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Abstract. I expound on a proof given by Arnold on the existence and unique-

ness of the solution to a first-order differential equation, clarifying and expand-

ing the material and commenting on the motivations for the various compo-
nents.
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1. Introduction

In addition to its intrinsic mathematical interest, the theory of ordinary differ-
ential equations has extensive applications in the natural sciences, notably physics,
as well as other fields. The existence and uniqueness of a solution to a first-order
differential equation, given a set of initial conditions, is one of the most fundamen-
tal results of ODE. In his textbook on the subject [1][2], Vladimir Arnold provides
a proof of this theorem using the concepts of contraction mappings and Picard
mappings. I now examine this proof in detail.

We will investigate solutions to the differential equation

ẋ(t) = v(t, x)(1.1)

x(t0) = x0

where t ∈ R, x ∈ Rn, and v(t, x) is defined and differentiable (of class Cr, r ≥ 1)
in a domain U of R× Rn.

A solution will be a function φ : R→ Rn, where

φ̇(t) = v(t, φ(t))(1.2)

φ(t0) = x0
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We will prove the following theorems, which guarantee the existence and unique-
ness of the solution for any equation of the form (1.1).

Theorem 1.3. (The Existence Theorem) Suppose the right-hand side v of the
differential equation ẋ = v(t, x) is continuously differentiable in a neighborhood of
the point (t0, x0) ∈ R× Rn. Then there is a neighborhood of the point t0 such that
a solution of the differential equation is defined in this neighborhood with the initial
condition φ(t0) = x, where x is any point sufficiently close to x0. Moreover, this
solution depends continuously on the initial point x.

Theorem 1.4. (The Uniqueness Theorem) Given the above conditions, there is
only one possible solution for any given initial point, in the sense that all possible
solutions are equal in the neighborhood under consideration.

2. Foundations

First, let us define precisely what we mean by the derivative of a function from
one metric space into another, phrased in Arnold’s physics-inspired terminology.

Definition 2.1. Let φ : I → M be a differentiable mapping of an open interval I
in R (the “time” axis) to a metric space M . φ is said to leave the point x for some
x ∈M if φ(0) = x. The velocity vector v of φ leaving point x is the time derivative
of φ at the point t = 0.

(2.2) v = φ̇(0) =
dφ

dt

∣∣∣
t=0

The tangent space to a domain M at a point x is the set of all velocity vectors of
all such curves leaving x, and is denoted TxM .

Remark 2.3. The dimension of the tangent space to any point in a metric space is
the same as that of the metric space.

dim(TxM) = dim(M)

Definition 2.4. Let f : U → V be a differentiable mapping from a domain U of
an m-dimensional metric space into a domain V of an n-dimensional metric space,
and let φ : I → U be a differentiable mapping from an interval of the time axis into
the domain U which leaves the point x ∈ U at time t = 0. The derivative of the
mapping f at the point x is the mapping

f∗x : TxU → Tf(x)V

which carries the velocity vector v leaving the point x of the curve φ into the velocity
vector f∗x(v) leaving the point f(x) of the curve f(φ), i.e.

(2.5) f∗x(v) = f∗x

(dφ
dt

∣∣∣
t=0

)
=
df(φ)

dt

∣∣∣
t=0

Remark 2.6. The mapping f∗x is independent of the choice of any particular coor-
dinate system, but if such a system is chosen f∗x may be written in terms of the
coordinates of the vector f∗x(v) as the Jacobian matrix of (∂f/∂x):

(2.7) (f∗x(v))i =
∑
j

∂fi
∂xj

vj

To see why the same index i can be used for both f∗x(v) and f , as well as the same
index j for both v and x, recall that dim(TxU) = dim(U), and also dim(Tf(x)V ) =
dim(V ).
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We now introduce the Lipschitz condition, along with an important circumstance
under which it holds.

Definition 2.8. Let A : M1 → M2 be a mapping of the metric space M1 (with
metric ρ1) into the metric space M2 (with metric ρ2), and L a positive real number.
The mapping A satisfies a Lipschitz condition with constant L (written A ∈ LipL)
if

(2.9) ρ2(Ax,Ay) ≤ Lρ1(x, y) ∀x, y ∈M1,

i.e. if it increases the distance between any two points of M1 by a factor of at most
L. A satisfies a Lipschitz condition (or simply is Lipschitz) if there is some L for
which A ∈ LipL. L is called the Lipschitz constant of A.

Theorem 2.10. Let f : U → Rn be a smooth mapping (f ∈ Cr, r ≥ 1) from
U ⊆ Rm to Rn, x ∈ U . Then f satisfies a Lipschitz condition on each convex
compact subset V of U , with Lipschitz constant L equal to the supremum of the
derivative of f on V :

(2.11) L = sup
x∈V
|f∗x|

Proof. Take any two points x, y ∈ V and join them together with a line segment:

z(t) = x+ t(y − x), 0 ≤ t ≤ 1

Since V is convex, z(t) ∈ V ∀t ∈ [0, 1]. Now,∫ 1

0

d

dt
(f(z(t)))dt = f(z(1))− f(z(0)) = f(y)− f(x)

and ∫ 1

0

d

dt
(f(z(t)))dt =

∫ 1

0

df

dz

∣∣∣
z(t)

dz

dt
(t)dt =

∫ 1

0

f∗z(t)(y − x)dt.

Examining the absolute magnitude of this integral, we find∣∣∣ ∫ 1

0

f∗z(t)(y − x)dt
∣∣∣ ≤ ∫ 1

0

|f∗z(t)(y − x)|dt ≤
∫ 1

0

|f∗z(t)||y − x|dt

≤
(∫ 1

0

|f∗z(t)|dt
)
|y − x| ≤

(∫ 1

0

Ldt
)
|y − x|

= [L · 1− L · 0]|y − x| = L|y − x|

We have thus determined that for any two points x, y ∈ V ,

|f(y)− f(x)| =
∣∣∣ ∫ 1

0

f∗z(τ)(y − x)dτ
∣∣∣ ≤ L|y − x|,

and hence that f satisfies a Lipschitz condition on V with constant L. �

Note 2.12. Since f ∈ C1, the mapping f∗ = df
dx , which takes a given x and returns

the mapping f∗x, is continuous. Since V is compact, |f∗x| actually attains its
maximum value L.
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3. Contraction and Picard Mappings

Now we introduce the two types of functions that will be at the heart of our final
proof.

Definition 3.1. Let M be a metric space with metric ρ, and A : M → M a
mapping. A is called a contraction mapping, or contraction, if there exists some
constant λ, 0 < λ < 1, such that

(3.2) ρ(Ax,Ay) ≤ λρ(x, y) ∀x, y ∈M.

λ is called the contraction constant of A.

Remark 3.3. contraction⇒ Lipschitz condition⇒ continuity

Definition 3.4. x ∈M is called a fixed point of a mapping A : M →M if Ax = x.

Theorem 3.5. (Contraction Mapping Theorem) Let A : M →M be a contraction
mapping of a complete metric space M (with metric ρ) into itself. Then A has one
and only one fixed point. For any point x in M , the sequence of images of the point
x under applications of A,

x, Ax, A2x, . . . ,

converges to the fixed point.

Proof. Let ρ(x,Ax) = d, for some x ∈M . By induction,

ρ(Anx,An+1x) ≤ λnd ∀n ∈ N.

Since 0 < λ < 1, the series
∑∞

n=1
λn converges, and therefore

∑∞

n=1
λnd con-

verges as well. This means that ∀ε > 0, there is an N0 such that ∀p, q ≥ N0 (assume
q > p),

ε >
∑q−1

n=p
λnd ≥

∑q−1

n=p
ρ(Anx,An+1x) ≥ ρ(Apx,Aqx),

the last arising from successive applications of the triangle inequality. The sequence
{Anx}n∈N is thus Cauchy, and converges because of the completeness of M . Thus,
for every x ∈M there is some X such that

X = lim
n→∞

Anx.

Now,
AX = A lim

n→∞
Anx = lim

n→∞
Anx = X,

so X is a fixed point of A. If Y is also a fixed point of A,

ρ(X,Y ) = ρ(AX,AY ) ≤ λρ(X,Y ),

and 0 < λ < 1, which can only be true if ρ(X,Y ) = 0, making X = Y . Thus A has
one and only one fixed point, given by lim

n→∞
Anx for any x ∈ A. �

Definition 3.6. Given a point (t0, x0) ∈ R× Rn as well as a differential equation
ẋ = v(t, x), where x ∈ Rn, v a vector field over R× Rn, define the Picard mapping
to be the mapping P that takes a function φ : t → x to the function Pφ : t → x,
where

(3.7) (Pφ)(t) = x0 +

∫ t

t0

v(τ, φ(τ))dτ.

Remark 3.8. (Pφ)(t0) = x0 for any φ.
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Theorem 3.9. The mapping φ : I → Rn is a solution to ẋ = v(t, x) with the initial
condition φ(t0) = x0 if and only if φ = Pφ.

Proof. Assuming φ = Pφ,

φ(t) = x0 +

∫ t

t0

v(τ, φ(τ))dτ,

meaning φ̇ = v(t, φ(t)), φ(t0) = x0.
Assuming φ is a solution to ẋ = v(t, x) with the initial condition φ(t0) = x0,

φ̇ = v(t, φ(t)), φ(t0) = x0,

meaning

φ(t) = x0 +

∫ t

t0

v(τ, φ(τ))dτ,

and so φ = Pφ. �

The solution to a first-order differential equation is the “fixed point” of a Picard
mapping, and the Contraction Mapping Theorem gives us the conditions under
which a contraction mapping has one and only one fixed point. Thus, if we can
construct a mapping that incorporates both of these types of functions in just the
right way, we could take advantage of the existence and uniqueness of a contraction
mapping’s fixed point to prove the existence and uniqueness of the solution to our
differential equation.

4. A Priori Bounds for the Solution

If v is differentiable at the point (t0, x0) ∈ U (which it must be), then some
neighborhood C around that point must lie within U. Specifically, if we choose
small enough numbers a and b,

(4.1) C =
{
t, x

∣∣∣ |t− t0| ≤ a, |x− x0| ≤ b} ⊂ U
Geometrically, this region corresponds to the surface and enclosed volume of an
n + 1-dimensional cylinder in R × Rn, oriented along the t-axis and centered at
(t0, x0). This cylinder is a closed and bounded subset of a Euclidean space, and is
thus compact.

Since v is continuous over U and hence C, |v| attains its supremum over C.
Similarly, v∗ = dv

dx is continuous over C (since v ∈ Cr≥1), and so |v∗| attains its
supremum over C. Both of these suprema are thus known to be finite constant
numbers; let

(4.2) c = sup
C
|v|, L = sup

C
|v∗|

The choice of the letter L for the latter constant is intentional. We will construct
a function based on v which satisfies a Lipschitz condition on each convex compact
subset of U , including the cylinders C, with Lipschitz constant L on those cylinders.
For now, though, let us dissect C into some useful subregions. Consider one such
region

K0 =
{
t, x

∣∣∣ |t− t0| ≤ a′, |x− x0| ≤ c|t− t0|}
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corresponding to the cone with vertex (t0, x0), aperture c and height a′ oriented
along the t-axis. If a′ is sufficiently small, this cone lies within the cylinder C.
Specifically, since |x− x0| ≤ c|t− t0| ≤ ca′, then a′ = min(a, bc ) will do.

For |x′ − x0| ≤ b′, we can construct

(4.3) Kx′ =
{
t, x

∣∣∣ |t− t0| ≤ a′, |x− x′| ≤ c|t− t0|}
with the same size, shape and alignment as K0 but shifted to the vertex (t0, x

′). If
both a′ and b′ are sufficiently small, all of these cones will be in C. Taking advantage
of the triangle inequality, we find

b = ca′ + b′ ≥ |x− x′|+ |x′ − x0| ≥ |x− x0|

to give the bound on x we need, so let b′ = b
2 and a′ = min(a, b2c ). In fact, a′ will

need one more bound later on, namely the condition a′ < 1
L (we are ignoring the

trivial case L = 0), so let us go ahead and apply it now:

(4.4) a′ = min(a,
b

2c
,

1

2L
).

We will look for the solution φx′ : R→ Rn of (1.1) with initial condition φx′(t0) =
x′, expressed in the form φx′(t) = x′+h(t, x′), though we can now remove the prime
on x:

(4.5) φx(t) = x+ h(t, x)

Since our solution starts at some initial x within distance b′ of some x0, and is
defined for at least those t within distance a′ of t0, let us construct a map

(4.6) φ :
{
t, x

∣∣∣ |t− t0| ≤ a′, |x− x0| ≤ b′}→ Rn,

defined by

(4.7) φ(t, x) = φx(t)

This φ is the “general” solution, which may be narrowed down to a “particular”
solution φx by supplying the initial condition x.

Lemma 4.8. For any solution φx, the point (t, φx(t)) lies within the cone Kx for
all t such that |t− t0| ≤ a′.

Proof. The initial point (t0, x) is the cone’s vertex. Since c was chosen to be the
largest value of v anywhere in C, the fact that v is the time derivative of the solution
means that a tangent line to the curve can never have a slope whose magnitude is
greater than c, i.e. for any point (t, φx(t)),∣∣∣φx(t)− x

t− t0

∣∣∣ ≤ c,
or equivalently

|φx(t)− x| ≤ c|t− t0|.
The appropriate constraint on φx(t) is thus satisfied (the constraint on t is covered
in the lemma’s statement), and so (t, φx(t)) is in Kx for any t close enough to
t0. �
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5. The Contraction Mapping

Any contraction mapping takes some metric space into itself, so let us first define
the metric space we will use. Recall that we are trying to equate the fixed point
of our contraction mapping with the solution to (1.1), so this metric space should
include all the mappings which could possibly be solutions. We will in fact proceed
at a step removed, and consider the space of all functions h(t, x) which, added to
x, could give us a solution φx with initial condition φx(t0) = x.

Some necessary constraints follow from the boundary we set up above. If we are
given some central initial condition (t0, x0), the map φ should take a point (t, x)
from the region |t − t0| ≤ a′, |x − x0| ≤ b′ to Rn. The map h must then also be
over this region.

(5.1) h :
{
t, x

∣∣∣ |t− t0| ≤ a′, |x− x0| ≤ b′}→ Rn

We have found that any φx(t) = x+ h(x, t) must lie within the cone Kx, so

(5.2) |φx(t)− x| ≤ c|t− t0|
Equate |φx(t)− x| = |x+ h(t, x)− x| = |h(t, x)| to get

(5.3) |h(t, x)| ≤ c|t− t0|
Finally, since φx must be a differentiable function in order to be a solution, it

must be continuous on the domain over which it is a solution; therefore, so must
φx(t)− x = h(t, x). This turns out to be the last condition we need to consider, so
denote by M (with the central point (t0, x0) understood) the set of all continuous
mappings h satisfying conditions (5.1) and (5.3).

Remark 5.4. h(t0, x) = 0 for any h ∈M, x ∈ C, where 0 is the zero vector in Rn.

To make M a metric space, define a metric ρ on M by

(5.5) ρ(h1, h2) = ‖h1 − h2‖ = sup|h1(t, x)− h2(t, x)|
Since every h is a continuous function over a closed and bounded cylinder of a

Euclidean space, this supremum is actually attained.

Remark 5.6. The metric space (M,ρ) is complete.

Define a mapping A : M →M by

(5.7) (Ah)(t, x) =

∫ t

t0

v(τ, x+ h(τ, x))dτ

for |x − x0| ≤ b′, |t − t0| ≤ a′. Clearly (τ, x + h(τ, x)) is in the domain of v for
any (τ, x) in the appropriate region, but we should be careful to check that Ah is
in fact an element of M .

Lemma 5.8. For all h ∈M , Ah ∈M .

Proof. Take any h ∈M . By construction, Ah is a function that satisfies (5.1).

|(Ah)(t, x)| =
∣∣∣ ∫ t

t0

v(τ, x+ h(τ, x))dτ
∣∣∣ ≤ ∫ t

t0

|v(τ, x+ h(τ, x))|dτ

≤
∫ t

t0

cdτ = |c · t− c · t0| = c|t− t0|,

meaning Ah satisfies (5.3).
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The function h is continuous for any (τ, x) in its domain, so the point (τ, x +
h(τ, x)) varies continuously with (τ, x), and since v is also continuous on its domain,
v varies continuously with (τ, x) as well. Taking the integral will then result in a
continuous function of the boundary terms taken at (t, x) and (t0, x). Thus Ah is a
continuous function of (t, x) which satisfies (5.1) and (5.3), meaning Ah ∈M . �

As you may have guessed from this section’s title, A is the contraction mapping
we have been looking for.

Theorem 5.9. A is a contraction mapping.

Proof. We need to show that, for any h1, h2 ∈M, ‖Ah1 −Ah2‖ ≤ λ‖h1 − h2‖ for
some constant 0 < λ < 1. Let us then construct the mapping Ah1 −Ah2.

(Ah1)(t, x) =

∫ t

t0

v(τ, x+ h1(τ, x))dτ (abbreviated

∫ t

t0

v1dτ)

⇒ (Ah1 −Ah2)(t, x) =

∫ t

t0

v1dτ −
∫ t

t0

v2dτ =

∫ t

t0

(v1 − v2)dτ

For a fixed (τ, x), v will act as a mapping that takes hi(τ, x) to v(τ, x + hi(τ, x)).
As v was assumed to be continuously differentiable over its domain, we invoke
2.10 to find that v satisfies a Lipschitz condition on each convex compact subset
of its domain, and therefore on each cylinder C of U (actually, since τ is fixed but
x+hi(τ, x) varies with hi(τ, x), the domain over which v varies is only the x-portion
of C). Theorem 2.10 also gives us the Lipschitz constant, L(τ) = sup

|x−x0|≤b
|v∗|, where

I have emphasized the fact that this L depends on the choice of the constant τ .
Thus for all points (τ, x),

|v1(τ, x)− v2(τ, x)| ≤ L(τ)‖h1 − h2‖
As seen earlier, the magnitude of any mapping in M attains its supremum at some
point in its domain, so

‖Ah1 −Ah2‖ = sup|Ah1(t, x)−Ah2(t, x)| = |Ah1(tm, xm)−Ah2(tm, xm)|
for some (tm, xm) ∈ C. Therefore

‖Ah1 −Ah2‖ =
∣∣∣ ∫ tm

t0

(v1(τ, xm)− v2(τ, xm))dτ
∣∣∣ ≤ ∫ tm

t0

|v1(τ, xm)− v2(τ, xm)|dτ

≤
∫ tm

t0

L(τ)‖h1 − h2‖dτ =

∫ tm

t0

L(τ)dτ‖h1 − h2‖

In (4.2), L (without the parenthetical τ) was designated the supremum of |v∗| over
all of C, i.e. over both the t and x domains, meaning that

‖Ah1 −Ah2‖ ≤
∫ tm

t0

L(τ)dτ‖h1 − h2‖ ≤
∫ tm

t0

Ldτ‖h1 − h2‖

= L|tm − t0|‖h1 − h2‖ ≤ La′‖h1 − h2‖

Lastly, we take advantage of the extra bound we placed on a′ in (4.4) to find that
La′ ≤ L 1

2L = 1
2 < 1. Thus, for all h1, h2 ∈M ,

‖Ah1 −Ah2‖ ≤ La′‖h1 − h2‖, 0 < La′ < 1

making A a contraction mapping. �
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6. The Picard Mapping; Proofs of Existence and Uniqueness
Theorems

With A thus known to be a contraction mapping over a complete metric space,
we now apply the Contraction Mapping Theorem and guarantee the existence and
uniqueness of its fixed point h0 ∈M . Our goal now is to incorporate this in a Picard
mapping of potential solutions to (1.1), using the existence and uniqueness of h0
to confirm the existence and uniqueness of the fixed point of the Picard mapping,
which will in turn prove our main theorems.

First recall that we are looking for solutions expressed in the form φx(t) =
x+ h(t, x). When h is a fixed point of A, this equals x+ (Ah)(t, x), and when the
solution is a fixed point of our Picard mapping, φx(t) will equal (Pφx)(t). Simply
plugging in both of these identities into the desired form of our solution, in fact,
gives us precisely the mapping we need.

(Pφx)(t) = x+ (Ah)(t, x)

= x+

∫ t

t0

v(τ, x+ h(τ, x))dτ

= x+

∫ t

t0

v(τ, φx(τ))dτ

(6.1)

The mapping P is then a Picard mapping of functions φx(t) = x+ h(t, x), and by
theorem 3.9, φx is a solution to ẋ = v(t, x) with φx(t0) = x if and only if φx = Pφx.
We can now prove the existence of a solution of (1.1) satisfying any initial condition
in the domain of v, as well as the fact that this solution depends continuously on the
initial condition. After all the hard work spent proving the previous theorems, the
present proof is surprisingly straightfoward, though we should take care to specify
what is used to construct what.

Proof of 1.3 (The Existence Theorem). Given v(t, x) as well as (t0, x0), demarcate
a neighborhood C around the central point and use it to define the constants a′, b′;
also construct the metric space M , contraction mapping A, and Picard mapping
P , as determined by v, C, and the central point. Since M is a complete metric
space, the fixed point h0 of A must exist by the Contraction Mapping Theorem.
The function g : R× Rn → Rn given by

g(t, x) = x+ h0(t, x)

is therefore always well-defined in a neighborhood of (t0, x0). Applying the Picard
mapping,

(Pg)(t, x) = x+ (Ah0)(t, x) = x+ h0(t, x) = g(t, x)

which proves that, by theorem 3.9, g is a solution of the differential equation which
satisfies the initial condition g(t0, x) = x, as long as t is in a neighborhood of the
point t0 defined by |t − t0| ≤ a′ and x is any point such that |x − x0| ≤ b′. The
function which returns the value x is continuous on R × Rn, h0 is continuous by
construction, and the sum of any two continuous functions is continuous over the
same domain, so g, a function of t and x, is continuous over its domain. Thus, the
solution depends continuously on the initial point x. �

Uniqueness immediately follows.
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Proof of 1.4 (The Uniqueness Theorem). Construct the neighborhood and mappings
as above, but now set b′ = 0, which restricts the initial x under our consideration to
the specific point x0. Find the solution g(t, x0) = x0 + h0(t, x). The uniqueness of
the fixed point h0 guarantees that this is the only solution with the initial condition
x0 that can be expressed in the form x+ h(t, x).

Now consider any solution φx0 with φx0(t0) = x0. By lemma 4.8, φx0(t) ∈ K0 for
all t in our neighborhood. By (5.2), |φx0(t)−x0| ≤ c|t−t0|, and so φx0(t)−x0 satisfies
(5.3); label this quantity hφ(t, x0). This new function also clearly satisfies (5.1),
and furthermore, since any solution φ must be continuous, hφ is also continuous.
The function hφ therefore satisfies all the requirements of belonging to M , and
φx0

(t) = x0 + hφ(t, x0), meaning all possible solutions to the differential equation
with the given initial condition are expressable in the form φx0 = x0 + h(t, x0)
for h ∈ M . As there is only one such function possible, the solution g is thus
unique. �
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