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isolated if there is a neighborhood about p which contains no other point of
S Note that any interior point of a set is also a cluster point, since a ball
always contains infinitely many points. Every point in the closure of a set is
either an isolated member of the set or a cluster point for the set. In the
example in Fig. 1-22, (0, 2) is an isolated point, but (0, 0) is a cluster point.

The subject of this book is analysis and not elementary topology; the
topological terminology and concepts appear in this chapter because they will
be useful tools in the study of functions on R” that will follow in subsequent
chapters. Our purpose is therefore not to study all the interconnections and
implications of the various definitions, but to explain them and state certain
useful relations. The following list summarizes a number of these basic
properties, to be used whenever they are found helpful.

(i) If A and B are open sets, SO are Au Band AN B.

(ii) The union of any collection of open sets is open, but the
intersection of an infinite number of open sets need not be
open.

(i) If A and B are closed sets, so are AU Band A N B.

(iv) The intersection of any collection of closed sets is a closed set,
but the union of an infinite number of closed sets need not be
closed.

(v) A set is open if and only if its complement is closed.

(1-29) (vi) 'irnhes interior of a set S is the largest open set that is contained
(vii) The closure of a set S is the smallest closed set that contains S.
(viii) The boundary of a set S is always a closed set and is the

intersection of the closure of S and the closure of the com-

plement of S.
(ix) AsetSis closed if and only if every cluster point for S belongs

to S.
(x) The interior of a set S is obtained by deleting every point in

S that is on the boundary of S.

Each of these can be verified by a proof based on the definitions given
above. We present this only for the first two assertions in the list, to show the

nature of the proofs.

PrOOF OF (i) Suppose that 4 and B are open sets. To show that A v B
is open, suppose that pg belongs to A U B. Then pg is in A or it is in B.
In either case, p, is the center of an open ball that is a subset of 4 or a
subset of B, since A and B are themselves open and p, must be interior
to one of them. This open ball is then a subset of A v B, and p, is there-
fore interior to 4 U B. Every pointof A v B is therefore interior to 4 v B,
and A U B is open. The proof that A ~ B is open is slightly different. Let
p, be any point in 4~ B: we must show that pg is interior to A N B.
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2.2 BASIC DEFINITIONS

Let f be a numerical-valued function, defined on a region D in the plane.
Suppose that we interpret f (p) to be the temperature at the point p. Then,
the intuitive notion of continuity can be described by saying that the temperature
on a small neighborhood of any point p, in D will vary only slightly from that
at p,: moreover, we feel that these variations can be made as small as we like
by decreasing the size of the neighborhood. This behavior can be shown on
a graph of f. In Fig. 2-1, we have shown the range of variation in the values
of a function of one variable when x is confined to a neighborhood of a
point x,; note also that the size of neighborhood needed to attain the same
limitation of variation may be smaller at another point.
Formally, we are led to the following.

Definition 1 A numerical-valued function f, defined on a set D, is said to
be continuous at a point p, € D if, given any number ¢ > 0, there is a
neighborhood U about p, such that | f(p) = f(po)| <& for every point
peU A D. The function f is said to be continuous on D if it is continuous
at each point of D.

The work of checking from this definition that a specific function is
continuous can be easy or difficult, depending upon how the function has
been described and how simple it is. As a start, let us show that the function
F given by F(x,y)= x2 + 3y is continuous on the unit square S consisting

Figure 2-1
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It is also easy to see that “convergence preserving” is a characteristic
property of continuous functions.

Theorem 2 If a function f defined on D has the property that, whenever
p, € D and lim p, = p, € D, then it follows that lim _ f(p,) =f(po), then
f is continuous at p, .

It is easiest to prove this by an indirect argument. Assume that [ is
convergence preserving but that f is not continuous at p, . If the definition
of continuity (Definition 1) is read carefully, one sees that, in order for f not
to be continuous at p,, there must exist a particular value of ¢ > 0 such
that no neighborhood U can be found to satisfy the required condition.
(There is a routine for carrying out the logical maneuver of constructing
the denial of a mathematical statement in a semimechanical fashion; those
who have difficulty reasoning verbally will find it explained in Appendix 1.)
Thus if f is not continuous at py, and we think of trying a specific neigh-
borhood U, then it must fail because there is a point p of D in U with
| £(p) — f(po)| = & If we try U in turn to be a spherical neighborhood of
radius 1, 4, 3, 4, ... and let U, therefore be

all p with |p — po| < }1}
then there must be a point p,e U, n D with | f(p,) —f(p)| > e. Since
p, € Uy, |Py— Po| < 1/n and lim p, = po. We have therefore produced a
sequence {p,} in D that converges to po, but such that f(p,) does not converge
to f(po). This contradicts the assumed convergence-preserving nature of f
and forces us to conclude that f was continuous at py. |

Theorem 2 is more useful as a way to show that a specific function is not
continuous than it is as a way to show that a function is continuous. To use
it for the latter purpose, one would have to prove something about {f(p,)} for
every sequence {p,} converging to py, and there are infinitely many such
sequences. However, if there is one sequence {p,} in D which converges t0 p,,
but for which {f(p,)} is divergent, then we know at once that fis not continuous
at p,. For example, let f be defined on the plane by

xy?
(2-2) £l y)=9x*+°
0 x=y=0

(x, y) # (0,0)

We want to see if f is continuous at (0,0). Among the sequences that
approach the origin, look at those of the form p, = (1/n, ¢/n). As ¢ takes on
different values, the sequence p, will approach (0, 0) along different lines, taking
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This describes a mapping F from a square in the UV plane into 3-space. As the
point p = (u, v) moves throughout the square, the image point F(p) = (x, y, z)
moves in space, tracing out the shape shown in Fig. 1-16. Thus, F(1,0) = (1,2, 1)
and F(0, 1) = (1, 0, 0). Other similar pictures will be found in Chap. 8, especially
Fig. 8-17, 8-18, and 8-20, which show more complicated examples. The study
of curves and surfaces is one of the more difficult areas of analysis, and some
aspects of this are treated there as an application of the tools to be developed.

We will also study functions that map a portion of R" into R". An illustra-
tion is the function F from 3-space into 3-space described by the formula
F(x,y,2) = (u, v, w) where

*u:x—y
fv=y2 42z
Jw:yz«f—bc2

For example, we have F(1, 2, 1)=(-1,6,5)and F(1, —1, 3)=1(2,7,0).

All these cases can be subsumed under one general formula. A mapping F
from R" into R™ has the form y = F(x), where we write x = (05535 5 ey x,) and
Y= ¥3,...,¥,) and where

1}’1 :f(xl,xz,...,xn)

(1-26) po =X e s bt

‘y,,1 s dolosyy oy 15 x,)
Here, f,g,h, ..., karem specific real-valued functions of the 7 real variables x,,
X3, ..+, X,. Such functions as F are often called transformations to emphasize

their nature; the study of their properties is one of the central topics of later
chapters in this book.

Side by side with the view of a function as a mapping 4 — B, there is also
the equally important and useful idea of its graph. If f is a function of one
variable, with domain D = R, then the graph of fis the set of all points (x, )
in the plane, with x e Dand y = f (x). The graph of a function of two variables
is the set of points (x, y, z), with (x,y) in the domain of the function f and
with z = f(x, y). Generalizing this, if f is a function on 4 into B,

fiA—>B

then the graph of f'is the set of all ordered pairs (a, b), witha e 4 and b = f(a).
It is customary to use the term cartesian product of 4 and B, written as 4 x B,
to denote the class of all possible ordered (a, b), with ae 4 and b e B. The
graph of fis therefore a special subset of 4 x B. By analogy, (a, b) is often called
apointin 4 x B, and the graph of f can be visualized as something like a curve
in the space 4 x B (see Fig. 1-17).

Let us apply this to a numerical-valued function f of three real variables.
Suppose that the domain of fis a set D = R3, Since f is numerical-valued, its
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A linear transformation is continuous everywhere, since this is clearly true
for a linear function. More than this is true; any linear transformation from
R" into R™ is everywhere uniformly continuous. This is equivalent to the next
theorem.

Theorem 8 Ler L be a linear transformation from R” into R™ represented

by the matrix [a;;]. Then, there is a constant B such that |L(p)| < B|p]| for
all points p.

We shall find that th ber | S a2l will for B. Put
€ Sha n a € num erlLL ‘ W1l serve Ior . u

p=(x1,Xz,...,x,) and g = L(p) = (yy, y3, ..., ym) SO that

n
=>a
;.,

= 1

We have |p|* = } and [q|*= > _ |»[* Accordingly,

y
Siz uw <Z|auiz$|x —1p|222a1,12

j=1 j=1 j=1 j=1

l'J

where we have used the Schwarz inequality (Sec. 1.3):
(Z akbk)z SZ 1ak}zz |bil?

Adding these for i =1, 2, ..., m, we obtain

2 , N
g = nf? 24 Ja

i—l i=1 j=1

and |L(p)| = |q| < B|p| where B = Z UIZ;‘/? |

It should be remarked that the number B which we have found is not the
smallest number with this property. For example, the transformation L specified
by the identity matrix

1 0
0 1

is such that |L(p)| = |p|, while the theorem provides the number
B=.2>1

However, this is not the case for linear functions. Let L be specified by the row
matrix [cy, ¢,, ..., ¢,]. Then, according to the theorem,
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or the directional derivative of f at p, in the direction f, is defined to be

f(po + tB) ~ (po)
t

(3-6) (D, f)(po) = lim

t—=0

As an illustration, let f (x, y) = x* + 3xy, pp = (2,0), and f = (1//2, = 1//2).
(Note that this specifies the direction —45°.)
Since p, + 1f = 2+ t/\/2, —t/ﬁ), we have

Flp +tf) = 2+ 1/2) +32+ t//2)(=1/y/2)

2
e B s f e P
2

J

Accordingly,

(D, )po) =

=0

2
J2
If we hold p, the same and vary B, the value of (Dﬂf)(po) need not

remain the same. Intuitively, it is clear that reversal of the direction B ought
to reverse the sign of the directional derivative. Indeed,

(D_, 1)(po) = lim £(po = tB) =/ (po)

=0

If we put A = —t, we have

so that (D_, £)(po) = — (D, f)(po), as conjectured.

The partial derivatives of a function f of n variables are the directional
derivatives that are obtained by specializing f§ to be each of the basic unit
vectors (1,0,0,...,0), (0,1,0, SR ) T (i 1 S o 1) in turn. There are a
variety of notations in use; depending upon the circumstances, one may be
more convenient than another, and the table below gives most of the more
common ones. Since the case of three variables is typical, we treat this alone.

A preliminary word of caution and explanation is needed. Tt is customary
to use certain notations in mathematics, even when this can lead to confusion
or misunderstandings. In particular, this is true of partial derivatives; the




Figure 1-12 Convexity.

In a similar manner, it is possible to show that if A > 1, the point p lies
on the portion of the line L that is beyond g,, and if 4 <0, on the portion
beyond g,. Finally, we note that formula (1-21) is in fact the same as the
parametric equation (1-20), substituting q; for po, 4, — 4, for v, and A for t.

Another important geometric concept which is conveniently described in
terms of the ideas of the present section and which is suitable for n space is that
of convexity. In the plane, a region C is said to be convex if it always contains
the line segment joining any two points in the region (see Fig. 1-12). This
definition is used in space as well and carries over at once to R™

Definition 1 A set C in n space is convex if it has the property that, whenever
two points p and q are in C, then so are all points of the form

(1-22) Ap+ (1 —A)q 0<i<l1

An important example of a convex set in n space is the solid spherical
ball, which we define as follows:

(1-23) B(p,, ) = {all p with |p — po| <1}

= the open ball, center p, radius r

In 3-space, this is the interior of an ordinary sphere; in the plane, it is a round
disc without the edge: in 1-space, B(x,, r) is the real interval consisting of the
numbers x that obey x, —r < x < Xy + 7.

Let us show that the ball B(0, r) is convex. Suppose that p and q lie in B,
so that |p| < r and |g| < r. Choose any 4,0 < A< 1; we must show that the
point Ap + (1 — 4)q lies in B. We calculate its distance from 0. Using the

triangle inequality, we have

|p + (1 = A)g — 0] < |4p| + (1 — A)q|
< Alp|+ (1= 44l
<ir+(1=Ar=r
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cach subinterval [x,, x, ], it is clear that we have proved this uniformly
throughout the entire interval [a, b], and IF-fll<e W

It is interesting to note that the process given in (2-6) for obtaining
the values of the approximating function F at points x intermediate between
x, and X, is nothing more nor less then ordinary linear interpolation, as it
is standardly done in mathematical tables.

For functions of two or more variables, a similar process can be used,
obtaining approximate values for a function f by interpolating from the values
at a discrete set of points. In two variables, for example, one can use linear
interpolation in triangles to replace the formula given in (2-6) (see Exercise 10).

In order to apply these methods to construct uniform approximations to a
given function f, one must know a value of & that is appropriate for a given &.
There is one case in which this step is simple.

Definition 4 A function f'is said to obey a Lipschitz condition on the set D if
there is a constant M such that

|f(p)—f(a)| < M|p— 4
for every choice of p and q in D.

When this happens, it is clear that fis uniformly continuous on D and that

we may choose & = ¢/M. For, if [p — q| < 6, then | f(p) —f(g)|=Mé<e In
Sec. 3.2 we will see that any function of one variable that has a continuous

derivative on an interval [a, b] obeys a Lipschitz condition on that interval. An
analogous result will also be proved later for functions of several variables.

EXERCISES

1 Show that F(x, y) = x* + 3y is not uniformly continuous on the whole plane.
2 Prove that the function f(x) = 1/(1 + x?) is uniformly continuous on the whole line.
3 Let fand g each be uniformly continuous on a set E. Show that f + ¢ is uniformly continuous
on E.
4 Let A and B be disjoint sets, and let f be continuous on 4 and continuous on B. When is it
continuous on A U B?
5 Let A and B be disjoint closed sets and suppose that f is uniformly continuous on each.
(a) Show that fis necessarily uniformly continuous on A v B if A is compact.
(b) Show that f need not be uniformly continuous on A w B if neither A4 nor B is compact.
6 If f is uniformly continuous on D, show that it has the property that if p,, g,€D and
|p, — s = 0, then | f(p,) = /()| = 0.
7 Let D be a bounded set and let f be uniformly continuous on D < R". Prove that f is bounded
on D.
8 Let f be a function defined on a set E which is such that it can be uniformly approximated
within ¢ on E by functions F that are uniformly continuous on E, for every ¢ > 0. Show that f must
itself be uniformly continuous on E.
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