Complex Analysis Math 147-Winter 2006
 Assignment 5
 due February 17, 2006

Part 1

1. Determine the domain of analyticity for each of the given functions and explain why

$$
\int_{C} f(z) d z=0
$$

where C is the circle of radius 2 centered at 0 , traversed in the counter clockwise direction once.
(a) $f(z)=\frac{z}{z^{2}+25}$
(b) $f(z)=e^{-z}(2 z+1)$
(c) $f(z)=\frac{\sin z}{z^{2}-6 z+10}$
2. Given that D is a domain containing the closed curve C, that z_{0} is a point not in D, and that $\int\left(z-z_{0}\right)^{-1} d z \neq 0$, explain why D is not simply connected.
3. Evaluate $\int_{C_{1}} 1 /\left(z^{2}+1\right) d z$ and $\int_{C_{2}} 1 /\left(z^{2}+1\right) d z$ where C_{1} is the circle of radius $1 / 2$ and center i traversed in the counter clockwise direction once, and C_{2} is the square with center 0 and perimeter 16, traversed in the clockwise direction once.
4. Evaluate $\int_{C} \frac{z}{(z+2)(z-1)} d z$, where C is the circle with radius 4 and center 0 traversed in the counter-clockwise direction once. What about if C is traversed in the clockwise direction? What if C is traversed in the clockwise direction twice?
5. Suppose that f is of the form

$$
f(z)=\frac{A_{k}}{z^{k}}+\frac{A_{k-1}}{z^{k-1}}+\cdots+\frac{A_{1}}{z}+g(z)
$$

where $k \geq 1, g$ is analytic inside and on the unit circle $|z|=1$, and A_{1}, \ldots, A_{k} are complex numbers. If C is the unit circle traversed in the counter-clockwise direction once, calculate $\int_{C} f(z) d z$.
6. For $R>2$, set $I(R)=\int_{C_{R}} \frac{d z}{z^{2}(z-1)^{3}}$, where C_{R} is the circle of radius R and center 0 traversed in the clockwise direction once.
(a) Show that $|I(R)| \leq \frac{2 \pi}{R(R-1)^{3}}$
(b) Show that $\int_{C} \frac{d z}{z^{2}(z-1)^{3}}=0$, where C is the circle of radius 2 and center 0 traversed in the clockwise direction once.

Part 2

Exercises 1-4 of chapter 6 of Cain.

