Complex Analysis Math 220C—Spring 2008 Assignments 1–6

Assignment 1 Problems 14 and 15 of chapter 6 of the text. These will de discussed in the informal discussion section on Friday April 4 at 4 pm in MSTB 256. The due date for this assignment is Friday April 11.

Assignment 2 Exercises 9,10,11,12 of chapter 10 of Greene-Krantz. These will be discussed in the discussion section on Friday April 11 at 4 pm in MSTB 256. The due date for this assignment is Friday April 18.

Assignment 3 (Due April 25)

Suppose f is analytic in $B(a,R) - \{a\}$ except for a sequence of poles $\{z_1, z_2, \ldots\}$ which converges to a. (Note that although f is not assumed to be analytic at a, nevertheless, a is not an <u>isolated</u> singularity of f.) Show that $f(B(a,R) - \{a,z_1,\ldots\})$ is dense in the complex plane.

Hint: If it is not true, consider g(z) = 1/(f(z) - w) for $z \in G := B(a, R) - \{a, z_1, z_2, \ldots\}$, where $w \in \mathbf{C}$ and $\delta > 0$ are such that $|f(z) - w| > \delta$ for all $z \in G$. Then obtain a contradiction by proving the following statements.

- (a) There is an analytic extension h of g to $B(a,R) \{a\}$ which vanishes at each z_n .
- (b) The point a is an isolated singularity of h which is a removable singularity of h, and the analytic extension of h to a vanishes at a.

Assignment 4 (Due April 25) Problem 1 and one (your choice) of Problems 2,3,4 in Chapter 10 of Greene-Krantz.

Assignment 5 Due April 25

For a fixed complex number a with |a| < 1, define a function φ_a by

$$\varphi_a(z) = \frac{z+a}{1+\overline{a}z}.$$

Although $\varphi_a(z)$ is defined for all $z \neq -1/\overline{a}$, we shall consider it as a function on the closed unit disk $|z| \leq 1$. Prove the following statements.

- (a) If |z| < 1 then $|\varphi_a(z)| < 1$.
- **(b)** If |z| = 1 then $|\varphi_a(z)| = 1$.
- (c) φ_a is a one to one function, that is, if $|z_1| < 1, |z_2| < 1$ and if $\varphi_a(z_1) = \varphi_a(z_2)$, then $z_1 = z_2$.
- (d) φ_a is an onto function, that is, if $|w_0| < 1$, then there is a z_0 with $|z_0| < 1$ and $\varphi_a(z_0) = w_0$.
- (e) What is the inverse of φ_a ?

Assignment 6 Due April 25

Let f be an arbitrary analytic function on the unit disk |z| < 1 which is one to one and onto, that is, if $|z_1| < 1$, $|z_2| < 1$ and if $f(z_1) = f(z_2)$, then $z_1 = z_2$; and if $|w_0| < 1$, then there is a z_0 with $|z_0| < 1$ and $f(z_0) = w_0$. Prove the following statements.

- (a) If f(0) = 0, then $f(z) = e^{i\theta}z$ for some real θ .
- (b) If $f(0) = a \neq 0$, let g(z) be defined by $g(z) = \varphi_{-a}(f(z))$. Then $g(z) = e^{i\theta}z$ for some real θ .
- (c) The function f has the form

$$f(z) = e^{i\theta} \varphi_a(z),$$

for some θ real and |a| < 1.

Assignment 7 Due on May 16. Complete the proof of Picard's little theorem (Case 3).

Assignment 8 Due May 12. You should review all the problems below and write up any two of them from each page (total of 10 problems)

Conway's book

page 43: #9,11,12,13,14,15,16,17,18,19,20,21 (ANY TWO)

page 54: #8,9,18,19,24 (ANY TWO)

page 80:#1,4,5,6,7,8,9,10 (ANY TWO)

page 129:#1,2,3,4,5,6,7,8 (ANY TWO)

page 132:#1,2,3,4,5,6,7,8 (ANY TWO)