Complex Analysis Math 147-Winter 2008
 Assignments 7,8,9,10
 due March 7, 2008

Assignment 7 Complete the proof of Proposition 22.3 as follows. Suppose that $G=$ $A \cup B$ where A, B are open, non-empty, and disjoint. Let $z_{0}, z_{1}, \ldots, z_{n}$ be a finite sequence of points in D with $z_{0}=a, z_{n}=b$ and such that the line segments $\left[z_{k-1}, z_{k}\right]:=\left\{s z_{k}+(1-\right.$ $\left.s) z_{k-1}: s \in[0,1]\right\}$ all lie in D. Choose one of these segments which has one endpoint in A and the other in B, and denote it by $[p, q]$. Then $[0,1]=S \cup T$ where $S=\{s \in[0,1]$: $s q+(1-s) p \in A\}$ and $T=\{t \in[0,1]: t q+(1-t) p \in B\} . S$ and T are each non-empty, since $0 \in S$ and $1 \in T$.
(a) Prove that S is equal to a set of the form $\{0\} \cup S^{\prime}$ where S^{\prime} is open. Prove that T is equal to a set of the form $\{1\} \cup T^{\prime}$ where T^{\prime} is open.
(b) Complete the proof of Proposition 22.3 by deriving a contradiction (Hint: Consider $\alpha=\sup S$ and the three cases $\alpha=0, \alpha=1,0<\alpha<1)$.

Assignment 8 If f is analytic on the open unit disk and $f(0)=0$ and $|f(z)| \leq 1$ for all $|z|<1$, then the function g defined on the unit disk by $g(z)=f(z) / z$ for $z \neq 0$ and $g(0)=f^{\prime}(0)$, is analytic at 0 .

Assignment 9 For a fixed complex number a with $|a|<1$, define a function φ_{a} by

$$
\varphi_{a}(z)=\frac{z+a}{1+\bar{a} z}
$$

Although $\varphi_{a}(z)$ is defined for all $z \neq-1 / \bar{a}$, we shall consider it as a function on the closed unit disk $|z| \leq 1$. Prove the following statements.
(a) If $|z|<1$ then $\left|\varphi_{a}(z)\right|<1$.
(b) If $|z|=1$ then $\left|\varphi_{a}(z)\right|=1$.
(c) φ_{a} is a one to one function, that is, if $\left|z_{1}\right|<1,\left|z_{2}\right|<1$ and if $f\left(z_{1}\right)=f\left(z_{2}\right)$, then $z_{1}=z_{2}$.
(d) φ_{a} is an onto function, that is, if $\left|w_{0}\right|<1$, then there is a z_{0} with $\left|z_{0}\right|<1$ and $f\left(z_{0}\right)=w_{0}$.
(e) What is the inverse of φ_{a} ?

Assignment 10 Let f be an arbitrary analytic function on the unit disk $|z|<1$ which is one to one and onto, that is, if $\left|z_{1}\right|<1,\left|z_{2}\right|<1$ and if $f\left(z_{1}\right)=f\left(z_{2}\right)$, then $z_{1}=z_{2}$; and if $\left|w_{0}\right|<1$, then there is a z_{0} with $\left|z_{0}\right|<1$ and $f\left(z_{0}\right)=w_{0}$. Prove the following statements.
(a) If $f(0)=0$, then $f(z)=e^{i \theta} z$ for some real θ.
(b) If $f(0)=a \neq 0$, let $g(z)$ be defined by $g(z)=\varphi_{-a}(f(z))$. Then $g(z)=e^{i \theta} z$ for some real θ.
(c) The function f has the form

$$
f(z)=e^{i \theta} \varphi_{a}(z)
$$

for some θ real and $|a|<1$.

