Complex Analysis Math 147—Winter 2008 Assignment 14 due March 20, 2008

Suppose f is analytic in $B(a, R) - \{a\}$ except for a sequence of poles $\{z_1, z_2, \ldots\}$ which converges to a. (Note that although f is not assumed to be analytic at a, nevertheless, a is not an <u>isolated</u> singularity of f.) Show that $f(B(a, R) - \{a, z_1, \ldots\})$ is dense in the complex plane.

Hint: If it is not true, consider g(z) = 1/(f(z) - w) for $z \in G := B(a, R) - \{a, z_1, z_2, \ldots\}$, where $w \in \mathbb{C}$ and $\delta > 0$ are such that $|f(z) - w| > \delta$ for all $z \in G$. Then obtain a contradiction by proving the following statements.

(a) There is an analytic extension h of g to $B(a, R) - \{a\}$ which vanishes at each z_n .

Hint: Apply Riemann's Removable Singularity Theorem successively to obtain a sequence of functions g_1, g_2, \ldots , such that g_1 is analytic, vanishes at z_1 , and extends g to z_1 ; g_2 is analytic, vanishes at z_2 , and extends g_1 to z_2 , and hence extends g to z_1 and z_2 ; and so forth, so that g_n is analytic, vanishes at z_1, \ldots, z_n , and extends g to z_1, \ldots, z_n , for $n = 1, 2, \ldots$. Now you can define h (consistently) on $B(a, R) - \{a\}$.

(b) The point a is an isolated singularity of h which is a removable singularity of h, and the analytic extension of h to a vanishes at a.