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We discuss several partial solutions to the so-called “coquecigrue problem” of Loday; these solutions parallel, but also generalize
in several directions, the classical Lie group-Lie algebra correspondence. Our study highlights some clear similarities between the
split and nonsplit cases and leads us to a general unifying scheme that provides an answer to the problem of the algebraic structure
of a coquecigrue.

1. Introduction

As is now well known, Leibniz algebras are a noncommu-
tative, or rather, non-anti-symmetric, generalization of Lie
algebras. The so-called “coquecigrue problem” was proposed
by J. L. Loday as an analogue for these algebras of Lie’s third
fundamental theorem: given a finite dimensional Leibniz
algebra, look for a manifold possessing an algebraic structure
such that its linearization yields the original Leibniz algebra.
Ideally, this algebraic structure would be a binary operation,
but because there is no formal, precise, definition of what
a coquecigrue is, this has proven to be a rather difficult
question. To what extent this program can be fulfilled is, as
of now, still not entirely clear, but we will describe here what
we believe is the right approach.

A first hint at a general answer to this problem first
appeared in [1], where it was shown that any Leibniz algebra
can in a sense be “integrated,” by the judicious choice of
a so-called Lie rack, stemming from a construction due to
Fenn and Rourke. But this was considered unsatisfactory,
because for Lie algebras this does not, in general, give the
corresponding Lie group(s), a condition that is normally
regarded as a critical property of the solution.

In the same paper it was also argued that, again via an
appropriate rack, an answer for split Leibniz algebras can be
given in terms of digroups. This is now generally regarded—
including ourselves—as providing a reasonable solution to

the coquecigrue problem for this kind of algebras, since the
procedure used to obtain a Leibniz algebra from a digroup
is in all respects identical to the one used to derive the
Lie algebra of a Lie group; in particular, for Lie algebras in
principle this reduces to the standard solution given by Lie’s
theorem.

Nevertheless, because the splittings of a Leibniz algebra
are not necessarily unique, this opens up questions of unique-
ness of these integral manifolds that in a sense are even more
delicate than the standard situation in the classical Lie theory,
where groups that are locally but not globally diffeomorphic
have the same algebra.

One of ourmain objectives here (Section 3) is therefore to
analyze this problem. More precisely, we will see two things:
First, we will show that even for the case of Lie algebras, by
means of digroups one can obtain valid solutions, different to
the classical ones. To our knowledge, this is a new result on the
integration of Lie algebras, and in particular, this shows that
there can be no unique solution to the problem of integrating
a Leibniz algebra in its original form, without some further
assumptions about the nature of the expected integral mani-
fold. Second, that the nonuniqueness of solutions extends in
another way, by stating explicit homological conditions for
obtaining possible integral manifolds for split algebras that
are not direct products as digroups are.

In another direction, since the digroup construction does
not work for nonsplit Leibniz algebras, a different approach
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is required here. The best results to date for this case were
given in the Ph.D. thesis of Covez, [2], who uses some
cohomology groups associated with the Leibniz algebra to
devise an integration procedure for arbitrary algebras. His
solution is also in terms of racks; however, by construction,
his results are only local, as a condition of simple connexity
of an underlying Lie group is required.

With this in mind, in Section 4 we analyze, from a
different point of view, the geometric construction of integral
manifolds for a special class of nonsplit Leibniz algebras,
whose bracket is a derived one in the sense of [3]. For these
particular algebras we can give a more direct construction of
an integral manifold than the one in Covez’s method, again
with a rack structure, but the key point of this example is
that some strong similarities with the split case can be clearly
exhibited.

Then, on the basis of the different types of solutions thus
far considered, we reach our final aim in this work, which
is to propose what seems to be a good framework for a
general geometrical solution to the coquecigrue problem.The
construction, given in Section 5, is roughly as follows.

All the integral manifolds for a Leibniz algebra start
with the fact that these algebras have some natural quotients
that are Lie algebras. Therefore, it is natural to suspect that
the integral manifolds will have the structure of a manifold
that projects onto a Lie group related to these algebras.
Fiber bundles fulfill this requirement but do not posses in
general an a priori algebraic structure; hence, we impose the
additional condition that these bundles to be endowed with
a rack structure. Finally, we impose a compatibility condition
expressed as a commutative diagram relating all the pieces of
the construction.

In Section 2 we state some prerequisites and notation
and introduce some examples; Section 6 contains some final
comments and possible future work.

Finally, since this work deals with both algebraic and
geometric constructions, we tried to make our presentation
rather self-contained, down-to-earth, and based considerably
on the concrete examples of Section 2; we feel that this gives a
better insight into the nature of the coquecigrue problem, as
well as into the characteristics of a definitive solution (such as
the one proposed here). In particular, no attempt is made to
state the results in the most general possible context, and for
the sake of definiteness we only consider finite dimensional
real vector spaces.

2. Split and Derived Leibniz Algebras

The purpose of this introductory section is mostly to recall
some standard and well-known facts about Leibniz algebras,
but also to introduce some useful examples. The basic
reference here is [1].

Definition 1. A (left) Leibniz algebra is a vector space 𝐿,
provided with a bilinear map, usually denoted by [⋅, ⋅],
satisfying the (left) Leibniz identity:

[𝑋, [𝑌, 𝑍]] = [[𝑋, 𝑌] , 𝑍] + [𝑌, [𝑋, 𝑍]] . (1)

Lie algebras are obtained if the bracket is antisymmetric;
this condition being then equivalent to the Jacoby identity,
but in general it is a strong generalization.

One can of course define morphisms, ideals, quotients,
and so forth, for Leibniz algebras in the usual way, and
the most important instance of a quotient in this category
naturally occurs when this quotient is a Lie algebra. The
minimal ideal for which this holds is the two-sided ideal 𝑆
generated by the squares [𝑋,𝑋]. In fact, it suffices to consider
the left ideal generated by the squares, as this is a two-sided
ideal, because of the identity [[𝑋,𝑋], 𝑌] = 0, which holds for
any left Leibniz algebra.

On the other hand, as in the Lie case one can define and
adjoint mapping by the assignment. For any 𝑋 ∈ 𝐿, let 𝑎𝑑

𝑋
:

𝐿 → 𝐿 denote the linear map 𝑎𝑑
𝑋
𝑌 = [𝑋, 𝑌]. Then, 𝑎𝑑 :

𝐿 → gl(𝐿) is a Leibniz algebramorphism, and therefore𝐾 =

ker 𝑎𝑑 = {𝑋 | [𝑋, 𝑌] = 0 ∀𝑌} is also an ideal of 𝐿. Moreover,
by virtue of the identity previously cited 𝑆 ⊆ 𝐾, so 𝐿/𝐾 is also
a Lie algebra.

Example 2. A simple class of Leibniz algebras, which are not
in general Lie algebras, can be constructed as follows (see e.g.,
[4]).

Let 𝑉 be a vector space and 𝜑 ∈ 𝑉
∗ a nonnull linear

functional; on Mat
𝑘
(𝑉) this induces a linear transformation

(which we also denote by 𝜑), 𝜑 : Mat
𝑘
(𝑉) → Mat

𝑘
(R),

whose 𝑖𝑗 entry is simply the original functional 𝜑. Then 𝐿 =

Mat
𝑘
(𝑉), together with the bracket

[𝑋, 𝑌] = 𝜑 (𝑋)𝑌 − 𝑌𝜑 (𝑋) , (2)

is a Leibniz algebra; for 𝑘 ≥ 2 it is not a Lie algebra, since
matrix multiplication is not commutative.

Let us next recall the notion of splitting of a Leibniz
algebra. For convenience, let us start by describing the general
framework, which is as follows.

Suppose 𝐽 is a two-sided ideal of a Leibniz algebra 𝐿, and
that as vector spaces one decomposes 𝐿 = 𝐽 ⊕ 𝐻; then, as a
vector space 𝐻 ≈ 𝐿/𝐽. However, if 𝑋

𝑖
= 𝑗
𝑖
+ ℎ
𝑖
, 𝑖 = 1, 2 are

two vectors, their bracket decomposes as

[𝑋
1
, 𝑋
2
] = [𝑗

1
, 𝑗
2
] + [𝑗
1
, ℎ
2
] + [ℎ

1
, 𝑗
2
] + [ℎ

1
, ℎ
2
] ; (3)

thus, while the first three summands lie in the ideal 𝐽, the last
term does not necessarily lie in any of the summands and
in particular not in 𝐻. Thus, in general 𝐻 is not a Leibniz
subalgebra, and so in general it cannot be isomorphic to 𝐿/𝐽;
in other words, the exact sequence of Leibniz algebras

0 󳨀→ 𝐽 󳨀→ 𝐿 󳨀→
𝐿

𝐽
󳨀→ 0 (4)

does not split. (In fact, as is also well known, the study of
the obstructions to these splittings is a basic question in
homology theory, and Leibniz algebras were introduced by
Loday in a homological context.)

But now, an important fact about 𝐾 is that it is the
maximal ideal 𝐽 with respect to the following property. If we
decompose as vector spaces 𝐿 = 𝐻 ⊕ 𝐽 and consider two
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vectors decomposed as 𝑋
𝑖
= ℎ
𝑖
+ 𝑗
𝑖
, then 𝐽 is such that the

Leibniz bracket decomposes as [𝑋
1
, 𝑋
2
] = [ℎ

1
, 𝑗
2
] + [ℎ

1
, ℎ
2
].

Notice therefore that, if𝐻 happens to be a subalgebra, under
this condition the first summand determines a left action of
𝐻 on the ideal 𝐽 and moreover, if 𝑆 ⊂ 𝐽, this algebra is a
Lie algebra, and 𝐽 is an 𝐻-module in the Lie category. Such
Leibniz algebras have been called demi-semidirect products,
and this motivates the following definition.

Definition 3. Let 𝐿 be a Leibniz algebra, and let the ideals 𝑆
and 𝐾 be as above; if 𝐽 is any ideal such that 𝑆 ⊆ 𝐽 ⊆ 𝐾, then
𝐿 is said to split with respect to 𝐽; if (as vector spaces) there is
a direct complement to 𝐽, h, that is, a Lie subalgebra of 𝐿 and
such that 𝐽 is an h-module.

It should be noticed that in general {0} ̸= 𝑆 ̸=𝐾 ̸= 𝐿 and
that almost any possibility thus allowed can occur; moreover,
a Leibniz algebra may split over some of the ideals 𝑆 ⊆ 𝐽 ⊆ 𝐾
but not over others or may not split at all.

Example 4. It is rather easy to see that the 𝜑-algebras split.
They do so over the ideal 𝐽 = ker𝜑. Indeed, if one fixes any
𝑒 ∈ 𝑉 such that 𝜑(𝑒) = 1, and defines 𝐸 = Diag(𝑒, . . . , 𝑒) ∈
Mat
𝑘
(𝑉), then for𝑋 ∈ 𝐿,𝑋 = (𝑋−𝜑(𝑋)𝐸)+𝜑(𝑋)𝐸 gives the

desired decomposition.
Notice that 𝐽 = 𝑆 here, since

𝜑 ([𝑋, 𝑌]) = 𝜑 (𝑋) 𝜑 (𝑌) − 𝜑 (𝑌) 𝜑 (𝑋) , (5)

which implies that 𝜑([𝑋,𝑋]) = 0. In fact, the map 𝜑 is the
natural projection 𝐿 → 𝐿/𝑆 ≅ gl(𝑉).

Moreover, the 𝜑-algebras also split over the ideal 𝐾 =

ker 𝑎𝑑 = 𝑆⊕R𝐸; a decomposition, which the reader can easily
verify using the formula above, is given by

𝑋 = (𝑋 − (𝜑 (𝑋) − tr (𝜑 (𝑋))) 𝐸) + (𝜑 (𝑋) − tr (𝜑 (𝑋))) 𝐸,
(6)

where tr denotes the trace of the matrix.

On the other hand, a class of nonsplit Leibniz algebras,
called derived algebras in [3], can be constructed as follows.

Definition 5. Let g be a Lie algebra and Δ a derivation such
that Δ2 = 0; then, the derived Leibniz algebra is the one
obtained by defining the bracket [𝑥, 𝑦]

Δ
= [Δ𝑥, 𝑦].

Verification that this does indeed define a Leibniz algebra
is immediate, but the point is that derived algebras are in
general neither Lie algebras nor split.

Example 6. Straightforward computations show that for the
two-dimensional non-abelian Lie algebra, R2 = ⟨𝑒

1
, 𝑒
2
⟩ (the

braces denoting the linear span) with the Lie bracket defined
by [𝑥, 𝑦] = (𝑥

1
𝑦
2
− 𝑥
2
𝑦
1
)𝑒
1
; the map defined by Δ𝑥 = 𝑥

2
𝑒
1
is

an idempotent derivation. Therefore, by defining the bracket
[𝑥, 𝑦]
Δ
= [Δ𝑥, 𝑦] = 𝑥

2
𝑦
2
𝑒
1
a Leibniz algebra is obtained,

which is nonsplit.
Indeed, here the ideal𝐾 is generated by 𝑒

1
, and moreover

coincides with the ideal 𝑆, so this algebra could only split over

𝐾; however, any subspace h complementary to 𝐾 must be of
the form h = ⟨𝑓 = 𝛼𝑒

1
+ 𝑒
2
⟩; computing the bracket on

its generator gives [𝑓, 𝑓] = 𝑒
1
∉ h, so that h could not be a

subalgebra.

3. Integration for the Split Case

3.1. Split Leibniz Algebras and Digroups. As mentioned,
the relation of the splitting of algebras to the coquecigrue
problem was discussed in [1], which we still more or less
follow for a while (but see also [5]), and goes through the
notion of digroup.

Definition 7. A digroup is a set 𝐷 provided with two associa-
tive operations, ⊢, ⊣, satisfying the compatibility relations

𝑥 ⊣ (𝑦 ⊣ 𝑧) = 𝑥 ⊣ (𝑦 ⊣ 𝑧) ; (𝑥 ⊢ 𝑦) ⊢ 𝑧 = (𝑥 ⊣ 𝑦) ⊢ 𝑧;

(𝑥 ⊢ 𝑦) ⊣ 𝑧 = 𝑥 ⊢ (𝑦 ⊣ 𝑧) ;

(7)

and possessing a distinguished bar unit 𝑒 (meaning that 𝑒 ⊢
𝑥 = 𝑥 ⊣ 𝑒 = 𝑥), and inverses.Thismeans that for every𝑥 ∈ 𝐷,
there exists a unique element 𝑥−1 such that 𝑥 ⊢ 𝑥−1 = 𝑥−1 ⊣
𝑥 = 𝑒.

The digroup is a Lie digroup if 𝐷 is a manifold and the
operations involved are smooth.

Example 8. Associated with the 𝜑-dialgebras, one can con-
struct 𝜑-digroups. As in Example 2, choose any 𝑒 ∈ 𝑉 such
that 𝜑(𝑒) = 1, and define 𝐸 = Diag(𝑒, . . . , 𝑒) ∈ Mat

𝑘
(𝑉);

then the open set 𝐷 = 𝜑
−1
(𝐺𝐿(𝑘,R)) inherits the structure

of a digroup, where 𝐸 is the distinguished bar unit and the
operations are defined by 𝑋 ⊢ 𝑌 = 𝜑(𝑋)𝑌, 𝑋 ⊣ 𝑌 = 𝑋𝜑(𝑌)

and the inverse of an element𝑋 is given by𝑋−1 = 𝜑(𝑋)−1𝐸 =
𝐸𝜑(𝑋)

−1. Clearly, this is a Lie digroup.

For any digroup 𝐷 these axioms define two subsets: the
set of inverses

𝐺 = {𝑦 | ∃ 𝑥 such that 𝑦 = 𝑥−1} , (8)

and the set of bar units

𝐽 = {𝑦 | 𝑦 ⊢ 𝑥 = 𝑥 ⊣ 𝑦 = 𝑥, ∀𝑥} . (9)

The set 𝐺 turns out to be a group; since both products
restricted to it coincide; in particular, we can omit the symbol
for the product of two such elements.

One can also define projections

𝐷 󳨀→ 𝐺 : 𝑥 󳨃󳨀→ 𝑒 ⊣ 𝑥; 𝐷 󳨀→ 𝐽 : 𝑥 󳨃󳨀→ 𝑥 ⊣ 𝑥
−1
, (10)

and simple computations show that as a set and as manifold
in the Lie case,𝐷 ≈ 𝐺 × 𝐽.

Now, given a Lie digroup, a Leibniz algebra is obtained as
follows. To begin with, define a conjugation or 𝐴𝑑-action by

𝑦 󳨃󳨀→ 𝑥 ⊢ 𝑦 ⊣ 𝑥
−1
. (11)

This gives an example of what is sometimes referred to as a
pointed rack.
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Definition 9. A pointed rack is a set 𝑄, provided with an
application ∘ : 𝑄 × 𝑄 → 𝑄 and a distinguished point 1,
satisfying

(i) 𝑥 ∘ (𝑦 ∘ 𝑧) = (𝑥 ∘ 𝑦) ∘ (𝑥 ∘ 𝑧).
(ii) For all 𝑎, 𝑏 ∈ 𝑄 there is a unique 𝑥 such that 𝑏 ∘ 𝑥 = 𝑎.
(iii) For all 𝑥 ∈ 𝑄, 1 ∘ 𝑥 = 𝑥, and 𝑥 ∘ 1 = 1.

Pointed racks are perhaps most naturally obtained by
conjugation on groups, but the point is that, just as in the case
of the standard conjugation in Lie groups, a Leibniz bracket
is obtained at the tangent space of a Lie digroup at the bar
unit, 𝑇

𝑒
𝐷, by differentiating twice the rack operation, once

with respect to 𝑥 and once with respect to 𝑦 (see e.g. [6]).
More explicitly, if 𝑋,𝑌 are two tangent vectors at 𝑇

𝑒
𝐷,

and 𝑥(𝑠), 𝑦(𝑡) are two curves such that 𝑥(0) = 𝑒 = 𝑦(0) and
𝑥
󸀠
(0) = 𝑋, 𝑦󸀠(0) = 𝑌, their Leibniz bracket [𝑋, 𝑌] can be

obtained as

[𝑋, 𝑌] =
𝜕
2

𝜕𝑠𝜕𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑠=𝑡=0

𝑥 (𝑠) ⊢ 𝑦 (𝑡) ⊣ 𝑥
−1
(𝑠) . (12)

That this is well defined follows from the fact that the
conjugation given by (11) fixes the bar unit 𝑒. Therefore, by
differentiating the 𝐴𝑑-action with respect to 𝑦 for fixed 𝑥,
one obtains a map 𝐴𝑑

𝑥
: 𝑇
𝑒
𝐷 → 𝑇

𝑒
𝐷, which is an

automorphism, and by allowing 𝑥 to vary one obtains a map
𝐴𝑑 : 𝐷 → Aut(𝑇

𝑒
𝐷). Since this map sends the point 𝑒 into

the identity mapping in 𝐷, differentiation with respect to 𝑥
then gives a map 𝑎𝑑 : 𝑇

𝑒
𝐷 → gl(𝑇

𝑒
𝐷), sending 𝑋 → 𝑎𝑑

𝑋
,

which allows to define the bilinear mapping [𝑋, 𝑌] = 𝑎𝑑
𝑋
𝑌,

just as in the Lie case.Thedigroup conditions then ensure that
this is indeed a Leibniz bracket (see e.g., [1] or [4]).

Since this derivation imitates in every respect the con-
struction of Lie algebras from Lie groups, it is naturally a
strong indication that digroups should be considered as an
acceptable solution to the coquecigrue problem. Neverthe-
less, as is also well known this works only in the split case;
let us now briefly recall why this is so.

The first key step is to observe that the𝐴𝑑-action 𝑥 ⊢ 𝑦 ⊣
𝑥
−1 actually defines a left action of the group 𝐺 on 𝐽, with the

bar unit 𝑒 (which is the only bar unit that is also an inverse)
as a fixed point; denote this action by 𝑎 ⋅ 𝛼, for 𝑎 ∈ 𝐺, 𝛼 ∈ 𝐽.

The digroup 𝐷 then becomes isomorphic to the digroup
𝐺 × 𝐽 with operations

(𝑎, 𝛼) ⊢ (𝑏, 𝛽) = (𝑎𝑏, 𝑎 ⋅ 𝛽) ;

(𝑎, 𝛼) ⊣ (𝑏, 𝛽) = (𝑎𝑏, 𝛼) ,

(13)

and the conjugation is in fact explicitly given by

(𝑎, 𝛼) ⊢ (𝑏, 𝛽) ⊣ (𝑎, 𝛼)
−1
= (𝑎𝑏𝑎

−1
, 𝑎 ⋅ 𝛽) . (14)

Remark 10. In fact, every digroup arises this way: from a
group action, 𝐺 × 𝐽 → 𝐽, with a (not necessarily unique)
fixed point. Moreover, one sees from Formula (13) that only
one of the products actually involves the action, namely, the
one denoted here ⊢.The readermight see [5] formore details,
just keeping inmind that a different choice of projections was

made there, using 𝑥 󳨃→ 𝑥 ⊢ 𝑥
−1 instead of 𝑥 󳨃→ 𝑥

−1
⊣ 𝑥,

which resulted in working with right actions instead of left
actions.

At any rate, for Lie digroups, since as a manifold the
tangent space at 𝑒 splits as 𝑇

𝑒
𝐷 = 𝑇

𝑒
𝐺 ⊕ 𝑇

𝑒
𝐽, differentiation

of Formula (14) exhibits the way 𝑇
𝑒
𝐽 becomes a 𝑇

𝑒
𝐺-module,

giving the desired splitting of 𝑇
𝑒
𝐷 as a Leibniz algebra.

Conversely, given a split Leibniz algebra, written as a
direct sum g ⊕ 𝐽, where g is a Lie algebra and the ideal 𝐽 is
regarded as a g-module, this infinitesimal action can always
be integrated to an action of the simply connected group
𝐺 such that Lie(𝐺) = g, so that a digroup 𝐷 = 𝐺 × 𝐽 is
obtained; then the Leibniz algebra structure is recovered from
the resulting rack, in the manner already explained (see for
instance [1] for more details).

Up to this point we have discussed mostly well-known
facts. But now a subtle, yet important, point arises. As
mentioned, a split Leibniz algebra might split in different
ways, depending on the chosen ideal 𝐽 and corresponding
choice of Lie subalgebra g. Therefore, for different splittings
the digroups associated with such an algebra by the previous
construction will not in general be isomorphic as digroups,
even locally, for the simple reason that they would not
have (even locally) isomorphic groups of inverse elements.
The following simple example, already pointed out in [4],
illustrates this.

Example 11. An abelian Leibniz algebra 𝐿, which of course
is a Lie algebra, splits over any subspace 𝐽 ⊂ 𝐿. Therefore,
we can consider any nontrivial subspace 𝐽, take any direct
complement h to 𝐽, and consider any abelian Lie group 𝐻
having h as Lie algebra.We can thenmake𝐻 act on 𝐽 trivially
and consider the corresponding digroup𝐷 = 𝐻 × 𝐽.

Then, the digroup 𝐷 so defined is certainly not a Lie
group, because inversion is not an involution; indeed, the only
inverse elements would be those of the form (ℎ, 0), ℎ ∈ 𝐻.
Nevertheless, its tangent space at 𝐸 = (𝑒, 0), where 𝑒 ∈ 𝐻

denotes the identity, is endowed by the previous construction
with the structure of an abelian Leibniz algebra, therefore,
isomorphic to 𝐿.

Now, while the example of an abelian algebra might
seem somewhat artificial, since there is little to check in this
case, one can further elaborate on this point, to see that the
problem runs deeper.

For this recall that any Lie algebra g can be decomposed,
although not in a unique way, as a direct sum g = r ⊕ h,
where the radical r is the maximal solvable ideal of g and
the summand h is semisimple. This is the so-called Levi (or
radical) decomposition of g.

Now, let 𝐿 be a Leibniz algebra, let 𝑆 and 𝐾 be as before,
and let g = 𝐿/𝑆; then, by the isomorphism theorem there is
a 1 : 1 correspondence between the ideals 𝑆 ⊆ 𝐽 ⊆ 𝐿 and the
ideals of g. We claim that 𝐾/𝑆 is contained in r. Indeed, if
𝑘
1
+ 𝑆, 𝑘
2
+ 𝑆 are two classes in 𝐾/𝑆, then [𝑘

1
+ 𝑆, 𝑘
2
+ 𝑆] =

[𝑆, 𝑘
2
] + [𝑆, 𝑆] = 𝑆, so that (𝐾/𝑆)2 = 0.

This observation then gives two things.
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On the one hand, it indicates that, for a given Leibniz
algebra 𝐿, the obstruction to a splitting is related to the
structure of the radical of g = 𝐿/𝑆.

On the other hand, and more important for us here, this
implies the following theorem, which is one of our main
results.

Theorem 12. Suppose j is an abelian ideal of a Lie algebra g

contained in ker 𝑎𝑑 that admits a nontrivial complementary
subalgebra; then, there is a digroup that is not a Lie group,
whose tangent space at the bar unit inherits the structure of the
given algebra.

Proof. Indeed, let h be a subalgebra such that g = j ⊕ h and
consider a simply connected Lie group𝐻 having Lie algebra
h. Then, the infinitesimal action of h on j lifts to an action of
𝐻 on j, and this yields a digroup that is not isomorphic to a
Lie group, since its set of bar units is nontrivial. Nevertheless,
its tangent space at (0, 𝑒) inherits, by the previous definition of
the𝐴𝑑-action for digroups, the structure of a Leibniz algebra
g; since j is abelian, this Leibniz algebra is easily seen to
coincide with the original Lie algebra.

The relevance of this theorem is that it shows that, even
for Lie algebras, if we drop the a priori condition of the
(local) group structure of the integrating manifold, then the
Lie algebra does not in general determine a unique structure.
In the wider class of digroups different—and essentially
nonequivalent—solutions can be found. The classical Lie
theory bypasses this problem, because the group structure is
assumed a priori.

Remark 13. As a consequence, in our view these new and
somewhat odd nonstandard integral manifolds for the type
of Lie algebras considered in the previous theorem should be
regarded as the first nontrivial examples of true coquecigrues,
the term “coquecigrue,” playfully introduced by Loday, refer-
ring to some kind of strange mythical beast.

In any case, explicit examples of these highly nonequiv-
alent integral manifolds for non-abelian Lie algebras can
be obtained from the Levi decomposition theorem, and
this provides nontrivial examples of these coquecigrues; for
instance, this is the case where j is the radical r and this ideal
is contained in its centralizer.

Example 14. Consider the reductive Lie algebra gl(𝑛,R),
where we can take as j either the trivial ideal or the 1-
dimensional center. Two different digroups giving rise to this
Leibniz algebra are then𝐺𝐿(𝑛,R) and 𝑆𝐿(𝑛,R)×R, where the
former is the standard solution and is of course a Lie group,
but the latter is to be regarded as a nontrivial digroup, with
set of bar units 𝐽 ≅ R.

Moreover, since as manifolds both digroups are diffeo-
morphic, there are no hidden geometrical anomalies that
would compel us to disregard the nonstandard solution
either.

And this fact actually lies beneath the possibility of
splitting a 𝜑-dialgebra in two different ways discussed in
Example 4. The first decomposition, corresponding to the

choice of the ideal ker𝜑, results in having 𝐺𝐿(𝑛,R) as group
of inverses of the associated digroup; the second one, which
is related to the ideal ker 𝑎𝑑, gives a digroup whose group of
inverses is 𝑆𝐿(𝑛,R) × {±1}.

3.2. A Generalization of Digroups. A different kind of gen-
eralization of the construction of integral manifolds for split
Leibniz algebras comes from the observation that the com-
putation of Formula (12) does not require a knowledge of the
global structure of 𝐷, and in particular of its decomposition
as a product 𝐺 × 𝐽. The following construction was first
presented in [5], and the reader is referred to, for example,
[7] for more details on the theory of principal and associated
bundles.

Let 𝐺 be a Lie group, and let 𝑃 be a 𝐺-principal bundle
over 𝐺. Then, if 𝐽 is a left 𝐺 -space with action 𝜌, we can
consider a bundle 𝐸 associated with 𝑃 via this action; we
denote the corresponding projection by 𝜋 : 𝐸 → 𝐺. Our
aim is then to see under what conditions we can define a
binary operation 𝐸 × 𝐸 → 𝐸 : (𝑥, 𝑦) 󳨃→ 𝑝 ⊙ 𝑞 that upon
differentiation gives a Leibniz algebra structure to𝑇

𝜉
𝐸, where

𝜉 is some distinguished point. For if we can accomplish this
then 𝐸 can again be regarded as a possible solution to the
coquecigrue problem.

A first problem is that, in contrast to the digroup case, for
a general bundle 𝐸 we do not have a priori the natural choice
of a distinguished point 𝜉 at our disposal here, so let us first
look for conditions for the existence of such a distinguished
point.

Lemma 15. Let 𝐺 be a Lie group, 𝑃 a 𝐺-principal bundle over
a manifold𝑀, 𝐽 a left𝐺-space, and 𝐸 a bundle associated to 𝑃,
with projection 𝜋 : 𝐸 → 𝑀, via an action with a fixed point
𝜀 ∈ 𝐽.Then𝐸 admits a natural global section 𝜎

𝜀
associated with

𝜀.

Proof. Let Ψ = (𝜋, 𝜓) be any trivialization over an open set
𝜋
−1
(𝑈); then 𝜎

𝜀,𝑈
: 𝑈 → 𝐸, given by 𝜎

𝜀,𝑈
(𝑎) = Ψ

−1
(𝑎, 𝜀),

clearly defines a section over 𝑈. To see that this defines a
global section, assume Ψ

1
= (𝜋, 𝜓

1
), Ψ
2
= (𝜋, 𝜓

2
) are two

trivializations of the bundle, defined over two open sets, 𝑈
𝑖
,

𝑖 = 1, 2, that are trivializing neighborhoods for the bundle
with non-empty intersection, so that on 𝑈

1
∩ 𝑈
2
we have the

relation:

𝜓
2 (𝑥) = 𝑔21 (𝑎) ⋅ 𝜓1 (𝑥) , (15)

where 𝑔
𝑖𝑗
is a cocycle for the bundle. Then for 𝑎 ∈ 𝑈

1
∩

𝑈
2
we have to show that 𝜎

𝜀,𝑈
1

(𝑎) = 𝜎
𝜀,𝑈
2

(𝑎), that is, that
Ψ
−1

1
(𝑎, 𝜀) = Ψ

−1

2
(𝑎, 𝜀). Since Ψ

𝑖
are diffeomorphisms, this in

turn is equivalent to Ψ
2
∘ Ψ
−1

1
(𝑎, 𝜀) = (𝑎, 𝜀). But

Ψ
2
∘ Ψ
−1

1
(𝑎, 𝜀) = (𝑎, 𝜓2 ∘ (Ψ

−1

1
(𝑎, 𝜀)))

= (𝑎, 𝑔
21 (𝑎) ⋅ 𝜓1 ∘ (Ψ

−1

1
(𝑎, 𝜀)))

= (𝑎, 𝑔
21 (𝑎) ⋅ 𝜀) = (𝑎, 𝜀) ,

(16)

since 𝜀 is a fixed point. The same computations show that,
indeed, 𝜎

𝜀
is independent of the trivialization.
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Thus, if an action has fixed points, as do the actions
required for the digroup construction, the choice of one of
them, say 𝜀, determines the distinguished point 𝜉 = 𝜎

𝜀
(𝑒) in

the bundle. On this basis we can state the next result.

Lemma 16. Let 𝐺 be a Lie group and let 𝐽 be a left 𝐺-space,
with a fixed point 𝜀 ∈ 𝐽. Let 𝑃 be a 𝐺-principal bundle over 𝐺
and let 𝐸 be the bundle associated with 𝑃 via the corresponding
right action, with projection 𝜋 : 𝐸 → 𝐺. Let 𝜉 be the fixed
point in the fiber over the identity element of the group, 𝑒, given
by the natural section determined by 𝜀. Assume moreover that
𝑃 admits a cocycle satisfying the following condition. For all
𝑎, 𝑏 ∈ 𝐺 and 𝛽 ∈ 𝐽, there exist transition functions 𝑔

𝑖𝑗
, 𝑔
𝑖𝑗
such

that
𝑔
𝑖𝑗 (𝑎𝑏) 𝑎 ⋅ 𝛽 = 𝑎𝑔𝑖𝑗 (𝑏) ⋅ 𝛽. (17)

Let finally 𝑥 = [(𝑎, 𝛼)], 𝑦 = [(𝑏, 𝛽)] ∈ 𝐸, so that 𝜋(𝑥) = 𝑎,
𝜋(𝑦) = 𝑏.

Then 𝐸 × 𝐸 → 𝐸 : (𝑥, 𝑦) 󳨃→ 𝑥 ⊙ 𝑦, given by

𝑥 ⊙ 𝑦 = [(𝑎𝑏𝑎
−1
, 𝑎 ⋅ 𝛽)] , (18)

is globally well defined and thus gives a binary operation on 𝐸
that lifts the conjugation action in the base 𝐺.

Before proceeding with the proof, let us make the fol-
lowing comment, regarding the choice of the operation. This
comes of course from the fact that we want to generalize the
construction for digroups and sowe could also start with (13),
thus getting two operations, and therefore something closer
to a digroup structure. But this is not necessary for us, because
one of the products in a digroup is in a sense trivial, and, as
we saw, only the rack structure was relevant for the derivation
of the Leibniz algebra structure on 𝑇

𝜉
𝐸, which is our basic

concern here. Thus, all that is needed is the operation ⊙ to be
described by something like (14), at least in a neighborhood
of 𝜉.

Proof. LetΨ = (𝜋, 𝜓) be a trivialization of the bundle, defined
on an open neighborhood 𝑈 of 𝜉, and define the operation ⊙
as

Ψ (𝑥 ⊙ 𝑦) = (𝑎𝑏𝑎
−1
, 𝑎 ⋅ 𝜓 (𝑦)) . (19)

Now, since 𝐸 can be described as equivalence classes of
pairs, (𝑔, 𝛾), 𝛾 ∈ 𝐽, 𝑔 ∈ 𝑈

𝑖
, what we need is to see under what

conditions such an operation is well defined. So consider two
arbitrary representatives for the classes

(𝑎
1
, 𝛼
1
) , (𝑎
2
𝛼
2
) ∈ 𝑥, (𝑏

1
, 𝛽
1
) , (𝑏
2
, 𝛽
2
) ∈ 𝑦, (20)

and let us see when the elements (𝑎
1
𝑏
1
𝑎
−1

1
, 𝑎
1
⋅ 𝛽
1
) and

(𝑎
2
𝑏
2
𝑎
−1

2
, 𝑎
2
⋅𝛽
2
) are in the same class. By hypothesis 𝑎

1
= 𝑎
2
=

𝑎, and 𝑏
1
= 𝑏
2
= 𝑏; then both points 𝑎 ⋅ 𝛽

1
∼ 𝑎 ⋅ 𝛽

2
, are to be

regarded as lying on the fiber over 𝑎𝑏𝑎−1, but possibly on two
distinct trivializing open sets𝑈

1
,𝑈
2
, so this amounts to show

that there exists a transition function 𝑔
12
defined on 𝑈

1
∩ 𝑈
2

such that 𝑎 ⋅𝛽
1
= 𝑔
12
(𝑎𝑏)𝑎 ⋅𝛽

2
. But by hypothesis, there exists

a transition function 𝑔
12
such that 𝛽

1
= 𝑔
12
(𝑏) ⋅ 𝛽

2
; acting on

this equality by 𝑎, we get therefore the relation

𝑔
12 (𝑎𝑏) 𝑎 ⋅ 𝛽2 = 𝑎𝑔12 (𝑏) ⋅ 𝛽2, (21)

as a condition on the associated bundle that would allow a
global product to be defined by relation (18).

Finally, it is clear that upon projection the operation ⊙

corresponds to the conjugation in the group 𝐺: 𝜋(𝑥 ⊙ 𝑦) =
𝑎𝑏𝑎
−1.

Turning things around, we can now state the relation to
the coquecigrue problem as follows.

Theorem 17. Let 𝐿 be a split Leibniz algebra and let 𝐺 be a Lie
group associated with the quotient Lie algebra g. Assume that
the action associated with the splitting lifts to an action of 𝐺 on
a manifold 𝐽, of dimension equal to that of 𝐿/g. Let 𝑃 be any
𝐺-principal bundle that satisfies the conditions of Lemma 16,
and let finally 𝐸 be an associated bundle constructed via this
action.

Then, the associated bundle has the structure of a pointed
rack and upon differentiation this structure gives a Leibniz
algebra structure to 𝑇

𝜉
𝐸, isomorphic to that of 𝐿, and is

therefore a solution to the coquecigrue problem.

Proof. The conditions on 𝑃 and 𝐸 are not empty, since at
least the trivial bundles over the simply connected group of
g satisfy them, and also we have that 𝐸 is a manifold of the
correct dimension; but it is not required that the bundles
be trivial or that the fiber be a vector space. Moreover, by
Lemma 16 we can define a binary operation on 𝐸.

Thus, we have to show that𝐸has the structure of a pointed
rack, the distinguished point being of course 𝜉. Notice that if
we let 𝑥 = [(𝑎, 𝛼)], 𝑦 = [(𝑏, 𝛽)], and 𝑧 = [(𝑐, 𝛾)] be three
points in 𝐸, Lemma 16 allows us to work with representatives
of the equivalence classes.

Now, the conditions 𝑥⊙𝜉 = 𝜉 and 𝜉⊙𝑥 = 𝑥 are immediate

𝑥 ⊙ 𝜉 = [(𝑎𝑒𝑎
−1
, 𝑎 ⋅ 𝜖)] = [(𝑒, 𝜖)] = 𝜉;

𝜉 ⊙ 𝑥 = [(𝑒𝑎𝑒, 𝑒 ⋅ 𝛼)] = [(𝑎, 𝛼)] = 𝑥.

(22)

Then, the second condition for a rack amounts to solving
the equation [(𝑎𝑏𝑎−1, 𝑎 ⋅ 𝛽)] = [(𝑐, 𝛾)] for 𝑏 and 𝛽, and so we
can set

𝑏 = 𝑎
−1
𝑐𝑎; 𝛽 = 𝑎

−1
⋅ 𝛾 (23)

Finally,

𝑥 ⊙ (𝑦 ⊙ 𝑧) = [(𝑎 (𝑏𝑐𝑏
−1
) 𝑎
−1
, 𝑎 ⋅ (𝑏 ⋅ 𝛾))]

= [(𝑎𝑏𝑐(𝑎𝑏)
−1
, (𝑎𝑏) ⋅ 𝛾)]

(24)

while

(𝑥 ⊙ 𝑦) ⊙ (𝑥 ⊙ 𝑧)

= [((𝑎𝑏𝑎
−1
) (𝑎𝑐𝑎

−1
) (𝑎𝑏
−1
𝑎
−1
)) , ((𝑎𝑏𝑎

−1
) ⋅ (𝑎 ⋅ 𝛾))]

= [(𝑎𝑏𝑐(𝑎𝑏)
−1
, (𝑎𝑏) ⋅ 𝛾)] ,

(25)

and thus 𝐸 has the structure of a pointed rack.
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Now, according to Kinyon’s result, the data needed to
construct the bundle 𝐸 also guarantee the existence of a
digroup𝐷, with underlying group𝐺 andwith 𝐽 as its set of bar
units, that already gives an integral manifold for 𝐿. But since
in a neighborhood of 𝜉, which can be regarded as a point in
both 𝐷 and 𝐸, both manifolds are diffeomorphic, and since
by the computation done in Lemma 16 the product in 𝐸 is
expressed by formula (19), it is clear that their differentials
at 𝜉 coincide. This shows that differentiation of ⊙ indeed
determines a Leibniz algebra isomorphic to 𝐿 in 𝑇

𝜉
𝐸.

4. The Nonsplit Case

4.1. Derived Algebras and an Exponential Coquecigrue. In this
subsection we analyze a rather restricted class of nonsplit
algebras, but our objective here is mostly to exhibit a different
kind of possible solution to the coquecigrue problem and
investigate the common traits between this new construction
and what we had in the split case.

So, let 𝐴 be an associative and unital algebra (i.e.,
possessing a unit element 𝐸). Since the vector spaces we
are considering are finite dimensional, for such algebras the
exponential mapping exp : 𝐴 → 𝐴 is well defined by
the usual formula exp𝑋 = ∑

∞

𝑛=0
𝑋
𝑛
/𝑛!, because the series

converges in any norm. Thus, it makes sense to consider the
set 𝑄 = exp(𝐴), and since the derivative of exp at 0 is the
identity, this is a diffeomorphism when restricted to suitable
neighborhoods of 0 ∈ 𝐴 and 𝐸 ∈ 𝑄. For simplicity, in what
followswewill further assume that the algebra is such that the
exponential mapping is injective.

Now assume that 𝐴 admits an idempotent derivation,
Δ
2
= 0. Then the map Δ is also a derivation of the associated

Lie algebra, with the usual commutator bracket, [⋅, ⋅], so that
a Leibniz algebra can be constructed as in Definition 5. Then
we can introduce the following.

Definition 18. The exponential coquecigrue of the Leibniz
algebra

𝐿 = (𝐴, [⋅, ⋅]Δ) (26)

is the rack structure in 𝑄 defined by

𝑥 ∘ 𝑦 = expΔ𝑋𝑦(expΔ𝑋)−1. (27)

That this definition makes sense is the content of the
following.

Theorem 19. Let 𝐿 denote the Leibniz algebra constructed
from𝐴 andΔ as stated above, and𝑄 = exp(𝐴). For 𝑥 = exp𝑋,
𝑦 = exp𝑌 define

𝑥 ∘ 𝑦 = expΔ𝑋𝑦(expΔ𝑋)−1 = expΔ𝑋𝑦 exp (−Δ𝑋) . (28)

Then (𝑄, ∘, 𝐸) is a pointed rack, such that 𝑇
𝐸
𝑄 ≅ 𝐿 as Leibniz

algebras, and is therefore a solution to the coquecigrue problem.

Before proving the theorem, let us establish the following
easy lemma.

Lemma 20. Let 𝐴, Δ be as above. Then, for any 𝑋,𝑌 ∈ 𝐴,
[Δ𝑋, Δ𝑌] = 0. In particular, expΔ𝑋 expΔ𝑌 = expΔ(𝑋 + 𝑌)

Proof. We simply compute

[Δ𝑋, Δ𝑌] = Δ [Δ𝑋, 𝑌] − [Δ
2
𝑋,𝑌]

= Δ (Δ [𝑋, 𝑌] − [𝑋, Δ𝑌])

= −Δ [𝑋, Δ𝑌] = − [Δ𝑋, Δ𝑌] ,

(29)

and the assertion follows.

Proof of Theorem 19. First we notice that for any 𝑥, 𝑦 ∈ 𝑄

we have indeed 𝑥 ∘ 𝑦 ∈ 𝑄, since by definition 𝑥 ∘ 𝑦 =

expΔ𝑋𝑦 exp(−Δ𝑋) and in any associative unital algebra
𝑥 exp𝑌𝑥−1 = exp(𝑥𝑌𝑥−1) for any 𝑌 and invertible element
𝑥, so the assertion follows.

Next, we verify the conditions for a pointed rack, taking as
distinguished point the unit 𝐸. Since conditions (ii) and (iii)
are simple and direct computations, we will only check (i).

On the one hand, using the lemma we have

𝑥 ∘ (𝑦 ∘ 𝑧) = 𝑥 ∘ (expΔ𝑌𝑧 exp (−Δ𝑌))

= expΔ (𝑋 + 𝑌) 𝑧 exp (−Δ (𝑋 + 𝑌)) .

(30)

On the other hand, if we let 𝑏 = 𝑥 ∘ 𝑦 = exp(Δ𝑋)𝑦 exp(−Δ𝑋)
and write 𝑏 = exp𝐵 we have that 𝐵 = exp(Δ𝑋)𝑌 exp(−Δ𝑋).
But Δ(expΔ𝑋) = 0, since Δ𝐼 = 0 and Δ(Δ𝑋)2 = Δ

2
𝑋Δ𝑋 +

Δ𝑋Δ
2
𝑋 = 0. Therefore, Δ𝐵 = Δ𝑌, and so

(𝑥 ∘ 𝑦) ∘ (𝑥 ∘ 𝑧) = 𝑏 ∘ (𝑥 ∘ 𝑧)

= expΔ (𝐵 + 𝑋) 𝑧 exp (−Δ (𝑋 + 𝐵))

= expΔ (𝑋 + 𝑌) 𝑧 exp (−Δ (𝑋 + 𝑌)) ,

(31)

and thus (27) defines a rack structure on 𝑄, as claimed.
Moreover, using the chain rule and the fact that Δ is a

linear map, upon derivation the exact same computation as
in the Lie algebra case gives as bracket [⋅, ⋅]

Δ
, as desired.

Let us nowmake some important observations regarding
this construction.

First, notice that relative to the ideal 𝐽 = kerΔ, we have a
Lie algebra g = 𝐿/𝐽, underlying this Leibniz algebras.Then, if
𝐺 is any Lie group having Lie algebra g, with its exponential
mapping g → 𝐺, the projectionΠ : 𝑄 → 𝐺,Π(𝑥) = exp(𝐽+
ℎ), where 𝑥 = exp(𝑋), and 𝜋(𝑋) = 𝐽 + ℎ, is a morphism
of racks onto 𝐺 with the standard 𝐴𝑑-action, since the rack
operation corresponds to the standard conjugation of 𝑦 by
𝑥 = exp(Δ𝑋).

Moreover, the map Π is a submersion in some neighbor-
hood of 𝐼, because if 𝑈 is any neighborhood of 0 ∈ g, where
exp : g → 𝐺 is a diffeomorphism, and 𝑉 is a neighborhood
of 0 ∈ 𝐿, where exp : 𝐿 → 𝑄 is a diffeomorphism, then
by a general argument of differential topologyΠ restricted to
exp(𝜋−1(𝑈) ∩ 𝑉) is a submersion.
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Thus, in a way similar to the split case, the integral
manifold constructed for 𝐿 comes equipped with a (at least
local) projection into a Lie group that is a morphism of racks.

The following example further illustrates this.

Example 21. We let 𝐿 denote the Leibniz algebra of Example 6
and observe that in this case both 𝐽 and g are isomorphic to
R and that moreover, by identifying the basis {𝑒

1
, 𝑒
2
}with the

matrices ( 0 1
0 0
), ( 0 0
0 1
), matrix expressions can be obtained. In

particular, we can compute the exponential of elements of 𝐿
using the standard exponential exp : gl(2,R) → 𝐺𝐿(2,R).
A short computation then shows that in fact

exp(0 𝑥
1

0 𝑥
2

) = (
1 𝑥
1
𝜀 (𝑥
2
)

0 𝑒
𝑥
2

) , (32)

where 𝜀 is the analytic function defined by

𝜀 (𝑡) =
𝑒
𝑡
− 1

𝑡

(33)

for 𝑡 ̸= 0 and 𝜀(0) = 1.
The rack structure is then explicitly given by

exp(0 𝑥
1

0 𝑥
2

) ∘ exp(0 𝑦
1

0 𝑦
2

) = (
1 (𝑦
1
+ 𝑥
2
𝑦
2
) 𝜀 (𝑦
2
)

0 𝑒
𝑦
2

) .

(34)

Notice in particular that (32) also makes it plain that 𝑄 ≈

R+ × R, so it is actually a fiber bundle over the Lie group R+

in this case.

4.2. Relation to the Construction of Covez. As mentioned
in the introduction, in [2] a general local solution to the
problem of integrating Leibniz algebras was described, and
this was done by studying pointed racks and an appropriate
cohomology theory for them.

Somewhat more precisely, in Covez’s work coquecigrues
are obtained as central extensions of Lie groups by modules.
The modules are defined by an action 𝜌 of the simply
connected Lie group 𝐺

0
associated with the Lie algebra g

0
=

𝐿/𝐾, whereas before 𝐾 = ker 𝑎𝑑 (note that this ideal is
denoted in Covez’s paper by 𝑍

𝐿
(g), as he uses g to denote

a Leibniz algebra); the action 𝜌 is given by the lifting of the
infinitesimal action of g

0
on the ideal 𝐾. The extensions are

then determined by path integration of a suitable 2-cocycle
𝜔, essentially corresponding to the restriction of the bracket
to the complement of the ideal 𝐾.

Leaving the more technical details aside, let us just add
that a key feature of this approach is that, by means of
an augmentation process, the theory makes it possible to
discriminate among the full category of Lie racks those that
allow a good recovery of the Lie algebra-Lie group corre-
spondence, which, as mentioned, is normally considered an
essential point for the solution of the coquecigrue problem.
Nevertheless, and as the author readily acknowledges, this
answer is not complete, because the requisite of simple
connexity of the group 𝐺makes it clear that the construction
is essentially local.

Now, the construction presented in the previous section
can be related to Covez’s as follows.

For any Lie group 𝐺 the exponential is a local diffeomor-
phism, thus, a local inverse (i.e., a logarithmic chart) always
exists, log : 𝑈 ⊂ 𝐺 → g. Therefore, if we start with
any Leibniz algebra 𝐿 and consider the quotient Lie algebra
g
0
= 𝐿/𝐾, we can use a logarithmic chart to pull back the

trivial bundle 𝜋 : 𝐿 → g
0
, at least to some open set 𝑈 ⊂ 𝐺

0
.

Then we lift the local rack structure of 𝐺
0
to this bundle

log∗L

U ⊂ G0
log

L

𝜋

0𝔤

(35)

and in this way, a local augmented rack, 𝑄 = log∗𝐿 → 𝑈,
is obtained; this should correspond, at least locally, to the
construction in [2].

This is the general idea of the relationship between the
two approaches, but at this point we need of course to verify
several things. In particular, regarding the exponential rack
structure in𝑄previously introduced, to be consistentweneed
to check that this is indeed the lift of the rack structure in 𝐺
given by the pullback, so that 𝑄 ≅ 𝑄 as racks, at least locally.

Now, to check the last assertion, recall first that the pull-
back bundle is explicitly defined as 𝑄 = (𝐺

0
× 𝐿)/ ∼, where

the equivalence relation is given by 𝜋(𝑋) = log𝑔. Since log
is injective, if we write 𝜋(𝑋) = 𝑋, then we have 𝑔 = exp𝑋,
and two elements 𝑋, 𝑋

1
represent the same class if and only

if𝑋 − 𝑋
1
∈ 𝐾.

So let 𝑥, 𝑦 ∈ 𝑄; then, given the hypotheses we made
for the exponential coquecigrue, 𝑥 = exp𝑋 and 𝑦 = exp𝑌
for unique 𝑋,𝑌 ∈ 𝐿. Therefore, 𝑥, 𝑦 determine the classes
in 𝑄 represented by (exp𝑋,𝑋) and (exp 𝑌̃, 𝑌), respectively.
Thus, what we need to verify is that if𝑋

1
and𝑌
1
give different

representations of the same classes in 𝑄, then 𝜋([𝑋
1
, 𝑌
1
]
Δ
) =

𝜋([𝑋, 𝑌]
Δ
). But, if𝑋

1
= 𝑋 + 𝐾

𝑋
and 𝑌

1
= 𝑌 + 𝑋

𝑌
, then

[𝑋
1
, 𝑌
1
]
Δ
= [𝑋, 𝑌]Δ + [𝑋,𝐾𝑌]Δ

,

[𝑋,𝐾
𝑌
]
Δ
= Δ [𝑋,𝑋

𝑌
] − [𝑋, Δ𝑋

𝑌
] = Δ [𝑋,𝑋

𝑌
] ,

(36)

because 𝐾
𝑌
∈ 𝐾 is equivalent to Δ𝑋 ∈ 𝑍(𝐴) and Δ(𝐿) ⊂ 𝐾,

as was to be shown.
Of course, this does not solve the problem for more

general algebras, since if we start from a pullback bundle
and rack structures, we would need to determine from this
data the representation and 2-cocycle required by Covez’s
theory, and then check that the two constructions are indeed
equivalent; in full generality, this is most likely something
nontrivial.

Nevertheless, we can show that this makes sense, by
explicitly comparing to the Covez data in a simple case.
Indeed, consider the exponential coquecigrue of Example 21,
where explicit calculations can be done. For this example, the
group𝐺 = R+ is simply connected, and therefore it is actually
a simple matter to make a direct connection with Covez’s
theory (for more details on the following argument, see for
instance Example 3.33 in [2]).
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To begin with, we identify the action of 𝐿/𝐾 = g
0
≅

⟨𝑒
2
⟩ ≅ R on 𝐾 = ⟨𝑒

1
⟩ ≅ R. Since 𝐿/𝐾 is abelian, it

follows that the required action 𝜌 on 𝐾 is trivial; therefore,
it is integrated into the trivial action of R on itself.

On the other hand, since the only nontrivial bracket
is [𝑒
2
, 𝑒
2
] = 𝑒

1
, it is also clear that the 2-cocycle is

𝜔((0, 𝑥
2
), (0, 𝑦

2
)) = (𝑥

2
𝑦
2
, 0). With these considerations, the

integration procedure of Covez gives

∫
𝛾
𝑎

(∫
𝛾
𝑏

𝜏
2
(𝜔)) = 𝜔 (𝑎, 𝑏) . (37)

Therefore, the local rack structure integrating this Leibniz
algebra, according to Covez’s method, is

(𝑎
1
, 𝑎
2
) ⊳ (𝑏

1
, 𝑏
2
) = (𝑏

1
+ 𝑎
2
𝑏
2
, 𝑏
2
) . (38)

Now we have to relate both constructions of the coque-
cigrue, but this amounts to showing that the map defined by
Formula (32) is locally a rack isomorphism from R2 → 𝑄,
and this is precisely the content of Formula (34). Indeed, in
this simple example the isomorphism is global.

5. Towards a General Definition of
a Coquecigrue

Drawing from the results discussed for the split case and
the construction presented in the previous section, we now
describe a possible integration scheme for general Leib-
niz algebras. Before going into the final definition, let us
make some a priori considerations of what such an integral
manifold—which as is now customary will usually be called
a coquecigrue—should be like.

Suppose we start with a Leibniz algebra 𝐿 and consider
any ideal 𝐽 such that 𝑆 ⊆ 𝐽 ⊆ 𝐾, so that we have a
quotient Lie algebra g = 𝐿/𝐽; let 𝜋 : 𝐿 → g denote
the corresponding projection. We now observe that we are
thereby also given Lie groups 𝐺, which we could suppose
will be connected and simply connected, although this is not
essential for our present argument and the corresponding
exponential mapping g → 𝐺.

Then, collecting these data, we propose that a general
scheme for the coquecigrue should not just be a manifold,
but a commutative diagram of smooth manifolds and maps
of the following type:

L

Q G

exp

𝜋
𝔤

(39)

Observe that the arrows linked to the upper right corner
summarize the information already known, but also that this
is a sort of transposition of the pullback diagram (35), the
reason being that the natural map is exp and not log.

Now, to specify what conditions are to be imposed on
the remaining objects that complete the diagram, we argue
as follows.

First, by definition the manifold 𝑄 should have both a
distinguished point 𝜂, so that as vector spaces 𝐿 ≈ 𝑇

𝜂
𝑄,

and an algebraic structure that, upon derivation, yields the
Leibniz algebra 𝐿. From all that has been said, a natural choice
for this structure would be that of a pointed rack; however,
since an arbitrary rack does not seem appropriate, a key
feature of this rack should be that the Leibniz algebra must
be obtained from it by a procedure that mimics as much as
possible the one for Lie groups, as was the case for instance
for digroups.

To explain more precisely what we mean by this, let us
consider, after the observation of [1], the objections raised
against the rack stemming from the construction by Fenn and
Rourke. Recall first that this rack is constructed as follows.
Given the Leibniz algebra (𝐿, [⋅, ⋅]), the mapping 𝑎𝑑

𝑋
: 𝑌 󳨃→

[𝑋, 𝑌] belongs to gl(𝐿); since this is a Lie algebra, exp(𝑎𝑑
𝑋
) ∈

𝐺𝐿(𝐿) is well defined.Therefore, on 𝐿 itself one can define the
rack structure:𝑋∘𝑌 = exp(𝑎𝑑

𝑋
)(𝑌); this is the Fenn-Rourke

rack structure of 𝐿.
That this is indeed a rack is essentially due to the relation

𝐴𝑑exp𝑋𝑌 = exp (𝑎𝑑
𝑋
) 𝑌, (40)

which is valid for any Lie group, applied to the group 𝐺𝐿(𝐿),
since the crucial rack condition (i) means that

exp (𝑎𝑑
𝑋
) exp (𝑎𝑑

𝑌
) = exp (exp (𝑎𝑑

𝑋
) 𝑎𝑑
𝑌
) exp (𝑎𝑑

𝑋
) ,

(41)

or, what is the same,

exp (𝑎𝑑
𝑋
) exp (𝑎𝑑

𝑌
) exp (−𝑎𝑑

𝑋
) = exp (exp (𝑎𝑑

𝑋
) 𝑎𝑑
𝑌
) ,

(42)

which is precisely the relation above for the case of the general
linear groups.

Now, the point to be made here is that a key difference
between the rack of Fenn and Rourke and the rack obtained
by conjugation in the Lie group is that the former does
not arise from a “double integration” of the Leibniz algebra
structure; indeed, to recover the original Leibniz algebra from
this rack, all we need to do is differentiate with respect to the
𝑋 variable. In other words, by considering the Fenn-Rourke
rack we can recover an 𝐴𝑑-action, but since exp𝑋 is not
defined in the Leibniz algebra, in general we do not recover
an 𝐴𝑑-action, so for Lie algebras, unless 𝑎𝑑 is faithful, we do
not expect this rack to be isomorphic to the standard one.
(Notice that this problem does not arise for digroups, since
in that case we do have an 𝐴𝑑-action to begin with.)

Therefore, one natural way to codify the desired restric-
tion is to ask that the map Π : 𝑄 → 𝐺 be a morphism of
racks onto the rack given on 𝐺 by the standard conjugation.
This is the second condition that should be imposed on the
manifold 𝑄 of the diagram.

Moreover, although the above algebraic condition is
in a sense the main restriction, there are also topological
conditions that are natural. On the one hand, the map Ψ :

𝐿 → 𝑄, must be a local diffeomorphism about 0 ∈ 𝐿; on
the other hand, the map Π : 𝑄 → 𝐺 must be a manifold
submersion in a neighborhoodof 𝜂 = Ψ(0). But actually, since
𝑄 has to be quite homogeneous, so that one might expect
to recover a global structure from a local condition, we will
strengthen the condition on Π to be a global one.
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Thus, gathering all of the above, the definition of a
coquecigrue that we propose is as follows.

Definition 22. Let 𝐿 be a Leibniz algebra and consider any
ideal 𝐽 such that 𝑆 ⊆ 𝐽 ⊆ 𝐾; let the quotient Lie algebra be
g = 𝐿/𝐽 and denote the corresponding projection 𝜋 : 𝐿 → g.
Consider a Lie group 𝐺 having Lie algebra g.

An admissible coquecigrue for 𝐿 over 𝐺 for this data is a
commutative diagram of the following type:

expΨ

L

Q G

𝜋
𝔤

Π

(43)

where 𝑄 is a fiber bundle over the group 𝐺, together with a
pointed rack structure with distinguished point 𝜂; Ψ : 𝐿 →

𝑄 is a local diffeomorphism about 0 ∈ 𝐿, such that Ψ(0) =
𝜂; and the projection Π is a rack morphism into 𝐺, with its
standard rack structure given by conjugation.

Of course, from a geometrical point of view, one would
think of the manifold 𝑄 as providing the desired integral
manifold, so that the integration of 𝐿 is given by the map
Ψ, just as exp provides the integration of g, but the algebraic
structure of𝑄needs to be specified by the remaining elements
of the diagram. It is also plain that local definitions can be
stated, replacing the Lie group 𝐺 and the Lie rack 𝑄 by local
ones.

Moreover, notice that the exponential coquecigrues dis-
cussed before, as well as digroups, fit well into this scheme
and even Covez’s construction has these properties too; the
bundle being trivial in the last two cases.

Finally, to address the requirement of a good reduction to
the classical construction for the case of Lie algebras, observe
that when the Leibniz algebra is the Lie algebra g of a Lie
group 𝐺, the classical integration of g can be recovered by
simply identifying it with a “trivial coquecigrue,” where the
horizontal arrows are just the identity mappings, or, more
generally, where 𝜋 is the identity and the homomorphism Π

is a covering map.
But for example, if we consider the construction of the

rack of Fenn and Rourke for a general Lie algebra, in view of
the relation (40), this can also be cast into our scheme, leading
to the following diagram:

𝔤

𝔤

Id

ad

Ad ∘ exp
Ad(𝔤        ) ⊂ GL(𝔤)

exp

ad(𝔤) ⊂ (𝔤)gl

(44)

Thus, although this would again be an admissible coque-
cigrue, since in general 𝑎𝑑 is not an isomorphism, the
coquecigrue associated with the Lie algebra of a group 𝐺

by this rack would not be associated with the original Lie
group, except in those cases where the adjoint group is locally
isomorphic to this group, which is alright.

Put another way, in the sense of our definition, in general
a Lie algebra g could be considered as a coquecigrue over its

adjoint group, via the projection 𝑎𝑑, but one can distinguish
between the two integration schemes when they are in
fact inequivalent, as desired. And in fact, this allows us to
solve the apparently mysterious case of the two nonisomor-
phic digroups integrating the Lie algebra gl(𝑛,R), because
sl(𝑛,R) ≅ 𝑎𝑑(gl(𝑛,R)).

6. Some Concluding Remarks

It should be pointed out that there are other approaches to
the coquecigrue problem that have appeared in the literature;
for instance, an interesting one is given in [8], following ideas
of Loday and Pirashvili in [9]. Here the author considers
the universal enveloping algebras of Leibniz algebras pro-
vided by dialgebras, and then, using a Poincaré-Birkhoff-Witt
type theorem, constructs a formal group that integrates the
Leibniz algebra. Within this approach, a coquecigrue would
be defined as a triple consisting of a Lie group 𝐺, a right
representation 𝜌 of 𝐺 and a morphism from 𝜌 to the right
adjoint representation of 𝐺, and this looks at first sight quite
strong, because it is global and general. But again, this was
not considered satisfactory, because in the Lie algebra case
it does not give the corresponding Lie group, leading rather
only to the adjoint group, but also because it does not in
general provide an explicit integratingmanifold of the correct
dimension.

Our construction is certainly closer in spirit to Covez’s,
in that we do attempt to obtain such an explicit manifold,
but there might also be a relationship to Mostovoy’s solution,
for the following reason. As mentioned, the rack of Fenn and
Rourke also gives a global and general, but equally “unsat-
isfactory,” solution to the coquecigrue problem. However, as
can be seen from diagram (44), this rack can also be thought
of as a coquecigrue over the adjoint groupwithin our scheme.
In fact, for an arbitrary Leibniz algebra 𝐿, consider the adjoint
group of the quotient Lie algebra by the ideal 𝑆; then we
have the following diagram, where 𝜋 and Π are now the
compositions of the horizontal maps:

Id Id

ad

Ad ∘ exp
Ad(𝔤        ) ⊂ GL(𝔤)

exp

ad(𝔤) ⊂ gl(𝔤)L

L 𝔤

= L/S𝔤

(45)

and this diagram essentially contains all the data involved in
the solution suggested by [8], which would therefore seem to
correspond to one of the solutions allowed by our scheme. But
we stress the fact that within our construction we have both:
an explicit geometric integral manifold and also a method to
discriminate the classical solutions corresponding to the Lie
case.

In summary, in our view Definition 22 is an acceptable
answer to Loday’s original question and thus a good general
definition of a coquecigrue. Indeed, an admissible coqueci-
grue, as defined here, provides an integral manifold for a
Leibniz algebra of the correct dimension, as expected from
purely geometric considerations, and also fully describes its
compatible algebraic structure.
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Granted, the manifold 𝑄 does not carry by itself all the
structure, but the additional information required is in a
definite sense already given. And, while this does allow some
nonstandard solutions, it also provides a natural method to
recover the correct solution in the classical case, by simply
requiring that the bundle projection 𝑄 → 𝐺 to be a (local)
surjective rack morphism.

Moreover, this also leads to a better understanding of
something that was missing in the original coquecigrue
problem, in order for it to be well posed; namely, some
hypotheses about the structure of the solution, such as the
ones in our construction, need to be added. In fact, as our
discussion leading to Theorem 12 shows, this is the case
even at the Lie algebra level, since applying the classical
integration procedure will yield a Lie group only if we specify
a priori that this is the algebraic structure required on the
integral manifold; otherwise, we have shown that there are
instances where other nontrivial solutions, namely, digroups,
are possible.

The above remarks also suggest some interesting prob-
lems for future work; for instance consider the following.

(i) What are the functorial properties of this construc-
tion? Since the admissible coquecigrues are given in
terms of commutative diagrams, and in particular this
already includes the analogue of the exponential map,
it is not unreasonable to expect that a similar analysis
to the one of the classical Lie theory can be carried out
to a large extent.

(ii) Finding, and if possible classifying, the different
admissible coquecigrues associated with a given
Lie algebra. As we saw, it should be expected a
nonuniqueness problem not only at the level of the
global topological structure of the manifold, but also
at the level of the algebraic structure. In particular,
it would be nice to have something like a ‘universal’
coquecigrue for a given algebra.
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