Proposition 2.3. If R is a ring and ey, ..., e, are idempotents in R with e;e; = 0 for
i # j, then the generalized Peirce corner S = @' e;Re; has a unique complement and
the unique idempotent mapping on R with range S is given by E(z) = > 1, e;ze;.

Proof. Let M be a complement for S and let & be a corresponding idempotent
S-bimodule map with range S. The idempotent e = Y. | e; is the identity element
for S and it follows from R > z = s+ m (s € S, m € M) that exe = s + eme with
eme € M. So & (x) = s = Ey(exe).

Note that for z € S we have z = 22:1 eRze-

For y € eRe we have y = eye = szzl eye; = o, eye; + > iz €iye;j. For i # j we
have & (eye;) = > r_; enoleiyej)er = Y p_; Eoleneizejer) = 0. Hence e;ye; € M for
i # j and Eo(y) = XL, eiye;.
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It follows that for x € R,

n n
Eo(x) = E(exe) = Z eexee; = Z e;xe;.
i=1 i=1

Furthermore, any complement M of S must be equal to the kernel of £. Indeed, if
x =s+m, then £(x) =s+ ) ,e;me; and ), e;me; € M NS = {0} so that if x € ker €,
s =0 and x € M. Similarly, M C ker&. O

We will need the following result, which follows from Wedderburn’s theorem.

Proposition 2.4 (/2, Proposition 5.2.6]). Any semisimple finite-dimensional algebra R
over an algebraically closed field k is a direct product of full matriz rings over k.

Proposition 2.5. Let A be a C*-subalgebra of B(H), where H is finite dimensional with
orthonormal basis &1,...,&,. Let £: A — A, have range S which is a subalgebra of A
containing the rank 1 projections e;; = & ® &F. Suppose £ is an idempotent S-bimodule
linear map. Then S is a self-adjoint generalized Peirce corner and ||€]| = 1. Moreover
there are orthogonal diagonal projections pi,...,pr in A such that E(x) = Z?Zl DjTD; -
(Each pj is a sum of some of the e;;.)

Proof. We identify B(H) with M, (C). Since S = £(A) is a finite dimensional algebra
over C and by [6, Theorem 1], semisimple, it must be isomorphic to a finite direct sum
of full matrix algebras over C by Proposition 2.4. Let e;; denote the n-by-n matrix with
entry 1 in the (¢,4) position and 0 elsewhere, and let

¢:S =M, (C)®-- &M, (C)

be an isomorphism. Since e; € S (1 < i < n), it follows that ¢(e;) is an idempo-
tent in M, (C) & --- ® M,,(C), and so ¢(es) = fia @ --- @ fu with f; € M,,(C)
(1 < j < k) an idempotent. Since e;; is minimal in S, we must have f;; # 0 for
just one j; ¢(e;;) = fi; for some j. Moreover ¢(e;;) = fi; must be a rank one idem-
potent in M, (C), and we can partition {1,...,n} into k classes where the j™ class
is C; = {z s oley) € Mnj((C)}. Put p; = Ziecj eii, and let 1, denote the n-by-n
identity matrix. Then ¢(1,) = Y.i, d(ey) = Z?Zl ¢(p;) is the identity of ¢(9).
Hence ¢(p;) € M,,(C) is the identity. It follows that C; must have n; members
and Z?Zl n; = n. Therefore, if x € S, then ¢(z) € M,, (C)® --- & M,,(C) and

d(x) =35 d(p)d(x)d(p;) = ¢(X5_1 pjap;), so S C @B, p;Ap; and

k
dim § < dim@ijpj = Zdimijpj

j=1 J
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< Z(rank pj)’ = Z(rank ¢(p;))?

J

= Zn? = dim ¢(S) = dim S.
J

Therefore S = @?lejApj, and since @?:1 p;jAp; is a generalized Peirce corner of A,
E(x) = Z?Zl pjzp; by Proposition 2.3. Thus £ is a positive unital map and so ||£]| = 1.
(That ||€]] =1 follows also from [1, I1.6.9.4].) O

Remark 2.6. If R = M,,(C) and E(x) = tr (z)1 then C1 is a corner of R but E is not of the
form Z?Zl pjzp; for orthogonal projections p, ..., pg, since then p; = E(p;) = tr (p;)1
implies E is the identity map. Thus the assumption on the rank one projections in
Proposition 2.5, and in Theorem 1, is essential.

Our main result, Theorem 1 below, is an infinite dimensional version of Proposi-
tion 2.5. For motivation purposes, we shall give a constructive proof in the case that
A = B(H), with H a separable Hilbert space with orthonormal basis &1,...,&,,.... Let
E: A — A be an idempotent S-bimodule linear map with range S which is a subalgebra
of A containing the rank 1 projections & ® ;.

If @ C I is a finite set, we write m = 7, for the orthogonal projection of H onto the
span{&; : i € a}, which is 7, = >, ., & ® & and is in the range of £. Let A, = {r € A:
x = mrr} = wAm, a C*-subalgebra (in fact a self-adjoint Peirce corner) of A. Note that
if x € A, then E(z) = E(mam) = n€(z)m € A,

We now define &,: A, — Ay by &, = &|a, (restriction of £) and we can check
easily that &, is an idempotent &, (A, )-bimodule map on A,. Moreover the range of &,
contains the diagonal and so Proposition 2.5 applies. (Of course, Ay ~ B(mwo H).)

With o = {1,...,n}, denote m,, = 74, and A,, = A,. By Proposition 2.5 we can write

k

En(z) = anjxpnj for x € A, (2.1)
j=1
where the p,; are orthogonal diagonal projections in A, for j =1,...,k,.
We know that &, = &,+1|An. We now define by induction a family of projections

in A. First, P; = {e11} where e;; = & ® & and &1(x) = ejjxer; for € A;. More

generally, we define e;,;, = &, ®&> , for 41,42 € I. The projection & is either the identity

ig)
on Ay ~ My(C) or &(x) = ellx;u + egoxegn for © € As. In the first case, we define
Py = {e11 +ea22} and in the second case P2 = {e11, e22}. Each of these cases gives rise to
two possible choices for Ps, namely if Py = {e11, 12}, then Ps is either {e11, €20+ €33} or
{e11, €22, e33}; and if Py = {e11+ea2}, then Ps is either {e11+ea2, €33} or {e11+ean+es3};
and so forth.
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By (2.1),
knt1
€n+1(x) = Z Pn41,TPn+1,5 forz € A, 41.
=1
Since &, = Epq1|A,, we have pn; = ppy1j for j = 1,...,k, — 1. As above, there are

two possibilities. Either k, 1 = kn and ppy1,k,y = Pk, + €nt1,n415 OF kpgr = ky + 1
and Pry1k, = Pnk, a0d Pryik,.; = €nt1,nt1- Depending on which possibility holds,
we define

Pn+1 = {png : ] = 1; cee kn - 1} U {pn,kn + en+1,n+1}

or

Pry1 =PnU{ent1n1}-
Finally we define
P =U;Z1Pn,
and to avoid overlap we define

Q:f[)_{pep;pgqforsomeq€P7Q7ép}~

Note that Q consists of orthogonal diagonal projections, and that for each finite subset

a C I, there is a finite subset Qo C Q such that &u () = >_ o pap for z € A. It follows

that if o,7 € H are finite linear combinations of the basis vectors, say o = Y, 0:&;
and 7 =), i, and x € A then

()7, 7)

= (E(2)T00, TaT) = (T &(X)T00, TaT)
=

E(maxma)o, maT) = (Ea(x)o, T)

—< > pap 0,T>,
PEQaq

and therefore, since po =0 =pr if p € Q — Q,, we may take 7 = 73 = Zieﬁ 7;:&€; with
B a finite subset of I containing v and then in the limit as 753 approaches an arbitrary
vector 7/ in H, we have

<5(=’E)077’>=< > pap U,T’>,

peEQ
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so that

‘We conclude

E(x) = S—lim(z pxp) (for z € A).

peEQ

This completes the proof of the special case of Theorem 1 below in which A = B(H) with
H separable. This argument does not seem to work if A is not equal to B(H), but some
of its notation will be useful in the proof below of Theorem 1, which is valid for arbitrary
A and H, and which is adapted from [10, Theorems 3.12.5 and 3.13.4] (however, see
Remark 2.9(ii)). We first need a couple of Lemmas.

Lemma 2.7. A von Neumann algebra A C B(H) which contains all the rank one pro-
jections e; = & ® & corresponding to an orthonormal basis of H is necessarily atomic,
that is, generated by its minimal projections, and is therefore a direct sum of factors of
type I (see [}, Remark 1.10]).

Proof. If p is a non-zero projection in A, theng := 3, €;; is not zero and p(1—¢q) = 0,
SO P = Pqg = Ppap = Y e, z0 PP and peip = p(& @ & )p = p& @ (p§;)* € A sop
dominates each minimal projection ¢; = (||p&||?) ~'p& @ (p&;)*. Indeed, with \; = ||p&||?,
p > Ng; = ran(l —p) = kerp C kerq; = ran(l — ¢;),1 —p < 1 — q;,p > ¢;. It follows
that every projection in A is the sum of an orthogonal family of minimal projections, so
A is generated as a von Neumann algebra by its minimal projections. O

The following lemma is well-known, so we omit its proof, which can be found in [10,
Lemma 3.12.3].

Lemma 2.8. If (p;)icr are orthogonal projections in B(H), then we can define an idem-
potent S-bimodule map, £: B(H) — B(H), S being the range of £, by

E(w) =Y pwp; = aéi}?[) ;pﬂpi

iel

where the limit is taken in the strong operator topology of B(H) and F(I) denotes the
collection of finite subsets a C I (ordered by inclusion).

Theorem 1. Let A C B(H) be a von Neumann algebra. Let £: A — A be an idempotent
S-bimodule map, where S = E(A) is a subalgebra (not necessarily self-adjoint or norm
closed) such that & @ & € S for alli € I, {& i € I} being an orthonormal basis of H.
Then A is atomic, and £ has the form
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E(x) = pjap;

jeJ

for ‘diagonal’ orthogonal projections {p; : j € J} C A (that is projections with p;&; € C¢§;
for each i€ I).

Proof. We adopt the notation of the discussion preceding Lemma 2.7, namely if o C I is
a finite set, we write m = m,, for the orthogonal projection of H onto the span{¢; : i € a},
Ay = {x € A: 2 = maen} = wAr, and define E,: Ay — Ay by €, = Ela,. Ea is an
idempotent &, (A, )-bimodule map on A, whose range contains the diagonal.

We begin, as above, by assuming that A = B(H). Define a relation on I by i; ~ iy
if £(&, ® &) = &, ®&;,. Since the range of £ contains the diagonal, i ~ 4 for all
i € I. As seen above, the projection &, ;,) is either the identity on Ay, .3 ~ M»(C) if
€iyi, € E(A), in which case e;, 4, € E(A); or Ef, i1 (T) = €414, T4, + €iniyTeiniy, 50 ~ 18
symmetric. Moreover, if i1 » i3, then

g{il,iz}(e’il’i’z) = €414y CirinCiviy T CiginCiyigCizip = 0. (22)

To show transitivity of ~, assuming ¢; ~ 49 and i ~ i3, we have &, ® f;‘s = (&, ®
(&, ®ES) € E(A), so we have an equivalence relation ~ on I.
Take J to be the set of equivalence classes and for j € J define

bj = Z&‘ ®&;
i€j

(sum converging in strong operator topology).
Observe that

£, ®&) = pil& ®&,)p) (2.3)
JjeJ

for all 41,49 € I because if i1 ~ iy then p;(&;, ® 52‘2 )p; is zero for all equivalence classes j

other than the one containing iy, while p;(&;, ®&;, )p; = &, ®¢;, when j is the equivalence

class of ¢1. On the other hand, if i; ~ i3, then both sides of (2.3) are zero, by (2.2)
Also observe that for € A, « a finite subset of I, and j € J,

PjTa®TaPj = PjTPj,
since both sides are equal to ), tej (x€k, E0)Er ® &F.
It follows, as above, that if o, 7 € H are finite linear combinations of the basis vectors,

say 0 =) ;o0& and T =3 7§, and x € A then

(E(x)o, 1) = (E(MaxTa)o, TaT)
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= < ijﬂ'al'ﬂ'apj O',’T>

jEJ

= < ijxpj O',T>,

jeJ

and thus €(z) = S-lim(3_,c ; pjap;) for x € A. This completes the proof in case A =
B(H).

We now consider the general case. By Lemma 2.7, A is atomic, so that A = ®rcx By
where By, ~ B(H}) with H ~ @pecx Hy. Each minimal projection of A belongs to one
of the summands By as a minimal projection and the orthonormal basis {{; : i € I}
consists of the union of orthonormal bases in each Hy.

Denote by {e; : @ € I} the orthogonal minimal projections in the range of £ which
sum to 1. Define a relation on I by i1 ~ iz if 0 # e;, Ae;, C E(A). Clearly ¢ ~ i for every
1 € I since e; Ae; = Ce;.

If i1 # i3 and i1 ~ iy then the minimal projections e;, , e;, belong to the same summand
By, and e;, Ae;, = Cug; where ug; is the partial isometry in By ~ B(Hj) with initial
projection e;, and final projection e;,. Moreover, with a = {i1, 42}, since &, is either the
identity on A, or &, (x) = e;,xe;, + e;,xe;, and E,(ua1) = usg, it follows that &, is the
identity so that 0 # e;, Bre;, C £(A) and ~ is symmetric.

Finally, if 41 ~ 19 and ip ~ i3, with A, = {il,ig, ig}, then eilAeis = CUQ1U32 C g(A),
where ugo is the partial isometry in B(H) with initial projection e;, and final projection
€iy-

Take J to be the set of equivalence classes and for j € J define

bj = Z &®E .
i€j
Then as in earlier parts of the proof
£, ®&) = pil& ®&,)ps
JjeJ
for all i1,4> € I and therefore £(z) = ), ;pjap; forallz € A. O

Remark 2.9.

(1) Since £(1) =1 and & is positive, ||€]| =1 and £(A) is a C*-subalgebra of A.

(if) Theorem 1 is an improvement of [10, Theorem 3.12.5] which had the additional
assumption that £ is a self-adjoint map.

(iif) The maximal abelian *-subalgebra associated with the orthonormal basis is more
than just the linear span of the diagonal rank one operators &; ®¢*. The maximal
abelian *-subalgebra would be the weak*-closure of that span.
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(iv) There is a significant literature concerning idempotent D-module maps on von
Neumann algebras, where D is a maximal abelian self adjoint subalgebra, for
example [5], [12], [9]. These papers focus on proving algebraic properties of the
range.

The referee has suggested an alternate approach to Theorem 1, under the additional
assumption that the range S = £(A) contains the maximal abelian *-subalgebra D
associated with the orthonormal basis. In that case there is the additional conclusion
that S is a von Neumann subalgebra of A. The proof proceeds along the following lines.

Assume that A = B(H). Since S contains D, and £ is an S-bimodule map, £ is given
by a Schur multiplier, that is, in the orthonormal basis {&;}, £ is given by [z;;] — [ai;xi;]
for a fixed infinite matrix [a;;] (for the finite dimensional case, see [8, Exercise 4.4, p. 56],
which could be used to shorten the proof of Proposition 2.5, and more generally see [13]).
Using that £ is idempotent, it follows that each entry a;; is either 0 or 1, thus each matrix
unit e;; (corresponding to the given basis) is either in the image of £ (that is, in S) or
in the kernel ker £. It follows that S must in fact be self-adjoint. Namely, if for a fixed
¢ and j, we have that e;; € S, then £(e;;) = E(ejiei;) = E(e;5) = €j; s0 ej; ¢ ker £ and
therefore ej; € S. Further, S = ker(1 — &) is weak™ closed since Schur multipliers are
known to be weak* continuous. In the general (atomic) case, because of the form of &,
it follows that £ is a direct sum of & : By — Bj which are each weak*-continuous, so
that £(A) is a von Neumann subalgebra.

Example 2.10. For a positive integer n, let M, (C) denote the algebra of all n-by-n-ma-
trices over the field of complex numbers C. Then .-, M, (C) is a Type I finite von
Neumann algebra with center isomorphic to £°°. There are many ways to write the iden-
tity as a sum of projections ) _,_; p; such that each p; is of the form p; = (p; n)pZ; with
Pi;n € My (C) diagonal. Such a sum } ,_; p; gives rise to projection on @, M,(C) as
in Theorem 1.

3. Ternary rings of operators

We shall use the main result from [11], stated in Lemmas 3.1 and 3.2 below.

For Hilbert spaces H and K, B(H, K) denotes the set of all bounded operators from
H to K. A ternary ring of operators, TRO for short, is a norm closed subspace T' C
B(H, K) such that TT*T C T. For such T, the norm closed linear spans C' =: (T'T*)
and D = (T*T) are C*-subalgebras of B(K) and B(H) respectively. The linking algebra
of T is the C*-algebra

c T

B(K & H).
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If T'isa TRO and P : T — T is a completely contractive projection onto a sub-TRO
X, then P is a TRO conditional expectation in the sense that for a € T, z,y € X,

P(ax™y) = P(a)z™y
P(za™y) = zP(a)*y
P(zy*a) = zy* P(a).

If T is a C*-algebra, the result was proved in [14, Corollary 3]. If T" is a TRO, it was
proved with the weaker assumption that P is a contractive projection in [3, Theorem 2.5].
A sub-TRO X of T is non degenerate if (XT*T) =T and (TT*X) =1T.

Lemma 3.1. ([11, Theorem 2.1]) Let T be a TRO and let P : T — T be a contractive
projection with range X a non degenerate sub-TRO of T. Then there is a (C*-algebra)
conditional expectation from the linking algebra Ar onto the linking algebra Ax,

Eyy P

FE =
Pt By

:AT_>AX7

where PY(t) = P(t*)* fort €T,

E11 (Z am:f) = ZP(G,)I: and E22 (Z :c;"a,) = ZI:P((M),
i=1 i=1 i=1 i=1

fora; €T and x; € X.
A W*-TRO is a TRO T C B(H, K) that is closed in the weak operator topology.

Lemma 3.2. ([11, Theorem 3.3]) Let T be a W*-TRO and let P : T — T be a normal
contractive projection with range X a non degenerate sub-W*-TRO of T'. Then P extends
to a normal conditional expectation from the linking von Neumann algebra Al of T, onto
the linking von Neumann algebra

"

x =

<XX*>// X
X* <X*X>l/

of X.
Theorem 2. Let P : B(H) — B(H) be a normal contractive projection onto a non degen-

erate sub-W*-TRO X of B(H). Suppose that there is an orthonormal basis {&; : i € I}
of H such that for all i € I, §& ®@ & € (XX*)" N (X*X)". Then there are pairwise
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orthogonal diagonal projections {p; : j € J} € B(H) and pairwise orthogonal diagonal
projections {q; : j € J} € B(H) such that

P(z) = ijwqj for x € B(H).

JjeJ

Proof. Let & = (&;,0) and & = (0,&;), so that {&,¢&/ : i € I} is an orthonormal basis
for H © H. Identifying A gy with My(B(H)) = B(H @ H) shows that

L& 0

goE ="

"
€AY

and

17 A% O O 1
& ® (&) :lo ¢ e € Ax.

Ift £:B(H®H) — B(H® H) is the extension of P given by Lemma 3.1, then by
Lemma 3.2 and Theorem 1, there are pairwise orthogonal diagonal projections r; €

B(H & H) with
a X a X
o([53)-=n s 3

It follows by diagonality that r; = [%ﬂ 0 ] and therefore

95

i)l

where {p; : j € J} and {¢; : j € J} are each a family of orthogonal and diagonal

0 P(x)
0 0

projections in B(H). O
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