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1. Introduction

The mathematical study of the genetic inheritance began in 1856 with the works of
Gregor Mendel, who was a pioneer in using mathematical notation to express his genetics
laws. After relevant contributions of authors as Jennings (1917), Serebrovskij (1934) and
Glivenko (1936), to give an algebraic interpretation of the sign x of sexual reproduction,
a precise mathematical formulation of Mendel’s laws in terms of non-associative algebras
was finally provided in the well-known papers [9,10]. Since then, many works pointed out
that non-associative algebras are an appropriate mathematical framework for studying
Mendelian genetics [2,17,21,24]. Thus, the term genetic algebra was coined to denote
those algebras (most of them non-associative) used to model inheritance in genetics.

Recently a new type of genetic algebras, denominated evolution algebras, has emerged
to enlighten the study of non-Mendelian genetics, which is the basic language of the
molecular Biology. In particular, evolution algebras can be applied to the inheritance
of organelle genes, for instance, to predict all possible mechanisms to establish the ho-
moplasmy of cell populations. The theory of evolution algebras was introduced by Tian
in [21], a pioneering monograph where many connections of evolution algebras with
other mathematical fields (such as graph theory, stochastic processes, group theory, dy-
namical systems, mathematical physics, etc.) are established. In this book it is shown
the close connection between evolution algebras, non-Mendelian genetics and Markov
chains, pointing out some further research topics. Algebraically, evolution algebras are
non-associative algebras (which are not even power-associative), and dynamically they
represent discrete dynamical systems. An ewvolution algebra is nothing but a finite-
dimensional algebra A provided with a basis B = {e; | i € A}, such that e;e; = 0,
whenever i # j (such a basis is said to be natural). If e} = >, wire;, then the coef-
ficients w;; define the named structure matrix Mp of A relative to B that codifies the
dynamic structure of A.

In [21], evolution algebras are associated to free populations to give the explicit solu-
tions of a nonlinear evolutionary equation in the absence of selection, as well as general
theorems on convergence to equilibrium in the presence of selection. In the last years,
many different aspects of the theory of evolution algebras have been considered. For
instance, in [18] evolution algebras are associated to function spaces defined by Gibbs
measures on a graph, providing a natural introduction of thermodynamics in the study
of several systems in biology, physics and mathematics. On the other hand, chains of
evolution algebras (i.e. dynamical systems the state of which at each given time is an
evolution algebra) are studied in [5,20,15,16]. Also the derivations of some evolution al-
gebras have been analyzed in [21,3,13]. In [13], the evolution algebras have been used to
describe the inheritance of a bisexual population and, in this setting, the existence of
non-trivial homomorphisms onto the sex differentiation algebra has been studied in [14].
Algebraic notions as nilpotency and solvability may be interpreted biologically as the fact
that some of the original gametes (or generators) become extinct after a certain number
of generations, and these algebraic properties have been studied in [6,4,19,23,7,12.8].
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Once we have given a general overview of evolution algebras, we start to explain the
results in this work.

Since evolution algebras appear after Mendelian algebras, it is natural to ask if these
are evolution algebras. The answer is no, as we show in Example 2.2. The fact that
evolution algebras are not Mendelian algebras is known.

In this paper we deal with evolution algebras of arbitrary dimension. In Section 2
we study the notions of subalgebra and ideal and explore when they have natural bases
and when their natural bases can be extended to the whole algebra (we call this the
extension property) and provide examples in different situations. We also show that the
class of evolution algebras is closed under quotients and under homomorphic images,
but not under subalgebras or ideals and give an example of a homomorphism of evo-
lution algebras whose kernel is not an evolution ideal. The aim of the second part of
this section is the study of non-degeneracy. We show that this notion, which is given in
terms of a fixed natural basis of the algebra, does not depend on the election of the basis
(Corollary 2.19). A radical is introduced (the intersection of all the absorption ideals)
which is zero if and only if the algebra is non-degenerate (Proposition 2.28). The classical
notions of semiprimeness and nondegeneracy are also studied and compared to that of
non-degeneracy (see Proposition 2.30 and the paragraph before). In the last part of this
section we associate a graph to any evolution algebra. This has been done yet in the
literature, although for finite dimensional evolution algebras. The use of the graph will
allow to see in a more visual way properties of the evolution algebra. For example, we can
detect the annihilator of an evolution algebra by looking at its graph (concretely deter-
mining its sinks) and we can say when a non-degenerate evolution algebra is irreducible
(as we explain below).

In Section 3 we use the graph representation and the notion of descendent to describe
the ideal generated by any element in an evolution algebra (Proposition 3.11) and show
that its dimension as a vector space is at most countable (Corollary 3.12). This implies
that any simple algebra has dimension at most countable.

Section 4 is devoted to the study and characterization of simple evolution algebras
(Proposition 4.1 and Theorem 4.7). We also provide examples to show that the conditions
in the characterizations cannot be dropped. We finish the section with the characteriza-
tion of finite dimensional simple evolution algebras (Corollary 4.10).

The direct sum of a certain number of evolution algebras is an evolution algebra in a
canonical way. In Section 5 we deal with the question of when a non-zero evolution algebra
A is the direct sum of non-zero evolution subalgebras. In particular, an evolution algebra
with an associated graph (relative to a certain natural basis) which is not connected
is reducible (see Proposition 5.4). Next, Theorem 5.6 characterizes the decomposition
of a non-degenerate evolution algebra into subalgebras (equivalently ideals) in terms
of the elements of any natural basis. We are also interested in determining when every
component in a direct sum is irreducible. In Corollary 5.8 we prove that a non-degenerate
evolution algebra is irreducible if and only if the associated graph (relative to any natural
basis) is connected.
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The decomposition A = @I, of an evolution algebra into irreducible ideals (called
an optimal decomposition) exists and is unique whenever the algebra is non-degenerate
(Theorem 5.11). To assure the uniqueness, this hypothesis cannot be eliminated (Exam-
ple 5.12).

To get a direct-sum decomposition of a finite dimensional evolution algebra we identify
in the associated graph (relative to a natural basis) the principal cycles and the chain-
start indices through the fragmentation process (Proposition 5.26). This provides an
optimal direct-sum decomposition, which is unique, when the algebra is non-degenerate,
as shown in Theorem 5.27.

In the last section of the paper we provide a program with Mathematica to obtain the
optimal fragmentation of a natural basis. From this we get a direct-sum decomposition
of a reducible evolution algebra starting from its structure matrix.

We have tried to translate the mathematical concepts into biological meaning.

2. Basic facts about evolution algebras

Before introducing evolution algebras we establish in a precise way what we mean by
an algebra in this paper. An algebra is a vector space A over a field K, provided with a
bilinear map A x A — A given by (a,b) — ab, called the multiplication or the product
of A. An algebra A such that ab = ba for every a,b € A will be called commutative. If
(ab)e = a(be) for every a,b,c € A, then we say that A is associative. We recall that an
algebra A is flexible if a(ba) = (ab)a for every a,b € A. Power associative algebras are
those such that the subalgebra generated by an element is associative. Particular cases
of flexible algebras are the commutative and also the associative ones.

The theory of evolution algebras appears in the study of non-Mendelian inheritance
(which is essential for molecular genetics). This is the case, for example, of the bacterial
species Escherichia coli because their reproduction is asexual. In particular, evolution
algebras model population genetics (which is the study of the frequency and interaction
of alleles and genes in populations) of organelles (specialized subunits within a cell that
have a specific function) as well as organisms such as the Phytophthora infestans (an
oomycete that causes the serious potato disease known as late blight or potato blight,
and which also infects tomatoes and some other members of the Solanaceae).

Let us consider a population of organelles in a cell or a cell clone, and suppose that
e1,...,en are n different genotypes in the organelle population. By the non-Mendelian
inheritance the crossing of genotypes is impossible since it is uniparental inheritance.
Thus e;e; = 0 for every ¢ # j. On the other hand, intramolecular and intermolecular
recombination within a lineage provides evidence that one organelle genotype could
produce other different genotypes. Consequently:

n
€i€; = E WkiCk,
k=1



126 Y. Cabrera Casado et al. / Linear Algebra and its Applications 495 (2016) 122-162

where wy; is a positive number that can be interpreted as the rate of the genotype e
produced by the genotype e; (see [21, pp. 9, 10]). Therefore, as pointed out in [21], the
next definition models all the non-Mendelian inheritance phenomena.

Definitions 2.1. An evolution algebra over a field K is a K-algebra A provided with a basis
B = {e; | i € A} such that e;e; = 0 whenever i # j. Such a basis B is called a natural
basis. Fixed a natural basis B in A, the scalars wy; € K such that ef =e;e; = EkeA WEiCk
will be called the structure constants of A relative to B, and the matrix Mp := (wg;) is
said to be the structure matriz of A relative to B. We will write Mp(A) to emphasize
the evolution algebra we refer to. Observe that [{k € A | wg; # 0} < oo for every i,
therefore Mp is a matrix in CFMy (K), where CFM,(K) is the vector space of those
matrices (infinite or not) over K of size A x A for which every column has at most a
finite number of non-zero entries.

According to [21], the product e;e;, where e; is in a finite dimensional natural basis,
mimics the self-reproduction of alleles in non-Mendelian genetics.
Note that an n-finite dimensional algebra A is an evolution algebra if and only if there

is a basis B = {eq,...,e,} relative to which the multiplication table is diagonal:
€1 . €n
n
€1 Y. wriek 0 0
k=1
n
0 Z WEi€k 0
k=1
n
en 0 0 > Wknek
k=1

In this case, the structure matrix of the evolution algebra A relative to the natural
basis B is the following one:

Mp = Lo € M, (K).

Wn1 o Wan

Every evolution algebra is uniquely determined by its structure matrix: if A is an
evolution algebra and B a natural basis of A, there is a matrix, Mg, associated to B
which represents the product of the elements in this basis. Conversely, fixed a basis
B = {e; | i € A} of a K-vector space A, each matrix in CFM, (K) defines a product in
A under which A is an evolution algebra and B is a natural basis.

Now we compute the formula of the product of any two elements in an evolution
algebra. Let A be an evolution algebra and B = {e; | ¢ € A} a natural basis. Consider
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elements a = ), .\ aje; and b=, Bie; in A, with a;, f; € K. Then:

ab = Zazﬂief = Zazﬂi ijiej = Z a;fiwjie;.

ieA icA jen i,jEA

We use this computation to produce examples of evolution algebras which are not
power-associative. Indeed, from the equation above we have

2.2 § § § 2 2
€, ¢ = WEki€Ck Wj;€; = WriCk

keA JEA keA

and

2 2 2 2
(efe;)e; = (( E w;ﬂ-ek> ei> € = wjie;e; = Wi; ( E wkiek> €; = wie;.

keA keA

Thus every matrix (wy;) € CFM, (K) such that w?, # 0, with k # i, gives an example
of an evolution algebra which is not power-associative. In fact, the only evolution alge-
bras which are power-associative are those such that w2 = w;; for every i. Consequently,
evolution algebras are not, in general, Jordan, alternative or associative algebras. Evolu-
tion algebras are not Lie algebras either. However, by definition, every evolution algebra
is commutative and, hence, flexible.

We said at the beginning of this section that evolution algebras are the language of
non-Mendelian genetics. The next example shows that the class of algebras modeling
Mendel’s laws are not included in the class of evolution algebras. More precisely we will
see that the zygotic algebra for simple Mendelian inheritance for one gene with two
alleles, A and a, is not an evolution algebra. For this algebra, according to Mendel laws,
zygotes have three possible genotypes, namely: AA, Aa and aa. The rules of simple
Mendelian inheritance are expressed in the multiplication table included in the example
that follows (see [17] for details and similar examples of algebras following Mendel’s
laws).

Example 2.2. Consider the vector space generated by the basis B = {AA, Aa,aa} pro-
vided with the multiplication table given by:

AA Aa aa
AA AA %AA + %Aa Aa
Aa |2AA+ 340 1AA+ taa+ 3A4a Ltaa+ Aa
aa Aa %aa + %Aa aa

We claim that this is not an evolution algebra.
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Proof of the claim. We will see that this algebra does not have a natural basis. Suppose
on the contrary that there exists a natural basis B’ = {e; | i € {1,2,3}}. For each
i € {1,2,3} we may write ; = a;;AA + as;Aa + ag;aa.

Since e;e; = 0 for each 7,5 € {1,2,3}, with 7 # j, we have that:

40[1j0[11‘ + 20[1]'0121‘ + QOéQjCkh' + Q2509 =0
Q105 + 200035 + Q201§ + Qi) + Q035 + 23005 + aziag; =0

40(3i043j + 2a3¢a2j + 20é2i043j + ;25 =0

for every i,j € {1,2,3}.
We can express these three equations as:

(20&11‘ + 0(21‘)(2041]‘ + Otgj) =0
(2a3; + @9:) (2035 + azj) =0

Q1305 + 2015035 + aojanj + Qoiej + a3 + 2az;0015 + aziaz; =0

Since these identities hold for every i, j € {1,2, 3}, the only option is that there exist
m, n, s € {1,2,3}, with m # n and m # s, such that:

20[1m + oy = 0
20£1n + Qg = 0
20[3m + oy, = 0
20[35 + ags = 0

Now, we distinguish two cases:

Case 1: Suppose that n # s. From (1) we obtain that:

Q1m = Q3m

Qom = —201m,
Qop = _2a1n
Qs = —2034

It follows:

U = Q1m€1 — 201m€2 + Qi3mes
Up = Q1p€1 — 2012 + Q3,63

Vs = Qs€1 — 20353 + Qi3s€3
On the other hand, if we take ¢ =n and j = s in (1), then

Q1nQs + 201,035 + Q2,15 + Q2pO2s + Q2035 + 203n,015 + Q302 = 05
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this means that a1, = asz, or ags = ays. In any case, this is impossible due to the fact
that v, v, and v, are linearly independent.

Case 2: Suppose that n = s, then:

Qip = Q3p
Qom = —201m
Qap = —2a1,

which is impossible because v,, and v,, are linearly independent. 0O
2.1. Subalgebras and ideals of an evolution algebra

In this section we study the notions of evolution subalgebra and evolution ideal. We
will see that the class of evolution algebras is not closed neither under subalgebras
(Example 2.3) nor under ideals (Example 2.7). This last example also shows that the
kernel of a homomorphism between evolution algebras is not necessarily an evolution
ideal (contradicting [22, Theorem 2, p. 25]).

Example 2.3. (See [22, Example 1.2].) Let A be the evolution algebra with natural basis
B = {e1, 2, e3} and multiplication table given by €2 = e1 +e3 = —e3 and €3 = —ea +e€3.
Define u; := e; +e5 and us := e +e3. Then the subalgebra generated by u; and us is not
an evolution algebra as follows. Suppose on the contrary that there exist «, 8,7v,d € K
such that v; = auj + Bus and vo = yu; + dug determine a natural basis of the considered
subalgebra. Since v1ve = (uy + Bug)(yui + duz) = (ad + Bvy)us + Bdus, the identity
v1v9 = 0 and the linear independency of u; and us imply that v, and ve are linearly
dependent, a contradiction.

Because a subalgebra of an evolution algebra does not need to be an evolution algebra
it is natural to introduce the notion of evolution subalgebra. In [21, Definition 4, p. 23]
(and also in [22]), an evolution subalgebra of an evolution algebra A is defined as a
subspace A’, closed under the product of A and endowed with a natural basis {e; | i € A’}
which can be extended to a natural basis B = {e; | i € A} of A with A’ C A. Nevertheless,
we prefer to introduce the following new definition of evolution subalgebra.

Definitions 2.4. An evolution subalgebra of an evolution algebra A is a subalgebra A’ C A
such that A’ is an evolution algebra, i.e. A’ has a natural basis.

We say that A’ has the extension property if there exists a natural basis B’ of A’
which can be extended to a natural basis of A.
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Remark 2.5. Let A be an evolution algebra with basis {e; | i € A’}. As it was said before
every element e; can be interpreted as a genotype. A linear combination . a;e; can be
seen as a single individual such that the frequency of having genotype eiziesAozi.

A subalgebra A’ of A is a population consisting of single individuals, each of which
has a certain frequency of having genotype e; and such that its reproduction (i.e. its
product) remains in A’.

An evolution subalgebra A’ will have the extension property if there exist genotype
sets B’ and B” of A such that B’ is a natural basis of A’ and B’ U B” is a natural basis
of A.

Note that an evolution subalgebra in the meaning of [21] is an evolution subalgebra
in the sense of Definitions 2.4 having the extension property. Thus, this last definition of
evolution subalgebra is natural and less restrictive as Example 2.11 below proves (where
we give an ideal I which is an evolution algebra but has not the extension property).
First, we introduce the notion of evolution ideal.

Recall that a subspace I of a commutative algebra A is said to be an ideal if IA C I.
While in [21] every evolution subalgebra is an ideal, this is not the case with the definition
of ideal given in Definitions 2.4 as the following example shows.

Example 2.6. Let A be an evolution algebra with natural basis B = {ej,es,e3} and
multiplication given by e? = eq, €3 = €1 and €3 = e3. Then, the subalgebra A’ generated
by e1 + e and eg is an evolution subalgebra with natural basis B’ = {e; 4+ eg, e3} but it
is not an ideal as ej(e; +e3) ¢ A'.

On the other hand, not every ideal of an evolution algebra has a natural basis.

Example 2.7. Let A be the evolution algebra with natural basis B = {ej,ea,e3} and
product given by e? = ey + e3, €2 = €1 + e3 and €3 = —(e; + e3). Define u; = e}
and uy := e3. It is easy to check that u; and uy are linearly independent and that the
subspace they generate is

I:={ae; + (a+ B)ea + fes | a, f € K}.
Since eju; = 0, eau; = ug, e3u] = —uUg, €1Us = U1, €2Us = Uz and egus = 0, we have
that I is an ideal of A. Nevertheless, I has not a natural basis because if v; and vy are

elements of I such that vyvs = 0, then vy and vs are not linearly independent. Indeed, if
vy = aey + (o + B)ex + Peg and va = ey + (A + p)ea + pes, for o, B, A, u € K, then

v1ve = adug + [(a+ B)(N + p) — Bplus.

Consequently, if vjvg = 0 then A = 0 and (a+8)(A+u) = Bu. It follows that « = A = 0,
ora=L0=0,or A=p =0, and hence v; and vy are not linearly independent.
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This justifies the introduction of the following definition.

Definition 2.8. An evolution ideal of an evolution algebra A is an ideal I of A such that
I has a natural basis.

Remark 2.9. Biologically, an ideal I of an evolution algebra A is a subalgebra such that
the reproduction (multiplication) of genotypes of A by single individuals of I produces
single individuals in I.

Clearly, evolution ideals are evolution subalgebras but the converse is not true as
Example 2.6 proves (because an evolution subalgebra does not need to be an ideal). Also
Example 2.7 shows that an ideal of an evolution algebra does not need to be an evolution
ideal.

Remark 2.10. In [21, Definition 4, p. 23], the evolution ideals of an evolution algebra A
are defined as those ideals I of A having a natural basis that can be extended to a natural
basis of A. It is shown in [21, Proposition 2, p. 24] that every evolution subalgebra is an
evolution ideal (in the sense of [21]), that is, evolution ideals and evolution subalgebras
are the same mathematical concept. This contrasts with our approach (Definitions 2.4
and 2.8, and Examples 2.6 and 2.11).

We finally show that there are examples of evolution ideals for which no natural
basis can be extended to a natural basis of the whole evolution algebra. In other words,
our definition of evolution ideal is more general than the corresponding definition given
in [21].

Example 2.11. Let A be an evolution algebra with natural basis B = {ej ez, e3} and
multiplication given by €2 = e3, €3 = e1 + e and €3 = e3. Let I be the ideal generated
by e1 + e2 and es. Then I is an evolution ideal with natural basis By = {e; + e2,€3}.
However no natural basis of I can be extended to a natural basis of A. Indeed, if u =
ale] + e3) + Pes, v = y(e1 + e2) + deg and w = Aey + pes + peg is such that the set
{u,v,w} is a natural basis of A, then wv = 0, uw = 0 and vw = 0. This implies the
following conditions: ay = 0, 86 = 0, au =0, oA+ Bp = 0, yu = 0 and YA + dp = 0.
Therefore, the only possibilities are a = d =p=pu=0o0ry==pu=X1=p =0,
a contradiction because {u,v,w} is a basis. This means that I has not the extension
property.

We finish this subsection with the result stating that the class of evolution algebras is
closed under quotients by ideals (see also [11, Lemma 2.9]). The proof is straightforward.

Lemma 2.12. Let A be an evolution algebra and I an ideal of A. Then A/I with the
natural product is an evolution algebra.
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Remark 2.13. Let B := {e; | i € A} be a natural basis of an evolution algebra A and let
I be an ideal of A. Then B,y := {& |i € A,e; ¢ I} is not necessarily a natural basis of
A/I. For an example, consider A and I as in Example 2.7. Then ey, e, e3 ¢ I and hence
Bayr = {é1,e2,e3}, which is not a basis of A/I as the dimension of A/I (as a vector
space) is one. Nevertheless, the set B,4,; always contains a natural basis of A/I.

Given two algebras A and A’, we recall that a linear map f : A — A’ is said to be
a homomorphism of algebras (homomorphism for short) if f(xy) = f(x)f(y) for every
x,y € A.

Remark 2.14. [21, Theorem 2, p. 25] is not valid in general. Let I be an ideal of an
evolution algebra. Then the map w : A — A/I given by n(a) = a is a homomorphism
of evolution algebras (indeed, A/I is an evolution algebra by Lemma 2.12) whose kernel
is I. By [21, Theorem 2, p. 25], Ker(m) = I is an evolution subalgebra in the sense of
[21] and, in particular, I has a natural basis. But this is not always true. For example,
take A and I as in Example 2.7. Then I is not an evolution ideal (i.e. has not a natural
basis), as it is shown in that example.

We finish by showing that the class of evolution algebras is closed under homomorphic
images.

Corollary 2.15. Let f : A — A’ be a homomorphism between the evolution algebras A
and A’. Then Im(f) is an evolution algebra.

Proof. By Lemma 2.12, A/Ker(f) is an evolution algebra. Apply that Ker(f) is an ideal
of A and Im(f) is isomorphic to the evolution algebra A/Ker(f). O

2.2. Non-degenerate evolution algebras

In what follows we study the notion of non-degenerate evolution algebra and introduce
a radical for an arbitrary evolution algebra such that the quotient by this ideal is a
non-degenerate evolution algebra.

Definition 2.16. An evolution algebra A is non-degenerate if it has a natural basis B =
{ei | i € A} such that €? # 0 for every i € A.

Remark 2.17. That a genotype e; in an evolution algebra A satisfies e = 0 means
biologically that it is not able to have descendents. By Corollary 2.19 the evolution

algebra A will be non-degenerate if all of its genotypes can reproduce.

In Corollary 2.19 we will show that non-degeneracy does not depend on the considered
natural basis. Our proof will rely on the well-known notion of annihilator.
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For a commutative algebra A we define its annihilator, denoted by ann(A), as
ann(A) :={z € A|zA=0}.

Proposition 2.18. Let A be an evolution algebra and B = {e; | i € A} a natural basis.
Denote Ao(B) :={i € A | €2 =0}. Then:

(i) ann(A) =lin{e; € B |i € Ao(B)}-
(ii) ann(A) = 0 if and only if Ao = 0.
) ann(A) is an evolution ideal of A.
)

Ao(B)| = |Ao(B’)| for every natural basis B’ of A.

(ii

Q

(iv

Proof. By [11, Lemma 2.7] we have that ann(A) = lin{e; € B | i € Ag}. This implies
(i) and (iii). Item (ii) is obvious from (i) and (iv) follows from the fact that |[Ao(B)| =
dim(ann(4)). O

From now on, for simplicity, we will write Ag instead of Ag(B).

Corollary 2.19. An evolution algebra A is non-degenerate if and only if ann(A) = 0.
Consequently, the definition of non-degenerate evolution algebra does not depend on the
considered natural basis.

Proof. Since A is non-degenerate if and only if Aqg = ), the result follows directly from
Proposition 2.18(ii). O

Remark 2.20. Let A be an evolution algebra and B = {e; | i € A} a natural basis. Denote
Ay :={i € A|e? #0}. Then:

(i) Ay :=lin{e; € B |i € A1} is not necessarily a subalgebra of A.
(ii) A/ann(A) is not necessarily a non-degenerate evolution algebra.

Indeed, for an example concerning (i), consider the evolution algebra A with natural
basis {e1,es} and product given by: e? = 0, €3 = e1 + ez. Then ann(A) = lin{e; } and
Ay = lin{es}, which is not a subalgebra of A as €3 = e + €2 ¢ A;.

To see (ii), let A be an evolution algebra with natural basis B = {ey1, es, €3, €4, €5, €6 }
such that €2 = €3 = €3 = 0, €2 = e1 + €2, €2 = €3 and €2 = ez + e5. Then ann(A) =
lin{ey, e2,e3} and A/ann(A) is an evolution algebra generated (as a vector space) by ey,
&5 and &g and has non-zero annihilator. In fact, ann(A/ann(A)) = lin{ey, &5 }.

To get non-degenerate evolution algebras, we introduce a radical for an evolution
algebra A, denoted by rad(A), in such a way that rad(A/rad(A)) = 0, and so A/rad(A)

is non-degenerate.
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Definition 2.21. Let I be an ideal of an evolution algebra A. We will say that I has the
absorption property if A C I implies z € I.

Remark 2.22. Biologically, an ideal I has the absorption property if whenever we consider
one single individual x of A such that its descendence produces only individuals inside I,
then the initial individual x belongs to I.

Example 2.23. Consider the evolution algebra A with natural basis {e1, es, e3} and prod-
uct given by: €3 = eg, €3 = e; and €3 = e3. Let I be the ideal of A with basis {e1, e2}.
It is not difficult to see that I has the absorption property.

Lemma 2.24. An ideal I of an evolution algebra A has the absorption property if and
only if ann(A/I) = 0.

Proof. Assume first that I has the absorption property. Take a € ann(A/I). Then
aA/T = 0, so that aA C I. This implies a € I, that is, @ = 0. For the converse,
use that aA C I implies a A/I = 0, that is, @ € ann(A/I) =0 and hence a € I. O

Lemma 2.25. Let I be a non-zero ideal of an evolution algebra A. Denote by B = {e; |
i € A} a natural basis of A. If I has the absorption property, then there exists By C B
such that By is a natural basis of I. In particular, I is an evolution ideal and has the
extension property.

Proof. By Lemma 2.12, we have that A/I is an evolution algebra. Let Ay C A be
such that B := {&; | i € Ao} is a natural basis of A/I. Denote A; = A\ Ag, and let
B’ ={e; | i € A1}. We claim that B’ is a natural basis of I.

Take e; € B’. Then & A/I = 0; this means & € ann(A/I), which is zero by
Lemma 2.24. This implies e; € I. To see that I is generated by B’, take y € I and
write y = ZiEAl kie; + ZiEAz kie; for some k; € K. Taking classes in this identity we
get 0 =7 = ZieAg k;&; € lin B. Since B is a basis, all the k; (with i € Ay) must be zero,
implying y = > _;c, kiei €linB’. O

Remark 2.26. The converse of Lemma 2.25 is not true. If we take the evolution algebra
A with natural basis {ey, e2} and product given by €2 = ¢; and €3 = ey, then [ = Ke; is
an evolution ideal having the extension property but it has not the absorption property
because e A C I and ey ¢ I.

It is not difficult to prove that the intersection of any family of ideals with the ab-
sorption property is again an ideal with the absorption property.

Definition 2.27. We define the absorption radical of an evolution algebra A as the inter-
section of all the ideals of A having the absorption property. Denote it by rad(A). It is
clear that the radical is the smallest ideal of A with the absorption property.
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Proposition 2.28. Let A be an evolution algebra. Then rad(A) = 0 if and only if
ann(A) = 0 if and only if A is non-degenerate.

Proof. Note that ann(A) C rad(A), hence rad(A) = 0 implies ann(A) = 0. On the other
hand, if ann(A) = 0, then 0 is an ideal having the absorption property. This implies
rad(A4) = 0 as the radical of A is the intersection of all ideals having the absorption
property. Finally, the assertion ann(A) = 0 if and only if A is non-degenerate follows
from Corollary 2.19. O

Corollary 2.29. Let I be an ideal of an evolution algebra A. Then I has the absorption
property if and only if rad(A/I) = 0. In particular rad(A/rad(A)) = 0, that is, A/rad(A)
is a mon-degenerate evolution algebra.

Proof. By Lemmas 2.12 and 2.24, and by Proposition 2.28 it follows that I has the
absorption property if and only if ann(A/I) = 0 (and hence A/I is a non-degenerate
evolution algebra), equivalently rad(A/I) = 0. Since rad(A) is an ideal with the absorp-
tion property, the particular case about A/rad(A) follows immediately. O

We recall that an arbitrary algebra A is semiprime if there are no non-zero ideals I of
A such that I? = 0, and is nondegenerate if a(Aa) = 0 for some a € A implies a = 0. Note
that this is a different definition than that of non-degenerate (given in Definition 2.16).
Although these definitions (in spite of the hyphen) can be confused, they appear with
those names in the literature, and this is the reason because of which we compare them.

In the associative case, semiprimeness and nondegeneracy are equivalent concepts. We
close this subsection by relating non-degenerate evolution algebras (in the meaning of
Definition 2.16) with semiprime and nondegenerate evolution algebras. In fact, we obtain
the following additional information.

Proposition 2.30. Let A be an evolution algebra with non-zero product. Consider the
following conditions:

(i) A is nondegenerate.

)
(il) A is semiprime.
(iii) A has no non-trivial evolution ideals of zero square.
)

(iv) A is non-degenerate.
Then: (i) = (ii) & (iii) = (iv).

Proof. (i) = (ii) is well-known for any (evolution or not) algebra.

(if) = (iii) is a tautology.

(iii) = (ii) follows because every ideal I such that I? = 0 is an evolution ideal.

(iii) = (iv). By Proposition 2.18, the annihilator of A is an evolution ideal. Since it
has zero square, by the hypothesis, it must be zero. By Proposition 2.28 (iv) follows. O
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Remark 2.31. The implications (ii) = (i) and (iv) = (iii) in Proposition 2.30 do not hold
in general.

To see that (ii) # (i), consider the evolution algebra A with natural basis {e, ez}
and product given by e? = e; and €2 = e; + ey. Note that e;(A4e;) = 0. Suppose that
I is a non-zero ideal such that I? = 0. Then it has to be proper and one dimensional
because the dimension of A is 2. Therefore I has to be generated (as a vector space) by
one element, say, u = ae; + Bea for some a, 3 € K. Since 0 = u? = a?ey + 2%(e1 +e2) =
B%e1 + (a? + B%)ey it follows that a = 8 = 0, a contradiction.

To show that (iv) = (iii), let A be the evolution algebra with natural basis B =
{e1,e2,e3} and product given by €? = es + e3 = €3 and e = —ea — e3. Then the ideal T
generated by ep + e3 is such that I? = 0 and nevertheless A is non-degenerate.

2.8. The graph associated to an evolution algebra

We conclude this section by associating a graph to every evolution algebra after fixing
a natural basis. This will be very useful because it will allow to visualize when an
evolution algebra is reducible or not as well as the results in Subsection 5.2 to get the
optimal direct-sum decomposition.

A directed graph is a 4-tuple E = (E°, E',rg, sg) consisting of two disjoint sets E°,
E' and two maps rg, sg : E' — E°. The elements of E° are called the vertices of E and
the elements of E! the edges of E while for f € E! the vertices rg(f) and sp(f) are
called the range and the source of f, respectively. If there is no confusion with respect
to the graph we are considering, we simply write r(f) and s(f).

If s71(v) is a finite set for every v € E°, then the graph is called row-finite. If E° is
finite and E is row-finite, then E' must necessarily be finite as well; in this case we say
simply that E is finite.

Example 2.32. Consider the following graph E:

®y,

Then E° = {v1,vq,v3,v4} and E* = {f1, fa, f3, f1}. Examples of source and range are:

5(f3) = va = r(fa).

A vertex which emits no edges is called a sink. A vertex which does not receive any
vertex is called a source. A path p in a graph E is a finite sequence of edges p = f1 ... fn
such that 7(f;) = s(fi+1) fori = 1,...,n—1. In this case, s(u) := s(f1) and r() := r(fn)
are the source and range of u, respectively, and n is the length of p. This fact will be
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denoted by |u| = n. We also say that p is a path from s(f1) to r(f,) and denote by u°
the set of its vertices, i.e., u® := {s(f1),7(f1),...,7(fn)}. On the other hand, by u' we
denote the set of edges appearing in y, i.e., u' := {f1,..., fn}. We view the elements of
E° as paths of length 0. The set of all paths of a graph E is denoted by Path(E). Let
w= fifa--fn € Path(E). If n = |p| > 1, and if v = s(u) = r(w), then u is called a
closed path based at v. If = f1fa--- fy, is a closed path based at v and s(f;) # s(f;) for
every i # j, then p is called a cycle based at v or simply a cycle.

Given a graph E for which every vertex is a finite emitter, the adjacency matriz is
the matrix Adg = (a;5) € Z(E°*E°) given by a;j = |{edges from i to j}|.

A graph E is said to satisfy Condition (Sing) if among two vertices of E° there is at
most one edge.

There are different ways in which a graph can be associated to an evolution algebra.
For instance, we could have considered weighted evolution graphs (these are graphs for
which every edge has associated a weight w;;, determined by the corresponding structure
constant). In this way every evolution algebra (jointly with a fixed natural basis) has
associated a unique weighted graph, and vice versa. However, for our purposes we don’t
need to pay attention to the weights; we only need to take into account if two vertices
are connected or not (and in which direction). This is the reason because of which, in
order to simplify our approach, it is enough to consider graphs as we do in the following
definition.

Definition 2.33. Let B = {¢; | i € A} be a natural basis of an evolution algebra A and
Mg = (wji) € CFM)(K) be its structure matrix. Consider the matrix P' = (p;;) €
CFM, (K) such that pj; = 0 if wj; = 0 and p;; = 1 if wj; # 0. The graph associated
to the evolution algebra A (relative to the basis B), denoted by Ef (or simply by E if
the algebra A and the basis B are understood) is the graph whose adjacency matrix is

P = (pij)'

Note that the graph associated to an evolution algebra depends on the selected basis.
In order to simplify the notation, and if there is no confusion, we will avoid to refer to
such a basis.

Example 2.34. Let A be the evolution algebra with natural basis B = {ej, ez} and
product given by e% =e1 +e9 and e% = 0. Consider the natural basis B’ = {e; +ea,e2}.
Then the graphs associated to the bases B and B’ are, respectively:

() ()

E: o, —> o, F . ®

Example 2.35. Let A be the evolution algebra with natural basis B = {ej, e, e3,e4} and
product given by: e = es + €3, €3 = 0, €3 = —2¢4 and €3 = 5e3. Then the adjacency
matrix of the graph associated to the basis B is:
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|
oo oo
— o o
oo o

o O O

and F is the graph given in Example 2.32.

Now, conversely, to every row-finite graph satisfying Condition (Sing) we associate an
evolution algebra whose corresponding structure matrix consists of 0 and 1, as follows.

Definition 2.36. Let E be a row-finite graph satisfying Condition (Sing) and P = (p;;)
be its adjacency matrix. Assume E® = {v;};ea. For every field K the evolution K-algebra
associated to the graph E, denoted by Ag, is the free algebra whose underlined vector
space has a natural basis B = {e;};ca and with structure matrix relative to B given by

Pt = (pji)-
Example 2.37. Let E be the following graph:

oVl

o¥2 oUt
oUs oUs
~—_ 7

Its adjacency matrix is

Ve
P

000 0O0O 0
1 01000
000 0O0O

P_001010
000001
000010

and the corresponding evolution algebra is the algebra A having a natural basis B =
{e1,...,e6} and product determined by: €2 = 0, €3 = e; + e3, €3 = 0, €3 = e3 + e,
e2 = eg and €2 = es.

Remark 2.38. It is easy to determine the annihilator of an evolution algebra A by looking
at the sinks of the graph associated to a basis. By Proposition 2.18, the annihilator of
A consists of the linear span of the elements of the basis whose square is zero (these
are, precisely, the sinks of the corresponding graph). For instance, in Example 2.37,
ann(A) = lin{ey,es}.
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3. Ideals generated by one element

In order to characterize those ideals generated by one element, we introduce the
following useful definitions.

Definitions 3.1. Let B = {e; | i € A} be a natural basis of an evolution algebra A and
let ig € A. The first-generation descendents of ig are the elements of the subset D*(ig)
given by:

D (i) := {k EA|€ = wriger with wy;, # 0} :
k

In an abbreviated form, D'(ip) := {j € A | wj;, # 0}. Note that j € D*(io) if and only
if mj(e2 ) # 0 (where 7; is the canonical projection of A over Ke;).

Similarly, we say that j is a second-generation descendent of ig whenever j € D' (k)
for some k € D' (ig). Therefore,

D*Go)= |J D'(k).

keD* (i)

By recurrency, we define the set of mth-generation descendents of iy as

D)= |J D' k).

keD™—1(4q)

Finally, the set of descendents of iy is defined as the subset of A given by

D(ig) = |J D™(io).

meN

On the other hand, we say that j € A is an ascendent of iy if ig € D(j); that is, ig is a
descendent of j.

Remark 3.2. From a biological point of view, the first-generation descendents of (the
2

genotype) ¢ are the genotypes appearing in e; (note that here we are identifying e;
and 7).

The second-generation descendents of (the genotype) i are the genotypes appearing
in the reproduction of the first-generation descendents of e;.

In general, the mth-generation descendents of (the genotype) i are the genotypes
appearing in the reproduction of the (m — 1)th-generation descendents of e;.

The set of descendents of ¢ are the genotypes appearing in the nth-generation descen-

dents of ¢ for an arbitrary generation n.
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We illustrate the definitions just introduced in terms of the underlying graph associ-
ated to an evolution algebra (relative to a natural basis). We will abuse of the notation
for simplicity.

Definitions 3.3. Let E be a graph. For a vertex j € E° we define:
D™ (j) := {v € E°| there is a path p such that |u| = m, s(u) = vj, r(u) = v}.

In words, the elements of D™(j) are those vertices to which v; connects via a path of
length m. We also define

D(j) = U D™(§) = {v € E° | there is a path u such that s(u) = vj, r(p) = v}.
meN

When we want to emphasize the graph E we will write D (j) and Dg(j), respectively.
Examples 3.4. Let F and F be the following graphs:

E: ., F: °

e 7N

[ ] —_— e [ ]

U1 v3 Vg

S~ \\/
Some examples of the sets of the nth-generation descendents and of the set of descen-
dents of some indexes are the following.
DL(3) = {w} = DE™™(3); D4(3) = {vs} = DZ"(3) for every m € N, and so
Di(3) = Dh(3) U D3(3) = {us, va}-
DL(2) = {vg} = D™ (2); D2(2) = {ua} = DE¥™(2); DY(2) = {2} = D"(2) for
every m € N, and so Dg(3) = DL(2) U D%(2) U D3.(2) = {va,v3,v4}.

Next we characterize the descendents (and hence the ascendents) of every index iy € A.
More precisely, we describe the set D™ (ig).

Proposition 3.5. Let B = {e; | i € A} be a natural basis of an evolution algebra A.
Consider ig,5 € A and m > 2.

(i) If j € D (io) (if and only if wji, # 0), then

2

2 — ..
€j€j, = Wjio€j-

(ii) j € D™ (i) if and only if there exist k1, ko, ..., km—1 € A such that

Wikm—1Wkm_1km—2 """ Wkak1Wkyig 7é 0,
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in which case,

2 —_— . .. . . 2
€; = (w]knl—lwk'm—lk7nf2 ! wk2k1wk1lo) €jChkiy_1Ckm—_z -+ - CkaCky Cjy-

Proof. Note that j € D'(io) if and only if wj, # 0, in which case ejef = wji,e so that

)

2 —1, 2
6]- = wjioe]eio.

Suppose that the result holds for m — 1. Thus, k € D™~ 1(ig) if and only if there exist
ki,ka, ..., km_o € A such that

2 —1 2
€k = (Whkp oWk ok s """ Whaky Whyig)  €kChyy o * " ChyChy 5o -

Let j € D™ (ip). This means that j € D' (k) for some k € D™ 1(ip), so that w;, # 0,

and hence e? = (wjr) " tejei. Consequently,

2 -1 2
€; = (ijwkkm,g T wkzklwklio) €jCkCky,_o """ CkaCky €y
as desired. 0O

From Proposition 3.5 we deduce that if 7 is a descendent of j, and if j is a descendent
of k, then 7 is a descendent of k.

Another direct consequence of the mentioned proposition is the corollary that follows.
From now on, if S is a subset of an algebra A then we will denote by (S) the ideal of A
generated by S.

Corollary 3.6. Let B = {e; | i € A} be a natural basis of an evolution algebra A. If j € A
is a descendent of ig € A, then <ez> - <62 >

J 0

Proposition 3.5 will allow to describe easily the ideal generated by an element in a
natural basis, as well as the ideal generated by its square.

Corollary 3.7. Let A be an evolution algebra and B = {e; | i € A} a natural basis. Then,
for every k € A,

<ei> = lin{e? | j € D(k)U{k}} and (er)=TFKex+ <ei> .
Proof. Since D*(k) = {j € A | wjx, # 0}, by Proposition 3.5 we have
Aei = lin{e? | j € D*(k)}.

Consequently, A(Ae}) =lin{e? | j € D*(k)}, and, therefore, (ef) = lin{e? | j € D(k)U
{k}}. The rest is clear. O
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Another proof of Corollary 3.7 will be obtained in Proposition 3.11.

Remark 3.8. Since (e) = Key, + (e ), it is clear that (ex) = (€2 ) if and only if e, € (e}).
On the other hand, because D(k) is at most countable, by definition, the dimension of
(ex) is, at most, countable.

We can also describe the ideal generated by any element in a natural basis of an
evolution algebra in terms of multiplication operators. This result will be very useful in
order to characterize simple evolution algebras.

Definitions 3.9. Let A be an evolution K-algebra. For any element a € A we define the
multiplication operator by a, denoted by i, as the following map:

et A — A

T — ax

By 114 we will mean the linear span of the set {u, | a € A}. For an arbitrary n € N,
denote by u’:

wh o= lin{pa, ... ta, | a1,...,a, € A}

For n = 0 we define 0 as the identity map i4 : A — A, while % denotes Ki 4. Now, for
x € A, the notation p/; (x) will stand for the following linear span:

pa(x) = 1in{pa, lay - - - Ban_i ta, () | @1, ..., an € A}
= lin{ay(az(. .. (an—1(anx))...) | a1,...,a, € A}.

For example, u3 (z) = lin{a; (az(asx))) | a1, a2, a3 € A}.

Definition 3.10. Let A be an evolution algebra with a natural basis B = {e; | i € A}. For
any z € A, we define

A*:={ie A|ex #0}.
Proposition 3.11. Let A be an evolution algebra with a natural basis B = {e; | i € A}.

(i) Let k € A be such that e # 0.
(a) wi(er) =linfes | j € D™(k)}, for every n € N,
(

b) (e) =tin U ri(eh).
(c) (e2) =lin{e2 | j € D(k) U {k}}.
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(ii) For any x € A,

(a) ply(x) =lin{e? |i € A*} and for anyn > 2, p%(z) = lin L% {ez]j e D" 1(5)}.
i€Ae

Proof. We prove (a) in item (i) by induction. Suppose first n = 1. Note that e; =

> wike; with wy, € K\ {0}. For an arbitrary e; € B we have efe; = Y. wiree;.
i€ D1 (k) ieD1 (k)
This sum is zero, if [ # i for every i € D*(k), or it coincides with w;e? if | = i for some i.
Therefore,

uh(ed) Clinfe? | i € D (k)}.

To show lin{e? | i € D*(k)} C pl(e?), take any e; with i € D(k). By Proposition 3.5(i)
we have e? = wik_le%ei - ﬂk (ei). This finishes the first step in the induction process.

Assume we have the result for n — 1. Using the induction hypothesis we get:

wiler) = A pl N(ef) = A(lin{ef [i € D" (B)}) =lin | wh(e])
i€Dm=1(k)

=lin |J A{ef|jeD'()} =lin{e] |je D"(k)}.
i€Dn=1(k)

This proves (a) in (i). Item (b) in (i) follows immediately from (a) and item (c) can be
obtained from (a) and (b).

Now we prove (ii). Note that Y (z) = lin{e? | i € A*}. It is not difficult to see that,
forn > 1,

ph(a) =1in | pi="(ed).
Apply condition (b) in item (i) to finish the proof of (a) in (ii). Finally, item (b) in (ii)
is easy to check. O

Corollary 3.12. Let A be an evolution algebra. Then for any element x € A the dimension
of the ideal generated by x is at most countable.

Proof. By (ii) in Proposition 3.11 the dimension of the ideal generated by z is the
dimension of U2 ou" (x). Since any u'; () is finite dimensional, for every n € N U {0},

we are done. 0O
4. Simple evolution algebras

This section is addressed to the study and characterization of simple evolution alge-
bras. We recall that an algebra A is simple if A2 # 0 and 0 is the only proper ideal.
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Proposition 4.1. Let A be an evolution algebra and let B = {e; | i € A} be a natural basis
of A. Consider the following conditions:

(i) A is simple.
(ii) A satisfies the following properties:
(a) A is non-degenerate.
(b) A=lin{e? |i€ A}.
(c) If lin{e? | i € N} is a non-zero ideal of A for a non-empty ' C A then
V] = |A.

Then: (i) = (ii) and (ii) = (i) if |A] < oco. Moreover, if A is a simple evolution
algebra, then the dimension of A is at most countable.

Proof. (i) = (ii). Suppose first that A is a simple evolution algebra. If A is degenerate,
then e? = 0 for some element e in a natural basis B of A. Then lin{e} is a nonzero
ideal of A. The simplicity implies lin{e} = A, but then A% = 0, a contradiction. This
shows (a).

Note that A% = lin{e? | i € A} is an ideal of A. Since A% # 0 and A is simple, we
have A = A2, which is (b).

If lin{e? | i € A’} is a non-zero ideal of A, the simplicity of A implies lin{e? | i €
N} = A=lin{e? |i € A} =lin{e; | i € A}. This gives |A'| = |A|.

(ii) = (i). Assume that the dimension of A is finite, say n. Since A satisfies (a), A% # 0.
To prove that A is simple, suppose that this is not the case. Then, there exists u € A
such that (u) is a non-zero proper ideal of A. Let k € A be such that m(u) # 0. Then
(e2) is a non-zero ideal of A contained in (u), so that (e?) is proper. Proposition 3.11
implies that (e7) = lin{e? | j € D(k) U {k}}, which, by (a), is a non-zero ideal of A.
Use (c) to get |A] = |D(k) U {k}|. Since D(k) U{k} C A, we have A = D(k) U {k}. Now
using (b),

(e2) =1in{e? | j € D(k) U {k}} = lin{e? | j € A} = 4,

a contradiction as (e7) is a proper ideal of A.
The dimension of A is at most countable when A is simple by Corollary 3.12. 0O

Although every simple evolution algebra is non-degenerate, at most countable dimen-
sional and coincides with the linear span of the square of the elements of any natural
basis, as Proposition 4.1 says, the converse is not true because the hypothesis of finite
dimension is necessary as the following example shows.

Example 4.2. Let A be an evolution algebra with natural basis {e; | ¢ € N} and product
given by:
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6%2634-65 6%264-1-66
€§:€1+63+65 62262—1—64—1—66
e§:e5+e7 e%:eg—i—eg
e%zeg+e5+e7 e§:e4+66+eg

Then A satisfies the conditions (a), (b) and (c) in Proposition 4.1(ii) but A is not
simple as (e) and (e3) are two nonzero proper ideals.

Example 4.3. Consider the evolution algebra A having a natural basis {ej, e} and prod-
uct given by e? = e; for i = 1,2. Then (e;) = Ke; is a non-zero proper ideal of A. This
means that the condition (c) in Proposition 4.1(ii) cannot be dropped.

We show now that there exist simple evolution algebras of infinite dimension.

Example 4.4. Let A be the evolution algebra with natural basis {e; | i € N} and product
given by:

€3p—1 =  En+tl T Eny2

€on = €n + €n+1 + €n+42

Then A is simple.

Remark 4.5. An evolution algebra A whose associated graph (relative to a natural basis)
has sinks cannot be simple. The reason is that a sink corresponds to an element in a nat-
ural basis of zero square, hence to an element in the annihilator of A. By Proposition 4.1,
every simple evolution algebra has to be non-degenerate.

Corollary 4.6. Let A be a finite-dimensional evolution algebra of dimension n and B =
{e; | i € A} a natural basis of A. Then A is simple if and only if the determinant of the
structure matriz Mp(A) is non-zero and B cannot be reordered in such a way that the
corresponding structure matriz is as follows:

M/ = < Wm,xm Umx(n—m) )
O(n—m)Xm Y’(n—m)x(n—m)

for some m € N with m < n and matrices Wism, Upsx(n—m) and Y(n_m)x(n—m)-

Proof. If A is simple then, by Proposition 4.1, A = lin{e? | i € A}. This means that the
determinant of Mp(A) is non-zero. To see the other condition, take into account that a
reordering of the basis B producing a matrix as M’ would imply that A has a proper
ideal of dimension m > 1, a contradiction as we are assuming that A is simple.
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Conversely, if |[Mp(A)| # 0, then A is generated by the linear span of {e? | e € B}.
On the other hand, A cannot be degenerate as, otherwise, ann(A) = lin{e € B | €2 = 0}
(see Proposition 2.18). Decompose B as B = By U By, where By = {e € B | ¢ = 0}
and B; = B\ By and let B’ be a reordering of B in such a way that the first elements
correspond to the elements of By and the rest to the elements of By. Then Mp/(A) is as
matrix M’ in the statement, a contradiction. We have shown that A satisfies conditions
(a) and (b) in Proposition 4.1(ii). Now we see that condition (c) is also satisfied. Assume
that A" C A is such that lin{e; | i € A’} is a non-zero ideal of A. If we reorder B in
such a way that the first elements are in {e; | i € A’}, then the corresponding structure
matrix is as M’ in the statement, a contradiction. Now use Proposition 4.1 to prove that
A is simple. O

Next we characterize simple evolution algebras of arbitrary dimension.

Theorem 4.7. Let A be a non-zero evolution algebra and B = {e; | i € A} a natural basis.
The following conditions are equivalent.

(i) A is simple.
(i) If lin{e? | i € A’} is an ideal for a nonempty subset A’ C A, then A = lin{e? |
ie A}
(iii) A = (ef) =lin{e? | j € D(i)} for every i e A.
(iv) A=1lin{e? |i € A} and A = D(i) for everyi € A.

Proof. (i) = (ii). If A is simple, then it is non-degenerate by Proposition 4.1 and hence,
lin{e? | i € A’} is a nonzero ideal of A, so that the result follows.

(ii) = (iii). By Proposition 3.11(ii) we have (e7) = lin{e} | j € D(i) U {i}}. By (i),
this set is A. Since e; € A = (e?) we have i € D(i) and (iii) has being proved.

(iii) = (iv). Since D(i) C A, we have A = lin{e? | i € A}. Now, take j € A. Then
e; € A= (e?) =lin{el | k € D(i)} (by (ii)). It follows that j € D(i) and therefore
A C D(i).

(iv) = (i). Let I be a nonzero ideal of A. Since Ie; # 0 for some i € A, then €? € T
and so I D (e?) = A (by (iv)). O

The two conditions in Theorem 4.7(iv) are not redundant as we see in the next ex-
amples.

Examples 4.8. Consider the evolution algebra A with natural basis {e1, es, 3} and prod-
uct given by €2 = €32 = e; + ea; €2 = e3. Then {1,2,3} = D(i) for every i € {1,2,3} but
lin{e? | i =1,2,3} =lin{e; + e2,e3} # A.

On the other hand, consider the evolution algebra A given in Example 4.2. Then
A =1lin{e? | i € N} but N # D(i) for every i € N.
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Now we show that in Theorem 4.7(iii) the hypothesis “for every i € A” cannot be
eliminated.

Example 4.9. Let A be the evolution algebra with natural basis B = {e,, | n € N} and
product given by:

e? =0

2 _ 2 _

e; = ez tes e3 = e4+eg
eizel—i—eg—i—es €§:€2+64+66
e2 = e5ter €2 = eg +eg
€§:€3+€5+€7 e§:e4+66+eg

Then A = lin{e?} for every i € N, but A is not simple as it is not non-degenerate.

Another characterization of simplicity for finite dimensional evolution algebras is the
following.

Corollary 4.10. If A is a finite dimensional evolution algebra and B a natural basis, then
A is simple if and only if |[Mp(A)| # 0 and A = D(3) for everyi € A.

Proof. Apply Theorem 4.7(iv) taking into account that finite dimensionality of A implies
that A =lin{e? | i € A} if and only if [Mp(A)| #0. O

Remark 4.11. In terms of graphs, the condition “A = D(%)” in Theorem 4.7(iv) means
that the graph associated to A relative to a natural basis B is cyclic, in the sense that
given two vertices there is always a path from one to the other one.

The following remark shows how to get ideals in non-simple evolution algebras.

Remark 4.12. If A is a non-degenerate evolution algebra having a natural basis B = {e; |
1 € A} such that every element i € A is a descendent of every j € A, then A is not simple
if and only if lin{e? | i € A} is a proper ideal of A.

5. Decomposition of an evolution algebra into a direct sum of evolution ideals

In this section we characterize the decomposition of any non-degenerate evolution al-
gebra into direct summands as well as the non-degenerate irreducible evolution algebras
in terms of the associated graph (relative to a natural basis). When the graph asso-
ciated to an evolution algebra and to a natural basis is non-connected then it gives a
decomposition of the algebra into direct summands. We define the optimal direct-sum
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decomposition of an evolution algebra and prove its existence and unicity when the
algebra is non-degenerate.

When the algebra is finite dimensional we determine those elements in the associ-
ated graph relative to a natural basis (respectively in the algebra) which generate a
decomposition into direct summands.

A decomposition of an evolution algebra can be seen, biologically, as a disjoint union
of families of genotypes, each of these families reproduces only with the single individuals
of the proper family.

5.1. Reducible evolution algebras

In this subsection we are interested in the study of those evolution algebras which can
be written as direct sums of (evolution) ideals.

Definition 5.1. Let {A, },cr be a nonempty family of evolution K-algebras. We define the
direct sum of these evolution algebras and denote it by A := ®,er A, with the following

operations: given a = Y ay, b= > b, € A and o € K (note that a, and b, are zero
yel’ yel’
for almost every v € T'), define

a+b:= Z (ay +0,), aa = Z (aay), ab = Z (ayby) .

yel’ yel’ vyel’

Note that A is an evolution algebra as, if B, is a natural basis of A, for every v € I,
then B := U,erB, is a natural basis of A. Here, by abuse of notation, we understand
A, C A so that every A, can be regarded as an (evolution) ideal of A. Moreover, for
7 # i, the ideals A, and A, are orthogonal, in the sense that A,A4, = 0.

Lemma 5.2. Let A be an evolution algebra. The following assertions are equivalent:

(i) There exists a family of evolution subalgebras { A} er such that A = @ycrA,.
(i) There exists a family of evolution ideals {1} er such that A = @ erl,.
(ili) There exists a family of ideals {I,}yer such that A= @yerl,.

Proof. (i) = (ii). By the definition of direct sum of evolution algebras (see Definition 5.1),
every A is, in fact, an evolution ideal.

(ii) = (iii) is a tautology.

(iii) = (i). Suppose A = @,crl,, where each I, is an ideal of A. For u € I we have:

I, = Al (@"/61“\{#}[7) :

By Lemma 2.12 we obtain that A/ (€,er\(u11y) is an evolution algebra, and hence I,
is an evolution algebra by Corollary 2.15. O
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Definition 5.3. A reducible evolution algebra is an evolution algebra A which can be
decomposed as the direct sum (in the sense of Definition 5.1) of two non-zero evolution
algebras, equivalently, of two non-zero evolution ideals, equivalently, of two non-zero
ideals, as shown in Lemma 5.2. An evolution algebra which is not reducible will be
called irreducible.

Reducibility of an evolution algebra is related to the connection of the underlying
graphs, as we show next. For the description of the (existent) connected components of
a graph see, for example, [1, Definitions 1.2.13].

Proposition 5.4. Let A be a non-zero evolution algebra and E its associated graph relative
to a natural basis B = {e; | i € A}.

(i) Assume E = Ey U Eo, where Ey and Eo are nonempty subgraphs of E. Write EY) =
{vi | i € A}, for k = 1,2, where A, € A and A = Ay U Ag. Then there exist
non-zero evolution ideals Iy, Iy of A such that A = I & I, and Ei, E5 are the
graphs associated to the evolution algebras I; and I, respectively, relative to their
natural basis By, = {e; | ¢ € Ay} (for k =1,2). Moreover, B = By Ll B.

(ii) Let E = UyerEy be the decomposition of E into its connected components. For
every v € T, write EY = {v; | i € Ay}, where A, € A and A = U,crA,. Then there
exist {1 }~er, evolution ideals of A, such that A = ®crl, and E., is the associated
graph to the evolution algebra I, relative to the natural basis B described below.
Moreover:

(a) B =UyerB,, where B, = {e; | i € A} is a natural basis of I, for every~y € I

(b) I, is a simple evolution algebra if and only if I, = lin{e? | i € A} and D(i) =
Ay for every i € A,.

(c) A is non-degenerate if and only if every I, is a non-degenerate evolution algebra.

Proof. (i). Let B = {e; | ¢ € A}. The decomposition E = E; U E, of E into two
non-empty components provides a decomposition of A into ideals as follows. Denote by
v;, with i € A, the vertices of E. Write E° = EY U EY, and let A, C A be such that
A ={i € A|v; € EY}, for k =1,2. Define Iy, =lin{e; | i € Ax}. Then A =1, & I5. The
moreover part follows easily.

(ii). The first part can be proved as (i). Item (a) follows immediately. As for (b), apply
Theorem 4.7(iv). To prove (c) use Proposition 2.18 and Corollary 2.19. O

Remark 5.5. Once we have defined what an optimal direct-sum decomposition is (see
Definition 5.10) we can say that if A is non-degenerate then A = @®,¢rl, in Propo-
sition 5.4(ii) is the optimal direct sum decomposition of A, as will follow from Theo-
rem 5.11.

In the next result we characterize when a non-degenerate evolution algebra A is re-
ducible, giving an answer to one of our main questions in this work.
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Theorem 5.6. Let A be a non-degenerate evolution algebra with a natural basis B = {e; |
i € A} and assume that A = @ crl,, where each I, is an ideal of A. Then:

i) For every e; € B there exists a unique p € I' such that e; € I,,. Moreover, e; € 1, 1
I "
and only if €2 € I,,.
ii) There exists a disjoint decomposition of A, say A = U~cr A, such that
y€ETrfy

Ify = lin{ei | i€ Afy}

Proof. We show both statements at the same time. Let 7; be the linear projection of A
over Ke;. We show first that m;(I,) # 0 implies e? € I, and hence m;(I,,) = 0 for every
€ '\ {7} Indeed, if m;(I,) # 0, then there exists y € I, such that m;(y) = ae; # 0 for
some « € K. Multiplying by e; we get e;y = e;m;(y) = ae? € I, and, therefore, e? € L,
If 7;(1,,) # 0 for some p € T', reasoning as before, we get e? € I, and so e? € I,NI, =0,
a contradiction because we are assuming that A is non-degenerate.

Define A, := {i € A | m;(I,) # 0}. It is easy to see that UycrA, = A. Moreover, the
first paragraph of the proof shows that this is a disjoint union, as claimed in (ii).

Now, it is easy to see that for every v € I" we have that I, C lin{e; | i € A4}
To show that lin{e; | ¢ € A,} C I,, consider e; € B, with j € A, and denote J =
Sper\{y}1u- Because A = I, @ J we may write e; = u + v, with v € I, and v € J.
Then, v = e; —u € lin{e; | ¢ € A,} because e; and u are in lin{e; | ¢ € A,}. Since
ve JClin{e; |1 € Uyer\(y3A,} we deduce that v must be zero. O

Remark 5.7. Theorem 5.6 gives another proof, for non-degenerate evolution algebras,
of the fact that if an evolution algebra is a direct sum of ideals, then such ideals are
evolution algebras (and, consequently, evolution ideals). This is the assertion (ii) < (iii)
established in Lemma 5.2.

Another application of Theorem 5.6 allows us to recognize easily when a non-
degenerate finite dimensional evolution algebra A is reducible: if B ={¢; | i=1,...,n}
is a natural basis of A then A is the direct sum of two (evolution) ideals if and only
if there is a permutation o € S, such that, if B’ := {e,q) | i = 1,...,n}, then the
corresponding structure matrix is

MB’ _ Wme O(nfm)x(nfm) ’
O(nfm)xm Yr(nfm)x(nfm)
for some m € N, m < n and some matrices Wy, x.m and Y(,, _m)x (n—m) With entries in K.
In this case A =1 @ J, where I = lin{es1),...,€s(m)} and J = lin{es(m41),-- s €a(n)}-
The basis B’ is what we will called a reordering of B.
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Corollary 5.8. Let A be a non-degenerate evolution algebra, B = {e; | i € A} a natural
basis, and let E be its associated graph. Then A is irreducible if and only if E is a
connected graph.

Proof. Suppose first that E is connected. To show that A is irreducible suppose, on
the contrary, that there exist I and J, non-zero ideals of A, such that A = I ® J. By
Theorem 5.6 there exists a decomposition A = Ay U Ay such that I = lin{e; | i € Ar}
and J =lin{e; | i € As}. Then E = E;UE), a contradiction since we are assuming that
FE is connected.

The converse follows easily: by Proposition 5.4(i), a decomposition E = F; U E into
two non-empty components provides a decomposition A = I; & I, for I; and I non-zero
ideals of A, contradicting that A is irreducible. 0O

In [11, Proposition 2.8] the authors show the result above for finite-dimensional evo-
lution algebras using a different approach.
The hypothesis of non-degeneracy cannot be eliminated in Corollary 5.8.

Example 5.9. Consider the evolution algebra given in Example 2.34, which is not non-
degenerate. Then the graph FE, associated to the basis B is connected while the graph F',
associated to the basis B’ is not.

5.2. The optimal direct-sum decomposition of an evolution algebra

The aim of this subsection is to obtain a decomposition of an evolution algebra in
terms of irreducible evolution ideals.

Definition 5.10. Let A be a non-zero evolution algebra and assume that A = ®erl, is
a direct sum of non-zero ideals. If every I, is an irreducible evolution algebra, then we
say that A = @ erl, is an optimal direct-sum decomposition of A.

We show that the optimal direct sum decomposition of an evolution algebra A with
a natural basis B = {e; | ¢ € A} does exist and it is unique whenever the algebra is
non-degenerate. Moreover, for finite dimensional evolution algebras (degenerated or not),
we will describe how to get an optimal decomposition of A through the fragmentation
process. This will be done in Subsection 5.3.

Theorem 5.11. Let A be a non-degenerate evolution algebra. Then A admits an optimal
direct-sum decomposition. Moreover, it is unique.

Proof. We start by showing the existence. Let E be the graph associated to A relative
to a natural basis B and decompose it in its connected components, say £ = UycrE,.
By Proposition 5.4(ii) we have A = @,erl,, where every I, is an ideal of A. Note that,
by construction (see the proof of Proposition 5.4), every I, has a natural basis, say B,
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consisting of elements of the basis B = {e; | i € A} of A. Because A is non-degenerate,
e? # 0, by Corollary 2.19 and Proposition 2.18. Using again these results we have that
every I, is a non-degenerate evolution algebra. Since E, is the graph associated to I,
relative to the basis B, and E, is connected, by Corollary 5.8 every I, is an irreducible
evolution algebra.

Now we prove the uniqueness. Fix a natural basis B = {e; | i € A}. Suppose that there
are two optimal direct-sum decompositions of A4, say A = ®yerl, and A = @yenly. By
Theorem 5.6 there exist two decompositions A = U,crA, and A = U,eqA,, such that

I, =lin{e; | i€ Ay} and J, =lin{e; | i € A}

Take ¢ € A, for an arbitrary v € I'. Then there is an w € € such that e; € J,,. This
means I, N J,, # 0. Decompose

I =({I,NJd,)® I, N(Butwendn)).

Since I, is irreducible and I, N J,, # 0, necessarily (I, N (Bwrwender)) = 0. Therefore
I, =1,NnJ, andso I, C J,. Changing the roles of I, and J, we get J,, C I,, implying
I, = J,, and, consequently, that each decomposition is nothing but a reordering of the
other one. O

The hypothesis of non-degeneracy cannot be eliminated in order to assure the unicity
of the optimal direct sum decomposition in Theorem 5.11, as the following example
shows. It is also an example which illustrates that in Theorem 5.6 non-degeneracy is also
required.

Example 5.12. Let A be the evolution K-algebra with natural basis B = {eq, ea, €3, €4, €5}
and multiplication given by: e? = e3 = e1, €3 = e3 + €5 and €3 = €2 = 0. Then
A=1 &I, ® I3 ® Iy, where I; :=lin{ey,ea + e}, I :=lin{es + e5}, Is :=lin{ey} and
I, :=lin{es} are irreducible ideals, as we are going to show.

The ideals I, I3 and I are irreducible because their dimension is one. Now we prove
that I is also irreducible. Assume, on the contrary, I = Jy & Jo, with J; and J
non-zero ideals. Then dim J; = dim Js = 1, so that J; = Ku; and Jo = Kug for some
u; = are; + PBi(ez + eq) and ug = agey + Pa(es + e4), where ag, a9, 51,82 € K. Then,
ujug = 0 implies (B102 + araz)e; = 0. On the other hand, uie; = aje; € Jp and
use; = ageq € Jo. Since J1 N Jy = 0, then oy = 0 or g = 0. Assume, for example,
a; = 0. Then J; = K(ez + e4), but this is not an ideal as (ex + e4)? = e;. The case
oo = 0 is similar.

Now we give another decomposition of A into irreducible ideals. Consider A = J &
I ® I3 ® I, where J :=lin{ey, eo}. We claim that J is an irreducible ideal of A. Indeed,
if J = My & M, for My and My non-zero ideals, then M7 = Ku; and My = Kus for some
u1 = arer + fres and us = aseq + faes, where aq, as, 81, B2 € K. Then, uie; = aqe; and
use1 = aneq. Since My N My = 0, then o = 0 or arg = 0. Assume a7 = 0. This implies
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u1; = Pres and M7 = Kesg, but this is not an ideal because e% = e1. The case as =0 is

similar.
Note that we have two different decompositions of A as a direct sum of irreducible
ideals.

As we have seen (Remark 4.3), non-degenerate evolution algebras are not necessar-
ily simple. On the other hand, concerning reducibility, the next example shows that
there exist irreducible evolution algebras which are not simple (while, obviously, simple
evolution algebras are irreducible).

Example 5.13. Let A be an evolution algebra with a natural basis B = {ej,es} such
that e? = €3 = e5. Then Ke, is a proper ideal of A. However, A is irreducible because if
A =1®J, for some ideals I and J of A. Then, by Theorem 5.6, we have either e; € I,
in which case A =1, or e; € J, in which case, A = J. In any case I or J is zero.

The next definition will be helpful to understand the inner structure of an evolution
algebra.

Definition 5.14. Let B = {e; | ¢ € A} be a natural basis of an evolution algebra A. We
say that ig € A is cyclic if i9 € D(ip). This means that i is descendent (and hence
ascendent) of itself.

In particular, if D(ig) = {io} (in which case €2 = wjyi,eq, for some wiy;, € K\ {0}),
then we say that the cyclic index g is a loop.

If 79 € A is cyclic, then the cycle associated to ig is defined as the set:

C(’Lo) = {] eA | j € D(lo) and ig € D(j)}

Note that if 7¢ is cyclic then C(ig) is non-empty because it contains ig in particular.
Moreover, i is a loop if and only if C'(ip) = {io}.
We say that a subset C' C A is a cycle if C' = C(ig), for some cyclic-index ig € A.

Remark 5.15. By identifying an index ¢ with the genotype e;, biologically, an index is
cyclic if it is a descendent of its descendents. The cycle associated to an index 4 is the
set of all its descendents j such that ¢ is a descendent of j.

In the same context as in Definition 5.14, consider ig € A, and let w;,;, be the
corresponding element in the structure matrix for the evolution algebra A. If w;,;, # 0
then we have that iy is cyclic, independently of the value of the other elements in the
structure matrix. If w;,;, = 0, then 4¢ is cyclic if and only if it is a descendent of some
of its own descendents.

On the other hand, if B = {e; | ¢ € A} is a natural basis of A, and if i1,i3 € A are
cyclic, then we have either C'(i;) = C(i2) or C(i1) N C(ig) = 0.
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These facts can be understood more easily looking at the corresponding graphical
concepts, as we will do below.

Now we classify the cycles into two types, depending on if they have or not ascendents
outside the cycle.

Definition 5.16. Let B = {e; | i« € A} be a natural basis of an evolution algebra A,
and let ig € A be a cyclic index. We say that iy is a principal cyclic index if the set
of ascendents of ig is contained in C(ip), the cycle associated to ig. Thus, ig € A is a
principal cyclic-index if ig € D(ip) and j € D(ip) for every j € A with iy € D(j).

We say that a subset C of A is a principal cycle if C = C(ip), for some principal cyclic
index ig € A.

It is clear that if ig € A is a principal cyclic index then every j € C(ip) is also a
principal cyclic index. Moreover, if iy € A is a cyclic index, then C(ig) is not principal if
and only if there exists j € A\ C(ip) such that ig € D(j).

On the other hand, a non-empty subset C' C A is a principal cycle if and only if it
satisfies the following properties:

(i) For every ¢,j € C we have that ¢ € D(j) and j € D(i).
(ii) If D(k)NC # 0 then k € C.

Note that if ig is a loop, then {ig} is a principal cycle if and only if 49 has no other
ascendents than ig. Moreover, if C' is a principal cycle, then C = C(i) = C(j) for every
1,7 € C and, hence, D(i) = D(j) for very i,j € C.

Now we will distinguish between cycles that have proper descendents from those that
do not have them.

Definition 5.17. Let B = {¢; | ¢ € A} be a natural basis of an evolution algebra A, and
let S be a subset of A. We define the indez-set derived from S as the set given by

A(S) := S Ujes D(3).
For instance, if ¢ € A, then the index set derived from {i} is A({i}) := {i} U D(3),
where D(7) is the set of descendents of 1.
The index set derived from a principal cycle is obtained next.
Remark 5.18. Let C' be a principal cycle. Then, C' = C(i) = C(j) and D(i) = D(j), for
every 4,7 € C. Moreover, C(i) C D(i), for every ¢ € C (the inclusion may or may not be

strict). Thus, C C A(C) = D(3) for every i € C.

Definition 5.14 in terms of graphs gives rise to the following definition.
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Definition 5.19. Let E be a graph with vertices {v; | i € A} satisfying Condition (Sing).
An index j € A is said to be cyclic if j € D™(j) for some m € N (see Definitions 3.3).
Equivalently, if the graph F has a cycle c such that v; € .

If j is a cyclic index, we define

C(j) :={wx € E° | k € D(j) and j € D(k)},

that is, C(j) are those vertices connected to v; such that v; is also connected to them.
A cyclic index j is called principal (see Definition 5.16) if

{vr € E° | j € D(k)} C C(j).

A cyclic index j is principal if and only if it belongs to a cycle without entries or such
that every entry comes from a path starting at the cycle. By extension, we will also say
that C(j) is a principal cycle.

Examples 5.20. Consider the following graphs.

FE: F:

SN VZANY

Oy T Oy, ~ Oy =~ .U43

AN

.U1 ~ @ — vz

v1 Oy %y vs

Concerning E, the indices 1, 2 and 3 are cyclic and C(1) = C(2) = C(3) = {v1,v2, v3}.
Also, 1, 2 and 3 are principal indices.

For the graph F, the cyclic indices are 2, 3, 4 and 5. Moreover, C'(2) = C(3) = C(5) =
{va,v3,v5} and C'(4) = {v4}. The only index which is principal is 4.

As to the graph G, its cyclic indices are 2, 3, 4 and 6. None of them is principal.

Definition 5.21. Let B = {e; | i € A} be a natural basis of an evolution algebra A. We
say that ig € A is a chain-start indez if iy has no ascendents, i.e., iy ¢ D(j), for every
j € A. Equivalently, i is a chain-start index if and only if all the elements of the ig-th
row of the structure matrix Mp(A) are zero.

Remark 5.22. In terms of graphs, an index iy is a chain-start index if and only if the
vertex v;, is a source. In the graphs of Examples 5.20, the only chain-start index is the
vertex v1 in F' and the vertex v in G.
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In the case of finite-dimensional evolution algebras, if the determinant of the structure
matrix Mpg(A) is non-zero then A has no chain-start indices. The (graphical) reason is
that |[Mp(A)| # 0 implies that Mp(A) has no zero rows, hence the associated graph
relative to B has no sources.

The lack of chain-start indices is a necessary condition for A to be simple. The graph-
ical reason is that if a vertex v; is a source, then the ideal generated by e? does not
contain e;, hence (€?) is a nonzero proper ideal.

5.8. The fragmentation process

In this subsection we will consider only finite dimensional evolution algebras, degen-
erated or not. We give a process that allows to decompose an evolution algebra into
direct sums of evolution algebras (the optimal decomposition when the algebra is non-
degenerate).

Definition 5.23. Let A be a finite dimensional evolution algebra, and fix a natural basis
B = {e; | i € A}. Consider the set {C1,...,Cy} of the principal cycles of A and the set
{i1,...,im} of all chain-start indices of A.

Given any i € A which is not a chain-start index, there exists j € A such that i € D(j),
and either j is a chain-start index or j belongs to a principal cycle (because A is finite).
Therefore, according to Definition 5.17,

A=AC)U---UACr)UA(1) U UA(im).
This decomposition will be called the canonical decomposition of A associated to B.

Note that the sets in the canonical decomposition are not necessarily disjoint. This
is the case, for example, when two different principal cycles, or two chain-start indices,
have common descendents.

Definition 5.24. Let A be a finite set and let Tq,..., Y, be non-empty subsets of A such
that A = U, Y,. We say that A = U}, Y, is a fragmentable union if there exist disjoint
non-empty subsets A1, Ay of A satisfying

A= U?:1Ti - Al U A27
and such that for every i = 1,...,n, either T; C A; or T; C As.

For instance, if the sets T; are disjoint then A = U}, T; is fragmentable. Note that a
fragmentable union may admit different fragmentations.

On the other hand, if Y; N'Y,; # 0 for every ¢ # j, then the union A = U ;Y; is not
fragmentable.
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Definitions 5.25. Let A be a finite set and let Y1, ..., Y, be non-empty subsets of A such
that A = U}, T; is a fragmentable union. A fragmentation of A = U}_;Y; is a union
A = UE_|A; such that:

(i) Ifie{1,...,k} then A, = U;ecg, Y, for S; a non-empty subset of {1,...,n}.
(i) A;NA; =0, for every 4,5 € {1,...,k}, with ¢ # j.

Note that conditions (i) and (ii) imply that for every j € {1,...,n} there exists a unique
ie{l,...,k} such that T; C A,.

An optimal fragmentation of a fragmentable union A = U ;Y; is a fragmentation
A = UF_|A; such that for every i € {1,...,k} the index set A; = Ujeg, T, is not
fragmentable.

In what follows we build the optimal fragmentation for any A = U T,.

Let A be a finite set and consider Yq,...,T,, non-empty subsets of A such that
A =U}_, T, is a fragmentable union. To obtain an optimal fragmentation of this union
we define the following equivalence relation in the set {Y1,...,T,}.

We say that Y; ~ T if there exist mq,...,my € {1,...,n} such that

Yo Yoy # 0, Tony 0 Loy Z0, ooy Ty N Ty # 0, Lo 0L 0.

Let S;:={i € {1,...,n} | T; ~ T1}; define A; := Ujegs, T;. Set Sa = {1,...,n}\ 51
and KQ ‘= Ujes, Ti. Then A = A U KQ with A; non-fragmentable. If 1~X2 = Uies, T, is
non-fragmentable then by defining 7\2 = Ay we have that A = A; U Ay is the optimal
fragmentation of A = U?_;T;. Otherwise, 1~\2 = Ujes, T; is fragmentable and, as before,
we may decompose KQ = Ay U /~\3, with Ao non-fragmentable. By reiterating the pro-
cess we obtain a decomposition A = UF_, A;, where every A; is non-fragmentable. This
produces an optimal fragmentation A = U¥_, A; of the initial decomposition A = U, ;.

Proposition 5.26. Let A be a finite set and let Y+, ..., Y, be non-empty subsets of A such

n
that A = |J Y, is a fragmentable union. Then the optimal fragmentation A = A;U- - -UAg
i=1

n
of A= Y, is unique (unless reordering).
i=1

1=

Proof. Suppose that A = A; U---UA; and A = 1~X1 U---u /N\m are two optimal frag-
mentations. Take ¢ € {1,...,k}. If there exist j,k € {1,...,m} such that A; N JNXj 0
and A; N ZN\k # (), then 7 = k because, otherwise, A; is fragmentable. It follows that for
every i € {1,...,k} there is a unique j € {1,...,m} such that A; C /~\j. We claim that
A; = /N\j because otherwise /~Xj would be fragmentable, a contradiction. We conclude that
m = k and that A=1~\1U---U1~Xm is a reordering of A=A U---UA;. O
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By combining Theorems 4.7 and 5.6 with the optimal fragmentation process we obtain
the following result.

Theorem 5.27. Let A be a finite-dimensional evolution algebra with natural basis B =
{ei | i€ A}. Let {Cy,...,Ck} be the set of principal cycles of A, {i1,...,im} the set of
all chain-start indices of A and consider the canonical decomposition

A=AC) U UACH) UA@) U+ UA(im). (1)

Let A = U er A, be the optimal fragmentation of (1) and decompose B = Ucr B, where
By ={e; | i € Ay}. Then A = ®yerly, for I, = lin B, which is an evolution ideal
of A. Moreover, if A is non-degenerate, then A = ®~crly is the optimal direct-sum
decomposition of A.

Since the optimal direct-sum decomposition of a non-degenerate evolution algebra
A is unique, we conclude that, in the non-degenerate case, the decomposition given in
Theorem 5.27 does not depend on the prefixed natural basis B (i.e. any other natural
basis leads to the same optimal direct sum decomposition).

Remark 5.28. Every finite dimensional evolution algebra A (non-degenerated or not)
is the direct sum of a finite number of irreducible evolution algebras. Indeed, if A is
irreducible, then we are done. Otherwise, decompose A = I; @ I, for Iy, I ideals of A.
If I; and I> are irreducible, then we have finished. If this is not the case, we decompose
them. Since the dimension of A is finite, proceeding in this way in a finite number of
steps we finish.

For A an evolution algebra of arbitrary dimension such that A = @©.crl, is the
optimal direct-sum decomposition of A, the study of A can be reduced to the study of
the irreducible evolution algebras I, separately.

The last result in this section is a consequence of Proposition 4.1 and Theorem 5.27.

Corollary 5.29. Let A be a non-degenerate finite dimensional evolution algebra with a
natural basis B ={e; | i € A}. Then A=1, & - &I}, where I; is an ideal, simple as an
algebra, if and only if A has the following property: A = Ay U---U Ay, where every A; is
non-empty and I; = lin{e; | i € A;} =lin{e? | i € A;} and D(i) = A;, for every i € A;.

6. The optimal fragmentation computed with Mathematica

We have designed a program that provides the optimal fragmentation of an evolution
algebra when we introduce the coefficient matrix as input. Moreover, the code identifies
if an index is a cyclic-index, a principal cyclic index or a chain-start index. On the other
hand, it calculates the nth-generation descendents of any index for every n. We include
the Mathematica codes needed for our computations. They consist on a list of functions



Y. Cabrera Casado et al. / Linear Algebra and its Applications 495 (2016) 122-162 159

written in the order they have been used. The computation of the invariants has been
performed by the Mathematica software.

In order to compute the optimal fragmentation, we have used the proposition that
follows.

Proposition 6.1. Let A be a finite set and let Y1,..., Y, be non-empty subsets of A such
that A = U Y. Let (a;;) € Myp(K) be the matriz defined by: a;; = 0 for every i, a;; =1
if T; N T 75 0 and a;; =0 if T, NY; =0. Let E be the graph whose adjacency matriz

is (aij). Then, E is connected if and only if A = U Y; is not a fragmentable union.
=1
Moreover, if E is not connected, then the connected components of E form an optimal

fragmentation of A.

n

Proof. Suppose that A = |J Y; is a non-fragmentable union. If E is not connected,
i=1

let ¥, denote the connected components of E with ¢ € {1,2,...,m} for some m € N.

This means that we may write {1,2,...,n} = || ¥; where ¥; C {1,2,...,n}. Now, we
i=1

m
consider the sets: A; = |J Y;. We will show that A = |J A, is an optimal fragmentation.
JjEY; i=1
First, we have to prove that A; N A; = ) for every i # j, with 4,5 € {1,...,m}. If there
exists w € A; N A;, then there are r € ¥; and s € ¥; such that w € T, N Y. This
implies that T,,NY # 0, i.e. r and s are connected. This is a contradiction because they

belong to different connected components. Conversely, suppose that E is connected. If
n

A = |J Y, is a fragmentable union then there exist A; and Ay disjoint subsets of A
i=1

satisfying that A = Ay U As and such that for every ¢ = 1,...,n, either T; C A; or

T; C Ay. Let o € Ay and 8 € Ay. This means that there exist 4,5 € {1,...,n} such that

acT; CAjand € T; C Ay As E is connected, there exists a path from « to 8. This

implies that there exist i1,...,ix € {1,...,n} such that

TimTil #@,THQTZZ?&@,,TMOT]#Q,

a contradiction because o € T; C Ay and § € T; C Ao. Furthermore, from this reasoning
we deduce that the connected components of F make an optimal fragmentation of A. O

In what follows we provide a list with the routines that have been used together with
a brief description of them.

e Dj;: computes the first-generation descendents of i.
e D,: computes the nth-generation descendents of i.
e CycleQ: checks if P has a cycle.

o DP: computes D(i).

e CyeclicQ: checks if P has some cyclic index.
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e CycleAssociated: computes the cycle associated to i.

e Ascendents: computes the ascendents of i.

o PrincipalCycleQ: checks if i is a principal cyclic-index.

o ChainStartQ: checks if i is a chain-start index.

¢ CanonicalDecomposition: computes a canonical decomposition associated to P.
¢ OptimalFragmentation: computes an optimal fragmentation associated to P.

Finally, we include the Mathematica code of all these functions.

| = Table[s, {i,n}];
D.[i,P_]:= Select[l, P[[#,1]] # 0&];
D, [i ,P_]:=Module[{j,a,s},
a = {};s = Length[D, _[i, P]];
If[n == 1, Dy [i, P],
Union[Flatten[Table[D; [D,_1 (i, P][[t]], P], {t, Length[D,_ [i, P]]}]]]]]

CycleQ[P_] := Module[{n, a},n = Length[P];
a = Union[Flatten[Table|
Diagonal[MatrixPower|[P, i]], {i, 1, n}]]];
MemberQa, 1];

DYesCycle[i ,P_]:= Module[{j,a},
a={}
For[j = 1,j <= Length[P],j + +,
AppendTola, Djli, P]]];
Apply[Union, a]]

DNotCycle[i_,P_]:= Module[{j,a},
a = {D[i, P]};
For[j = 1,Dj[i, P] # Djy1[i, Pl,j + +,
AppendTo[a, Dj1[i, P]]];
Apply[Union, a]]

DP[i_,P_]:=If[CycleQ[P], DYesCycle[i, P], DNotCycleli, P]]
CyclicQ[i_,P_] := If[MemberQ[DP]i, P], i],

Print[i “is a cyclic index”],Print[i “is not a cyclic index”]]
CycleAssociated[i_,P_] := Module[{j,a},

a={};

For(j = 1,j <= Length[P], + +,
IfMemberQ[DP[i, P, j]&&MemberQ[DPJj, P], ],
AppendTola, j]]];

a]

Ascendents[i_,P_ ]| := Module[{j,a},
a={}
For[j = 1,j <= Length[P],j + +,
IfMemberQ[DPJj, P], i],
AppendTola, j]]];

a]
Subset[A_,B_]:= (Union[A, B] == Union|(B])
PrincipalCycleQ[i_,P_] := If[Subset[Ascendents[i, P], CycleAssociated[i, P]],

Print[i “is a principal cyclic-index”],
Print[i “is not a principal cyclic-index”]]

ElementsNotNoneRow[P_] := Module[{j},
Select[Table[j, {j, Length[P]}], P[[#]] == O0P[[1]]&]];

ChainStartQ[i_,P_] := If[MemberQ[ElementsNotNoneRow/[P], i],
Print[i “is a chain-start index”],
Print[i “is not a chain-start index”]]
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Ali_,P_]:= Union[{i}, DP[i, P]];

LambdaChainStart[P_] := Table[A[ElementsNotNoneRow|[P][[i]], P],
{i, Length[ElementsNotNoneRow[P]]}]

LambdaPrincipalCycle[P_] := Module[{j, a},
a={}
For[j = 1,j <= Length[P],j + +,
If[Subset[Ascendents[j, P], CycleAssociated[j, P]],
AppendTo[a, DPJj, P]]];
al

CanonicalDecomposition[P_] := Join[LambdaChainStart[P], LambdaPrincipalCycle[P]]
f[ifvjfv Pf] = If[[l ==j,0,

If[Intersection[Part[CanonicalDecomposition[P], i],
Part[CanonicalDecomposition[P], j|]] # 0, 1, 0]]

Matr[P_] := Table[
f[i,j, P], {i, Length[CanonicalDecomposition[P]]}, {j
Length[CanonicalDecomposition[P]]}]

OptimalFragmentation[P_ | := ConnectedComponents[AdjacencyGraph[Matr[P]],
VertexLabels — “Name”]

One concrete example showing how this program works can be found in https://
www.dropbox.com/s/2mtdojjajlo20m8/0OptimalFragmentation.pdf?d1=0. We have
not included it here to not enlarge the paper.
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