Complex Analysis Math 147—Winter 2006 Assignment 12 due March 14, 2008

- 1. Let f be an entire function and suppose $|f(z)| \leq M|z|$ for every $z \in \mathbb{C}$. Show that f(z) = cz for some constant $c \in \mathbb{C}$ and all $z \in \mathbb{C}$.
- 2. Show that there is no power series f(z) = ∑₀[∞] c_nzⁿ such that
 (i) f(z) = 1 for z = 1/2, 1/3, ..., 1/n, ...
 (ii) f'(0) > 0
- 3. Show that if $f : \mathbf{C} \to \mathbf{C}$ is a continuous function such that f is known to be analytic on the complement of the interval [-1, 1], then in fact f is an entire function.
- 4. Show that if f and g are analytic on a domain D and if $\overline{f}g$ is also analytic, then either f is a constant, or g is identically zero.