Assignment 7 Complete the proof of Proposition 22.3 as follows. Suppose that \(G = A \cup B \) where \(A, B \) are open, non-empty, and disjoint. Let \(z_0, z_1, \ldots, z_n \) be a finite sequence of points in \(D \) with \(z_0 = a, z_n = b \) and such that the line segments \([z_{k-1}, z_k] := \{ sz_{k-1} + (1-s)z_k : s \in [0,1] \} \) all lie in \(D \). Choose one of these segments which has one endpoint in \(A \) and the other in \(B \), and denote it by \([p,q]\). Then \([0,1] = S \cup T \) where \(S = \{ s \in [0,1] : sq + (1-s)p \in A \} \) and \(T = \{ t \in [0,1] : tq + (1-t)p \in B \} \). \(S \) and \(T \) are each non-empty, since \(0 \in S \) and \(1 \in T \).

(a) Prove that \(S \) is equal to a set of the form \(\{0\} \cup S' \) where \(S' \) is open. Prove that \(T \) is equal to a set of the form \(\{1\} \cup T' \) where \(T' \) is open.

(b) Complete the proof of Proposition 22.3 by deriving a contradiction (Hint: Consider \(\alpha = \text{sup} S \) and the three cases \(\alpha = 0, \alpha = 1, 0 < \alpha < 1 \)).

Assignment 8 If \(f \) is analytic on the open unit disk and \(f(0) = 0 \) and \(|f(z)| \leq 1 \) for all \(|z| < 1 \), then the function \(g \) defined on the unit disk by \(g(z) = f(z)/z \) for \(z \neq 0 \) and \(g(0) = f'(0) \), is analytic at \(0 \).

Assignment 9 For a fixed complex number \(a \) with \(|a| < 1 \), define a function \(\varphi_a \) by

\[
\varphi_a(z) = \frac{z + a}{1 + \overline{a}z}.
\]

Although \(\varphi_a(z) \) is defined for all \(z \neq -1/\overline{a} \), we shall consider it as a function on the closed unit disk \(|z| \leq 1 \). Prove the following statements.

(a) If \(|z| < 1 \) then \(|\varphi_a(z)| < 1 \).

(b) If \(|z| = 1 \) then \(|\varphi_a(z)| = 1 \).

(c) \(\varphi_a \) is a one to one function, that is, if \(|z_1| < 1, |z_2| < 1 \) and if \(f(z_1) = f(z_2) \), then \(z_1 = z_2 \).

(d) \(\varphi_a \) is an onto function, that is, if \(|w_0| < 1 \), then there is a \(z_0 \) with \(|z_0| < 1 \) and \(f(z_0) = w_0 \).

(e) What is the inverse of \(\varphi_a \)?

Assignment 10 Let \(f \) be an arbitrary analytic function on the unit disk \(|z| < 1 \) which is one to one and onto, that is, if \(|z_1| < 1, |z_2| < 1 \) and if \(f(z_1) = f(z_2) \), then \(z_1 = z_2 \); and if \(|w_0| < 1 \), then there is a \(z_0 \) with \(|z_0| < 1 \) and \(f(z_0) = w_0 \). Prove the following statements.

(a) If \(f(0) = 0 \), then \(f(z) = e^{i\theta} z \) for some real \(\theta \).

(b) If \(f(0) = a \neq 0 \), let \(g(z) \) be defined by \(g(z) = \varphi_{-a}(f(z)) \). Then \(g(z) = e^{i\theta} z \) for some real \(\theta \).

(c) The function \(f \) has the form

\[
f(z) = e^{i\theta} \varphi_a(z),
\]

for some \(\theta \) real and \(|a| < 1 \).