Complex Analysis Math 147—Winter 2008 Assignments 7,8,9,10 due March 7, 2008

Assignment 7 Complete the proof of Proposition 22.3 as follows. Suppose that $G = A \cup B$ where A, B are open, non-empty, and disjoint. Let z_0, z_1, \ldots, z_n be a finite sequence of points in D with $z_0 = a$, $z_n = b$ and such that the line segments $[z_{k-1}, z_k] := \{sz_k + (1 - s)z_{k-1} : s \in [0,1]\}$ all lie in D. Choose one of these segments which has one endpoint in A and the other in B, and denote it by [p,q]. Then $[0,1] = S \cup T$ where $S = \{s \in [0,1] : sq + (1 - s)p \in A\}$ and $T = \{t \in [0,1] : tq + (1 - t)p \in B\}$. S and T are each non-empty, since $0 \in S$ and $1 \in T$.

- (a) Prove that S is equal to a set of the form $\{0\} \cup S'$ where S' is open. Prove that T is equal to a set of the form $\{1\} \cup T'$ where T' is open.
- (b) Complete the proof of Proposition 22.3 by deriving a contradiction (Hint: Consider $\alpha = \sup S$ and the three cases $\alpha = 0, \alpha = 1, 0 < \alpha < 1$).

Assignment 8 If f is analytic on the open unit disk and f(0) = 0 and $|f(z)| \le 1$ for all |z| < 1, then the function g defined on the unit disk by g(z) = f(z)/z for $z \ne 0$ and g(0) = f'(0), is analytic at 0.

Assignment 9 For a fixed complex number a with |a| < 1, define a function φ_a by

$$\varphi_a(z) = \frac{z+a}{1+\overline{a}z}.$$

Although $\varphi_a(z)$ is defined for all $z \neq -1/\overline{a}$, we shall consider it as a function on the closed unit disk $|z| \leq 1$. Prove the following statements.

- (a) If |z| < 1 then $|\varphi_a(z)| < 1$.
- (b) If |z| = 1 then $|\varphi_a(z)| = 1$.
- (c) φ_a is a one to one function, that is, if $|z_1| < 1, |z_2| < 1$ and if $f(z_1) = f(z_2)$, then $z_1 = z_2$.
- (d) φ_a is an onto function, that is, if $|w_0| < 1$, then there is a z_0 with $|z_0| < 1$ and $f(z_0) = w_0$.
- (e) What is the inverse of φ_a ?

Assignment 10 Let f be an arbitrary analytic function on the unit disk |z| < 1 which is one to one and onto, that is, if $|z_1| < 1$, $|z_2| < 1$ and if $f(z_1) = f(z_2)$, then $z_1 = z_2$; and if $|w_0| < 1$, then there is a z_0 with $|z_0| < 1$ and $f(z_0) = w_0$. Prove the following statements.

- (a) If f(0) = 0, then $f(z) = e^{i\theta}z$ for some real θ .
- (b) If $f(0) = a \neq 0$, let g(z) be defined by $g(z) = \varphi_{-a}(f(z))$. Then $g(z) = e^{i\theta}z$ for some real θ .
- (c) The function f has the form

$$f(z) = e^{i\theta}\varphi_a(z),$$

for some θ real and |a| < 1.