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1. Introduction

The mathematical study of the genetic inheritance began in 1856 with the works of 
Gregor Mendel, who was a pioneer in using mathematical notation to express his genetics 
laws. After relevant contributions of authors as Jennings (1917), Serebrovskij (1934) and 
Glivenko (1936), to give an algebraic interpretation of the sign × of sexual reproduction, 
a precise mathematical formulation of Mendel’s laws in terms of non-associative algebras 
was finally provided in the well-known papers [9,10]. Since then, many works pointed out 
that non-associative algebras are an appropriate mathematical framework for studying 
Mendelian genetics [2,17,21,24]. Thus, the term genetic algebra was coined to denote 
those algebras (most of them non-associative) used to model inheritance in genetics.

Recently a new type of genetic algebras, denominated evolution algebras, has emerged 
to enlighten the study of non-Mendelian genetics, which is the basic language of the 
molecular Biology. In particular, evolution algebras can be applied to the inheritance 
of organelle genes, for instance, to predict all possible mechanisms to establish the ho-
moplasmy of cell populations. The theory of evolution algebras was introduced by Tian 
in [21], a pioneering monograph where many connections of evolution algebras with 
other mathematical fields (such as graph theory, stochastic processes, group theory, dy-
namical systems, mathematical physics, etc.) are established. In this book it is shown 
the close connection between evolution algebras, non-Mendelian genetics and Markov 
chains, pointing out some further research topics. Algebraically, evolution algebras are 
non-associative algebras (which are not even power-associative), and dynamically they 
represent discrete dynamical systems. An evolution algebra is nothing but a finite-
dimensional algebra A provided with a basis B = {ei | i ∈ Λ}, such that eiej = 0, 
whenever i �= j (such a basis is said to be natural). If e2

k =
∑

i∈Λ ωikei, then the coef-
ficients ωij define the named structure matrix MB of A relative to B that codifies the 
dynamic structure of A.

In [21], evolution algebras are associated to free populations to give the explicit solu-
tions of a nonlinear evolutionary equation in the absence of selection, as well as general 
theorems on convergence to equilibrium in the presence of selection. In the last years, 
many different aspects of the theory of evolution algebras have been considered. For 
instance, in [18] evolution algebras are associated to function spaces defined by Gibbs 
measures on a graph, providing a natural introduction of thermodynamics in the study 
of several systems in biology, physics and mathematics. On the other hand, chains of 
evolution algebras (i.e. dynamical systems the state of which at each given time is an 
evolution algebra) are studied in [5,20,15,16]. Also the derivations of some evolution al-
gebras have been analyzed in [21,3,13]. In [13], the evolution algebras have been used to 
describe the inheritance of a bisexual population and, in this setting, the existence of 
non-trivial homomorphisms onto the sex differentiation algebra has been studied in [14]. 
Algebraic notions as nilpotency and solvability may be interpreted biologically as the fact 
that some of the original gametes (or generators) become extinct after a certain number 
of generations, and these algebraic properties have been studied in [6,4,19,23,7,12,8].
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Once we have given a general overview of evolution algebras, we start to explain the 
results in this work.

Since evolution algebras appear after Mendelian algebras, it is natural to ask if these 
are evolution algebras. The answer is no, as we show in Example 2.2. The fact that 
evolution algebras are not Mendelian algebras is known.

In this paper we deal with evolution algebras of arbitrary dimension. In Section 2
we study the notions of subalgebra and ideal and explore when they have natural bases 
and when their natural bases can be extended to the whole algebra (we call this the 
extension property) and provide examples in different situations. We also show that the 
class of evolution algebras is closed under quotients and under homomorphic images, 
but not under subalgebras or ideals and give an example of a homomorphism of evo-
lution algebras whose kernel is not an evolution ideal. The aim of the second part of 
this section is the study of non-degeneracy. We show that this notion, which is given in 
terms of a fixed natural basis of the algebra, does not depend on the election of the basis 
(Corollary 2.19). A radical is introduced (the intersection of all the absorption ideals) 
which is zero if and only if the algebra is non-degenerate (Proposition 2.28). The classical 
notions of semiprimeness and nondegeneracy are also studied and compared to that of 
non-degeneracy (see Proposition 2.30 and the paragraph before). In the last part of this 
section we associate a graph to any evolution algebra. This has been done yet in the 
literature, although for finite dimensional evolution algebras. The use of the graph will 
allow to see in a more visual way properties of the evolution algebra. For example, we can 
detect the annihilator of an evolution algebra by looking at its graph (concretely deter-
mining its sinks) and we can say when a non-degenerate evolution algebra is irreducible 
(as we explain below).

In Section 3 we use the graph representation and the notion of descendent to describe 
the ideal generated by any element in an evolution algebra (Proposition 3.11) and show 
that its dimension as a vector space is at most countable (Corollary 3.12). This implies 
that any simple algebra has dimension at most countable.

Section 4 is devoted to the study and characterization of simple evolution algebras 
(Proposition 4.1 and Theorem 4.7). We also provide examples to show that the conditions 
in the characterizations cannot be dropped. We finish the section with the characteriza-
tion of finite dimensional simple evolution algebras (Corollary 4.10).

The direct sum of a certain number of evolution algebras is an evolution algebra in a 
canonical way. In Section 5 we deal with the question of when a non-zero evolution algebra 
A is the direct sum of non-zero evolution subalgebras. In particular, an evolution algebra 
with an associated graph (relative to a certain natural basis) which is not connected 
is reducible (see Proposition 5.4). Next, Theorem 5.6 characterizes the decomposition 
of a non-degenerate evolution algebra into subalgebras (equivalently ideals) in terms 
of the elements of any natural basis. We are also interested in determining when every 
component in a direct sum is irreducible. In Corollary 5.8 we prove that a non-degenerate 
evolution algebra is irreducible if and only if the associated graph (relative to any natural 
basis) is connected.
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The decomposition A = ⊕γ∈ΓIγ of an evolution algebra into irreducible ideals (called 
an optimal decomposition) exists and is unique whenever the algebra is non-degenerate 
(Theorem 5.11). To assure the uniqueness, this hypothesis cannot be eliminated (Exam-
ple 5.12).

To get a direct-sum decomposition of a finite dimensional evolution algebra we identify 
in the associated graph (relative to a natural basis) the principal cycles and the chain-
start indices through the fragmentation process (Proposition 5.26). This provides an 
optimal direct-sum decomposition, which is unique, when the algebra is non-degenerate, 
as shown in Theorem 5.27.

In the last section of the paper we provide a program with Mathematica to obtain the 
optimal fragmentation of a natural basis. From this we get a direct-sum decomposition 
of a reducible evolution algebra starting from its structure matrix.

We have tried to translate the mathematical concepts into biological meaning.

2. Basic facts about evolution algebras

Before introducing evolution algebras we establish in a precise way what we mean by 
an algebra in this paper. An algebra is a vector space A over a field K, provided with a 
bilinear map A × A → A given by (a, b) �→ ab, called the multiplication or the product
of A. An algebra A such that ab = ba for every a, b ∈ A will be called commutative. If 
(ab)c = a(bc) for every a, b, c ∈ A, then we say that A is associative. We recall that an 
algebra A is flexible if a(ba) = (ab)a for every a, b ∈ A. Power associative algebras are 
those such that the subalgebra generated by an element is associative. Particular cases 
of flexible algebras are the commutative and also the associative ones.

The theory of evolution algebras appears in the study of non-Mendelian inheritance 
(which is essential for molecular genetics). This is the case, for example, of the bacterial 
species Escherichia coli because their reproduction is asexual. In particular, evolution 
algebras model population genetics (which is the study of the frequency and interaction 
of alleles and genes in populations) of organelles (specialized subunits within a cell that 
have a specific function) as well as organisms such as the Phytophthora infestans (an 
oomycete that causes the serious potato disease known as late blight or potato blight, 
and which also infects tomatoes and some other members of the Solanaceae).

Let us consider a population of organelles in a cell or a cell clone, and suppose that 
e1, . . . , en are n different genotypes in the organelle population. By the non-Mendelian
inheritance the crossing of genotypes is impossible since it is uniparental inheritance. 
Thus eiej = 0 for every i �= j. On the other hand, intramolecular and intermolecular 
recombination within a lineage provides evidence that one organelle genotype could 
produce other different genotypes. Consequently:

eiei =
n∑

ωkiek,

k=1
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where ωki is a positive number that can be interpreted as the rate of the genotype ek
produced by the genotype ei (see [21, pp. 9, 10]). Therefore, as pointed out in [21], the 
next definition models all the non-Mendelian inheritance phenomena.

Definitions 2.1. An evolution algebra over a field K is a K-algebra A provided with a basis 
B = {ei | i ∈ Λ} such that eiej = 0 whenever i �= j. Such a basis B is called a natural 
basis. Fixed a natural basis B in A, the scalars ωki ∈ K such that e2

i := eiei =
∑

k∈Λ ωkiek
will be called the structure constants of A relative to B, and the matrix MB := (wki) is 
said to be the structure matrix of A relative to B. We will write MB(A) to emphasize 
the evolution algebra we refer to. Observe that |{k ∈ Λ | ωki �= 0}| < ∞ for every i, 
therefore MB is a matrix in CFMΛ(K), where CFMΛ(K) is the vector space of those 
matrices (infinite or not) over K of size Λ × Λ for which every column has at most a 
finite number of non-zero entries.

According to [21], the product eiei, where ei is in a finite dimensional natural basis, 
mimics the self-reproduction of alleles in non-Mendelian genetics.

Note that an n-finite dimensional algebra A is an evolution algebra if and only if there 
is a basis B = {e1, . . . , en} relative to which the multiplication table is diagonal:

e1 . . . en

e1
n∑

k=1
ωk1ek 0 0

... 0
n∑

k=1
ωkiek 0

en 0 0
n∑

k=1
ωknek

In this case, the structure matrix of the evolution algebra A relative to the natural 
basis B is the following one:

MB =

⎛⎜⎝ ω11 . . . ω1n
...

. . .
...

ωn1 · · · ωnn

⎞⎟⎠ ∈ Mn(K).

Every evolution algebra is uniquely determined by its structure matrix: if A is an 
evolution algebra and B a natural basis of A, there is a matrix, MB, associated to B
which represents the product of the elements in this basis. Conversely, fixed a basis 
B = {ei | i ∈ Λ} of a K-vector space A, each matrix in CFMΛ(K) defines a product in 
A under which A is an evolution algebra and B is a natural basis.

Now we compute the formula of the product of any two elements in an evolution 
algebra. Let A be an evolution algebra and B = {ei | i ∈ Λ} a natural basis. Consider 
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elements a =
∑

i∈Λ αiei and b =
∑

i∈Λ βiei in A, with αi, βi ∈ K. Then:

ab =
∑
i∈Λ

αiβie
2
i =

∑
i∈Λ

αiβi

⎛⎝∑
j∈Λ

ωjiej

⎞⎠ =
∑
i,j∈Λ

αiβiωjiej .

We use this computation to produce examples of evolution algebras which are not 
power-associative. Indeed, from the equation above we have

e2
i e

2
i =

∑
k∈Λ

ωkiek
∑
j∈Λ

ωjiej =
∑
k∈Λ

ω2
kie

2
k

and

(e2
i ei)ei =

((∑
k∈Λ

ωkiek

)
ei

)
ei = ωiie

2
i ei = ωii

(∑
k∈Λ

ωkiek

)
ei = ω2

iie
2
i .

Thus every matrix (ωki) ∈ CFMΛ(K) such that ω2
ki �= 0, with k �= i, gives an example 

of an evolution algebra which is not power-associative. In fact, the only evolution alge-
bras which are power-associative are those such that w2

ii = wii for every i. Consequently, 
evolution algebras are not, in general, Jordan, alternative or associative algebras. Evolu-
tion algebras are not Lie algebras either. However, by definition, every evolution algebra 
is commutative and, hence, flexible.

We said at the beginning of this section that evolution algebras are the language of 
non-Mendelian genetics. The next example shows that the class of algebras modeling 
Mendel’s laws are not included in the class of evolution algebras. More precisely we will 
see that the zygotic algebra for simple Mendelian inheritance for one gene with two 
alleles, A and a, is not an evolution algebra. For this algebra, according to Mendel laws, 
zygotes have three possible genotypes, namely: AA, Aa and aa. The rules of simple 
Mendelian inheritance are expressed in the multiplication table included in the example 
that follows (see [17] for details and similar examples of algebras following Mendel’s 
laws).

Example 2.2. Consider the vector space generated by the basis B = {AA, Aa, aa} pro-
vided with the multiplication table given by:

AA Aa aa

AA AA 1
2AA + 1

2Aa Aa

Aa 1
2AA + 1

2Aa 1
4AA + 1

4aa + 1
2Aa 1

2aa + 1
2Aa

aa Aa 1
2aa + 1

2Aa aa

We claim that this is not an evolution algebra.
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Proof of the claim. We will see that this algebra does not have a natural basis. Suppose 
on the contrary that there exists a natural basis B′ = {ei | i ∈ {1, 2, 3}}. For each 
i ∈ {1, 2, 3} we may write ei = α1iAA + α2iAa + α3iaa.

Since eiej = 0 for each i, j ∈ {1, 2, 3}, with i �= j, we have that:

4α1jα1i + 2α1jα2i + 2α2jα1i + α2jα2i = 0
α1iα2j + 2α1iα3j + α2iα1j + α2iα2j + α2iα3j + 2α3iα1j + α3iα2j = 0

4α3iα3j + 2α3iα2j + 2α2iα3j + α2iα2j = 0

for every i, j ∈ {1, 2, 3}.
We can express these three equations as:

(2α1i + α2i)(2α1j + α2j) = 0
(2α3i + α2i)(2α3j + α2j) = 0

α1iα2j + 2α1iα3j + α2iα1j + α2iα2j + α2iα3j + 2α3iα1j + α3iα2j = 0

Since these identities hold for every i, j ∈ {1, 2, 3}, the only option is that there exist 
m, n, s ∈ {1, 2, 3}, with m �= n and m �= s, such that:⎧⎪⎪⎨⎪⎪⎩

2α1m + α2m = 0
2α1n + α2n = 0
2α3m + α2m = 0
2α3s + α2s = 0

(1)

Now, we distinguish two cases:

Case 1: Suppose that n �= s. From (1) we obtain that:

α1m = α3m

α2m = −2α1m

α2n = −2α1n

α2s = −2α3s

It follows:

vm = α1me1 − 2α1me2 + α3me3

vn = α1ne1 − 2α1ne2 + α3ne3

vs = α1se1 − 2α3se2 + α3se3

On the other hand, if we take i = n and j = s in (1), then

α1nα2s + 2α1nα3s + α2nα1s + α2nα2s + α2nα3s + 2α3nα1s + α3nα2s = 0;
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this means that α1n = α3n or α3s = α1s. In any case, this is impossible due to the fact 
that vm, vn and vs are linearly independent.

Case 2: Suppose that n = s, then:

α1m = α3m

α1n = α3n

α2m = −2α1m

α2n = −2α1n

which is impossible because vm and vn are linearly independent. �
2.1. Subalgebras and ideals of an evolution algebra

In this section we study the notions of evolution subalgebra and evolution ideal. We 
will see that the class of evolution algebras is not closed neither under subalgebras 
(Example 2.3) nor under ideals (Example 2.7). This last example also shows that the 
kernel of a homomorphism between evolution algebras is not necessarily an evolution 
ideal (contradicting [22, Theorem 2, p. 25]).

Example 2.3. (See [22, Example 1.2].) Let A be the evolution algebra with natural basis 
B = {e1, e2, e3} and multiplication table given by e2

1 = e1 +e2 = −e2
2 and e2

3 = −e2 +e3. 
Define u1 := e1+e2 and u2 := e1+e3. Then the subalgebra generated by u1 and u2 is not 
an evolution algebra as follows. Suppose on the contrary that there exist α, β, γ, δ ∈ K

such that v1 = αu1 +βu2 and v2 = γu1 +δu2 determine a natural basis of the considered 
subalgebra. Since v1v2 = (αu1 + βu2)(γu1 + δu2) = (αδ + βγ)u1 + βδu2, the identity 
v1v2 = 0 and the linear independency of u1 and u2 imply that v1 and v2 are linearly 
dependent, a contradiction.

Because a subalgebra of an evolution algebra does not need to be an evolution algebra 
it is natural to introduce the notion of evolution subalgebra. In [21, Definition 4, p. 23]
(and also in [22]), an evolution subalgebra of an evolution algebra A is defined as a 
subspace A′, closed under the product of A and endowed with a natural basis {ei | i ∈ Λ′}
which can be extended to a natural basis B = {ei | i ∈ Λ} of A with Λ′ ⊆ Λ. Nevertheless, 
we prefer to introduce the following new definition of evolution subalgebra.

Definitions 2.4. An evolution subalgebra of an evolution algebra A is a subalgebra A′ ⊆ A

such that A′ is an evolution algebra, i.e. A′ has a natural basis.
We say that A′ has the extension property if there exists a natural basis B′ of A′

which can be extended to a natural basis of A.
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Remark 2.5. Let A be an evolution algebra with basis {ei | i ∈ Λ′}. As it was said before 
every element ei can be interpreted as a genotype. A linear combination 

∑
i∈Λ

αiei can be 

seen as a single individual such that the frequency of having genotype ei is αi.
A subalgebra A′ of A is a population consisting of single individuals, each of which 

has a certain frequency of having genotype ei and such that its reproduction (i.e. its 
product) remains in A′.

An evolution subalgebra A′ will have the extension property if there exist genotype 
sets B′ and B′′ of A such that B′ is a natural basis of A′ and B′ ∪B′′ is a natural basis 
of A.

Note that an evolution subalgebra in the meaning of [21] is an evolution subalgebra 
in the sense of Definitions 2.4 having the extension property. Thus, this last definition of 
evolution subalgebra is natural and less restrictive as Example 2.11 below proves (where 
we give an ideal I which is an evolution algebra but has not the extension property). 
First, we introduce the notion of evolution ideal.

Recall that a subspace I of a commutative algebra A is said to be an ideal if IA ⊆ I. 
While in [21] every evolution subalgebra is an ideal, this is not the case with the definition 
of ideal given in Definitions 2.4 as the following example shows.

Example 2.6. Let A be an evolution algebra with natural basis B = {e1, e2, e3} and 
multiplication given by e2

1 = e2, e2
2 = e1 and e2

3 = e3. Then, the subalgebra A′ generated 
by e1 + e2 and e3 is an evolution subalgebra with natural basis B′ = {e1 + e2, e3} but it 
is not an ideal as e1(e1 + e2) /∈ A′.

On the other hand, not every ideal of an evolution algebra has a natural basis.

Example 2.7. Let A be the evolution algebra with natural basis B = {e1, e2, e3} and 
product given by e2

1 = e2 + e3, e2
2 = e1 + e2 and e2

3 = −(e1 + e2). Define u1 := e2
1

and u2 := e2
2. It is easy to check that u1 and u2 are linearly independent and that the 

subspace they generate is

I := {αe1 + (α + β)e2 + βe3 | α, β ∈ K}.

Since e1u1 = 0, e2u1 = u2, e3u1 = −u2, e1u2 = u1, e2u2 = u2 and e3u2 = 0, we have 
that I is an ideal of A. Nevertheless, I has not a natural basis because if v1 and v2 are 
elements of I such that v1v2 = 0, then v1 and v2 are not linearly independent. Indeed, if 
v1 = αe1 + (α + β)e2 + βe3 and v2 = λe1 + (λ + μ)e2 + μe3, for α, β, λ, μ ∈ K, then

v1v2 = αλu1 + [(α + β)(λ + μ) − βμ]u2.

Consequently, if v1v2 = 0 then αλ = 0 and (α+β)(λ +μ) = βμ. It follows that α = λ = 0, 
or α = β = 0, or λ = μ = 0, and hence v1 and v2 are not linearly independent.
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This justifies the introduction of the following definition.

Definition 2.8. An evolution ideal of an evolution algebra A is an ideal I of A such that 
I has a natural basis.

Remark 2.9. Biologically, an ideal I of an evolution algebra A is a subalgebra such that 
the reproduction (multiplication) of genotypes of A by single individuals of I produces 
single individuals in I.

Clearly, evolution ideals are evolution subalgebras but the converse is not true as 
Example 2.6 proves (because an evolution subalgebra does not need to be an ideal). Also 
Example 2.7 shows that an ideal of an evolution algebra does not need to be an evolution 
ideal.

Remark 2.10. In [21, Definition 4, p. 23], the evolution ideals of an evolution algebra A
are defined as those ideals I of A having a natural basis that can be extended to a natural 
basis of A. It is shown in [21, Proposition 2, p. 24] that every evolution subalgebra is an 
evolution ideal (in the sense of [21]), that is, evolution ideals and evolution subalgebras 
are the same mathematical concept. This contrasts with our approach (Definitions 2.4
and 2.8, and Examples 2.6 and 2.11).

We finally show that there are examples of evolution ideals for which no natural 
basis can be extended to a natural basis of the whole evolution algebra. In other words, 
our definition of evolution ideal is more general than the corresponding definition given 
in [21].

Example 2.11. Let A be an evolution algebra with natural basis B = {e1,e2, e3} and 
multiplication given by e2

1 = e3, e2
2 = e1 + e2 and e2

3 = e3. Let I be the ideal generated 
by e1 + e2 and e3. Then I is an evolution ideal with natural basis B0 = {e1 + e2, e3}. 
However no natural basis of I can be extended to a natural basis of A. Indeed, if u =
α(e1 + e2) + βe3, v = γ(e1 + e2) + δe3 and w = λe1 + μe2 + ρe3 is such that the set 
{u, v, w} is a natural basis of A, then uv = 0, uw = 0 and vw = 0. This implies the 
following conditions: αγ = 0, βδ = 0, αμ = 0, αλ + βρ = 0, γμ = 0 and γλ + δρ = 0. 
Therefore, the only possibilities are α = δ = ρ = μ = 0 or γ = β = μ = λ = ρ = 0, 
a contradiction because {u, v, w} is a basis. This means that I has not the extension 
property.

We finish this subsection with the result stating that the class of evolution algebras is 
closed under quotients by ideals (see also [11, Lemma 2.9]). The proof is straightforward.

Lemma 2.12. Let A be an evolution algebra and I an ideal of A. Then A/I with the 
natural product is an evolution algebra.
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Remark 2.13. Let B := {ei | i ∈ Λ} be a natural basis of an evolution algebra A and let 
I be an ideal of A. Then BA/I := {ei | i ∈ Λ, ei /∈ I} is not necessarily a natural basis of 
A/I. For an example, consider A and I as in Example 2.7. Then e1, e2, e3 /∈ I and hence 
BA/I = {e1, e2, e3}, which is not a basis of A/I as the dimension of A/I (as a vector 
space) is one. Nevertheless, the set BA/I always contains a natural basis of A/I.

Given two algebras A and A′, we recall that a linear map f : A → A′ is said to be 
a homomorphism of algebras (homomorphism for short) if f(xy) = f(x)f(y) for every 
x, y ∈ A.

Remark 2.14. [21, Theorem 2, p. 25] is not valid in general. Let I be an ideal of an 
evolution algebra. Then the map π : A → A/I given by π(a) = a is a homomorphism 
of evolution algebras (indeed, A/I is an evolution algebra by Lemma 2.12) whose kernel 
is I. By [21, Theorem 2, p. 25], Ker(π) = I is an evolution subalgebra in the sense of 
[21] and, in particular, I has a natural basis. But this is not always true. For example, 
take A and I as in Example 2.7. Then I is not an evolution ideal (i.e. has not a natural 
basis), as it is shown in that example.

We finish by showing that the class of evolution algebras is closed under homomorphic 
images.

Corollary 2.15. Let f : A → A′ be a homomorphism between the evolution algebras A
and A′. Then Im(f) is an evolution algebra.

Proof. By Lemma 2.12, A/Ker(f) is an evolution algebra. Apply that Ker(f) is an ideal 
of A and Im(f) is isomorphic to the evolution algebra A/Ker(f). �
2.2. Non-degenerate evolution algebras

In what follows we study the notion of non-degenerate evolution algebra and introduce 
a radical for an arbitrary evolution algebra such that the quotient by this ideal is a 
non-degenerate evolution algebra.

Definition 2.16. An evolution algebra A is non-degenerate if it has a natural basis B =
{ei | i ∈ Λ} such that e2

i �= 0 for every i ∈ Λ.

Remark 2.17. That a genotype ei in an evolution algebra A satisfies e2
i = 0 means 

biologically that it is not able to have descendents. By Corollary 2.19 the evolution 
algebra A will be non-degenerate if all of its genotypes can reproduce.

In Corollary 2.19 we will show that non-degeneracy does not depend on the considered 
natural basis. Our proof will rely on the well-known notion of annihilator.
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For a commutative algebra A we define its annihilator, denoted by ann(A), as

ann(A) := {x ∈ A | xA = 0}.

Proposition 2.18. Let A be an evolution algebra and B = {ei | i ∈ Λ} a natural basis. 
Denote Λ0(B) := {i ∈ Λ | e2

i = 0}. Then:

(i) ann(A) = lin{ei ∈ B | i ∈ Λ0(B)}.
(ii) ann(A) = 0 if and only if Λ0 = ∅.
(iii) ann(A) is an evolution ideal of A.
(iv) |Λ0(B)| = |Λ0(B′)| for every natural basis B′ of A.

Proof. By [11, Lemma 2.7] we have that ann(A) = lin{ei ∈ B | i ∈ Λ0}. This implies 
(i) and (iii). Item (ii) is obvious from (i) and (iv) follows from the fact that |Λ0(B)| =
dim(ann(A)). �

From now on, for simplicity, we will write Λ0 instead of Λ0(B).

Corollary 2.19. An evolution algebra A is non-degenerate if and only if ann(A) = 0. 
Consequently, the definition of non-degenerate evolution algebra does not depend on the 
considered natural basis.

Proof. Since A is non-degenerate if and only if Λ0 = ∅, the result follows directly from 
Proposition 2.18(ii). �
Remark 2.20. Let A be an evolution algebra and B = {ei | i ∈ Λ} a natural basis. Denote
Λ1 := {i ∈ Λ | e2

i �= 0}. Then:

(i) A1 := lin{ei ∈ B | i ∈ Λ1} is not necessarily a subalgebra of A.
(ii) A/ann(A) is not necessarily a non-degenerate evolution algebra.

Indeed, for an example concerning (i), consider the evolution algebra A with natural 
basis {e1, e2} and product given by: e2

1 = 0, e2
2 = e1 + e2. Then ann(A) = lin{e1} and 

A1 = lin{e2}, which is not a subalgebra of A as e2
2 = e1 + e2 /∈ A1.

To see (ii), let A be an evolution algebra with natural basis B = {e1, e2, e3, e4, e5, e6}
such that e2

1 = e2
2 = e2

3 = 0, e2
4 = e1 + e2, e2

5 = e2 and e2
6 = e2 + e5. Then ann(A) =

lin{e1, e2, e3} and A/ann(A) is an evolution algebra generated (as a vector space) by e4, 
e5 and e6 and has non-zero annihilator. In fact, ann(A/ann(A)) = lin{e4, e5}.

To get non-degenerate evolution algebras, we introduce a radical for an evolution 
algebra A, denoted by rad(A), in such a way that rad(A/rad(A)) = 0, and so A/rad(A)
is non-degenerate.
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Definition 2.21. Let I be an ideal of an evolution algebra A. We will say that I has the 
absorption property if xA ⊆ I implies x ∈ I.

Remark 2.22. Biologically, an ideal I has the absorption property if whenever we consider 
one single individual x of A such that its descendence produces only individuals inside I, 
then the initial individual x belongs to I.

Example 2.23. Consider the evolution algebra A with natural basis {e1, e2, e3} and prod-
uct given by: e2

1 = e2, e2
2 = e1 and e2

3 = e3. Let I be the ideal of A with basis {e1, e2}. 
It is not difficult to see that I has the absorption property.

Lemma 2.24. An ideal I of an evolution algebra A has the absorption property if and 
only if ann(A/I) = 0.

Proof. Assume first that I has the absorption property. Take a ∈ ann(A/I). Then 
aA/I = 0, so that aA ⊆ I. This implies a ∈ I, that is, a = 0. For the converse, 
use that aA ⊆ I implies aA/I = 0, that is, a ∈ ann(A/I) = 0 and hence a ∈ I. �
Lemma 2.25. Let I be a non-zero ideal of an evolution algebra A. Denote by B = {ei |
i ∈ Λ} a natural basis of A. If I has the absorption property, then there exists B1 ⊆ B

such that B1 is a natural basis of I. In particular, I is an evolution ideal and has the 
extension property.

Proof. By Lemma 2.12, we have that A/I is an evolution algebra. Let Λ2 ⊆ Λ be 
such that B := {ei | i ∈ Λ2} is a natural basis of A/I. Denote Λ1 = Λ \ Λ2, and let 
B′ = {ei | i ∈ Λ1}. We claim that B′ is a natural basis of I.

Take ei ∈ B′. Then ei A/I = 0; this means ei ∈ ann(A/I), which is zero by 
Lemma 2.24. This implies ei ∈ I. To see that I is generated by B′, take y ∈ I and 
write y =

∑
i∈Λ1

kiei +
∑

i∈Λ2
kiei for some ki ∈ K. Taking classes in this identity we 

get 0 = y =
∑

i∈Λ2
kiei ∈ linB. Since B is a basis, all the ki (with i ∈ Λ2) must be zero, 

implying y =
∑

i∈Λ1
kiei ∈ linB′. �

Remark 2.26. The converse of Lemma 2.25 is not true. If we take the evolution algebra 
A with natural basis {e1, e2} and product given by e2

1 = e1 and e2
2 = e1, then I = Ke1 is 

an evolution ideal having the extension property but it has not the absorption property 
because e2A ⊆ I and e2 /∈ I.

It is not difficult to prove that the intersection of any family of ideals with the ab-
sorption property is again an ideal with the absorption property.

Definition 2.27. We define the absorption radical of an evolution algebra A as the inter-
section of all the ideals of A having the absorption property. Denote it by rad(A). It is 
clear that the radical is the smallest ideal of A with the absorption property.
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Proposition 2.28. Let A be an evolution algebra. Then rad(A) = 0 if and only if 
ann(A) = 0 if and only if A is non-degenerate.

Proof. Note that ann(A) ⊆ rad(A), hence rad(A) = 0 implies ann(A) = 0. On the other 
hand, if ann(A) = 0, then 0 is an ideal having the absorption property. This implies 
rad(A) = 0 as the radical of A is the intersection of all ideals having the absorption 
property. Finally, the assertion ann(A) = 0 if and only if A is non-degenerate follows 
from Corollary 2.19. �
Corollary 2.29. Let I be an ideal of an evolution algebra A. Then I has the absorption 
property if and only if rad(A/I) = 0. In particular rad(A/rad(A)) = 0, that is, A/rad(A)
is a non-degenerate evolution algebra.

Proof. By Lemmas 2.12 and 2.24, and by Proposition 2.28 it follows that I has the 
absorption property if and only if ann(A/I) = 0 (and hence A/I is a non-degenerate 
evolution algebra), equivalently rad(A/I) = 0. Since rad(A) is an ideal with the absorp-
tion property, the particular case about A/rad(A) follows immediately. �

We recall that an arbitrary algebra A is semiprime if there are no non-zero ideals I of 
A such that I2 = 0, and is nondegenerate if a(Aa) = 0 for some a ∈ A implies a = 0. Note 
that this is a different definition than that of non-degenerate (given in Definition 2.16). 
Although these definitions (in spite of the hyphen) can be confused, they appear with 
those names in the literature, and this is the reason because of which we compare them.

In the associative case, semiprimeness and nondegeneracy are equivalent concepts. We 
close this subsection by relating non-degenerate evolution algebras (in the meaning of 
Definition 2.16) with semiprime and nondegenerate evolution algebras. In fact, we obtain 
the following additional information.

Proposition 2.30. Let A be an evolution algebra with non-zero product. Consider the 
following conditions:

(i) A is nondegenerate.
(ii) A is semiprime.
(iii) A has no non-trivial evolution ideals of zero square.
(iv) A is non-degenerate.

Then: (i) ⇒ (ii) ⇔ (iii) ⇒ (iv).

Proof. (i) ⇒ (ii) is well-known for any (evolution or not) algebra.
(ii) ⇒ (iii) is a tautology.
(iii) ⇒ (ii) follows because every ideal I such that I2 = 0 is an evolution ideal.
(iii) ⇒ (iv). By Proposition 2.18, the annihilator of A is an evolution ideal. Since it 

has zero square, by the hypothesis, it must be zero. By Proposition 2.28 (iv) follows. �
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Remark 2.31. The implications (ii) ⇒ (i) and (iv) ⇒ (iii) in Proposition 2.30 do not hold 
in general.

To see that (ii) � (i), consider the evolution algebra A with natural basis {e1, e2}
and product given by e2

1 = e2 and e2
2 = e1 + e2. Note that e1(Ae1) = 0. Suppose that 

I is a non-zero ideal such that I2 = 0. Then it has to be proper and one dimensional 
because the dimension of A is 2. Therefore I has to be generated (as a vector space) by 
one element, say, u = αe1 + βe2 for some α, β ∈ K. Since 0 = u2 = α2e2 + β2(e1 + e2) =
β2e1 + (α2 + β2)e2 it follows that α = β = 0, a contradiction.

To show that (iv) � (iii), let A be the evolution algebra with natural basis B =
{e1, e2, e3} and product given by e2

1 = e2 + e3 = e2
2 and e2

3 = −e2 − e3. Then the ideal I
generated by e2 + e3 is such that I2 = 0 and nevertheless A is non-degenerate.

2.3. The graph associated to an evolution algebra

We conclude this section by associating a graph to every evolution algebra after fixing 
a natural basis. This will be very useful because it will allow to visualize when an 
evolution algebra is reducible or not as well as the results in Subsection 5.2 to get the 
optimal direct-sum decomposition.

A directed graph is a 4-tuple E = (E0, E1, rE , sE) consisting of two disjoint sets E0, 
E1 and two maps rE , sE : E1 → E0. The elements of E0 are called the vertices of E and 
the elements of E1 the edges of E while for f ∈ E1 the vertices rE(f) and sE(f) are 
called the range and the source of f , respectively. If there is no confusion with respect 
to the graph we are considering, we simply write r(f) and s(f).

If s−1(v) is a finite set for every v ∈ E0, then the graph is called row-finite. If E0 is 
finite and E is row-finite, then E1 must necessarily be finite as well; in this case we say 
simply that E is finite.

Example 2.32. Consider the following graph E:

•v2

•v1

f1

f2 •v3

f4

•v4

f3

Then E0 = {v1, v2, v3, v4} and E1 = {f1, f2, f3, f4}. Examples of source and range are: 
s(f3) = v4 = r(f4).

A vertex which emits no edges is called a sink. A vertex which does not receive any 
vertex is called a source. A path μ in a graph E is a finite sequence of edges μ = f1 . . . fn
such that r(fi) = s(fi+1) for i = 1, . . . , n −1. In this case, s(μ) := s(f1) and r(μ) := r(fn)
are the source and range of μ, respectively, and n is the length of μ. This fact will be 
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denoted by |μ| = n. We also say that μ is a path from s(f1) to r(fn) and denote by μ0

the set of its vertices, i.e., μ0 := {s(f1), r(f1), . . . , r(fn)}. On the other hand, by μ1 we 
denote the set of edges appearing in μ, i.e., μ1 := {f1, . . . , fn}. We view the elements of 
E0 as paths of length 0. The set of all paths of a graph E is denoted by Path(E). Let 
μ = f1f2 · · · fn ∈ Path(E). If n = |μ| ≥ 1, and if v = s(μ) = r(μ), then μ is called a 
closed path based at v. If μ = f1f2 · · · fn is a closed path based at v and s(fi) �= s(fj) for 
every i �= j, then μ is called a cycle based at v or simply a cycle.

Given a graph E for which every vertex is a finite emitter, the adjacency matrix is 
the matrix AdE = (aij) ∈ Z

(E0×E0) given by aij = |{edges from i to j}|.
A graph E is said to satisfy Condition (Sing) if among two vertices of E0 there is at 

most one edge.
There are different ways in which a graph can be associated to an evolution algebra. 

For instance, we could have considered weighted evolution graphs (these are graphs for 
which every edge has associated a weight ωij, determined by the corresponding structure 
constant). In this way every evolution algebra (jointly with a fixed natural basis) has 
associated a unique weighted graph, and vice versa. However, for our purposes we don’t 
need to pay attention to the weights; we only need to take into account if two vertices 
are connected or not (and in which direction). This is the reason because of which, in 
order to simplify our approach, it is enough to consider graphs as we do in the following 
definition.

Definition 2.33. Let B = {ei | i ∈ Λ} be a natural basis of an evolution algebra A and 
MB = (ωji) ∈ CFMΛ(K) be its structure matrix. Consider the matrix P t = (pji) ∈
CFMΛ(K) such that pji = 0 if ωji = 0 and pji = 1 if ωji �= 0. The graph associated 
to the evolution algebra A (relative to the basis B), denoted by EB

A (or simply by E if 
the algebra A and the basis B are understood) is the graph whose adjacency matrix is 
P = (pij).

Note that the graph associated to an evolution algebra depends on the selected basis. 
In order to simplify the notation, and if there is no confusion, we will avoid to refer to 
such a basis.

Example 2.34. Let A be the evolution algebra with natural basis B = {e1, e2} and 
product given by e2

1 = e1 + e2 and e2
2 = 0. Consider the natural basis B′ = {e1 + e2, e2}. 

Then the graphs associated to the bases B and B′ are, respectively:

E : •v1 •v2 F : •w1 •w2

Example 2.35. Let A be the evolution algebra with natural basis B = {e1, e2, e3, e4} and 
product given by: e2

1 = e2 + e3, e2
2 = 0, e2

3 = −2e4 and e2
4 = 5e3. Then the adjacency 

matrix of the graph associated to the basis B is:
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P =

⎛⎜⎜⎝
0 1 1 0
0 0 0 0
0 0 0 1
0 0 1 0

⎞⎟⎟⎠
and E is the graph given in Example 2.32.

Now, conversely, to every row-finite graph satisfying Condition (Sing) we associate an 
evolution algebra whose corresponding structure matrix consists of 0 and 1, as follows.

Definition 2.36. Let E be a row-finite graph satisfying Condition (Sing) and P = (pij)
be its adjacency matrix. Assume E0 = {vi}i∈Λ. For every field K the evolution K-algebra 
associated to the graph E, denoted by AE , is the free algebra whose underlined vector 
space has a natural basis B = {ei}i∈Λ and with structure matrix relative to B given by 
P t = (pji).

Example 2.37. Let E be the following graph:

•v1

•v2 •v4

•v3 •v5 •v6

Its adjacency matrix is

P =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
1 0 1 0 0 0
0 0 0 0 0 0
0 0 1 0 1 0
0 0 0 0 0 1
0 0 0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
and the corresponding evolution algebra is the algebra A having a natural basis B =
{e1, . . . , e6} and product determined by: e2

1 = 0, e2
2 = e1 + e3, e2

3 = 0, e2
4 = e3 + e5, 

e2
5 = e6 and e2

6 = e5.

Remark 2.38. It is easy to determine the annihilator of an evolution algebra A by looking 
at the sinks of the graph associated to a basis. By Proposition 2.18, the annihilator of 
A consists of the linear span of the elements of the basis whose square is zero (these 
are, precisely, the sinks of the corresponding graph). For instance, in Example 2.37, 
ann(A) = lin{e1, e3}.
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3. Ideals generated by one element

In order to characterize those ideals generated by one element, we introduce the 
following useful definitions.

Definitions 3.1. Let B = {ei | i ∈ Λ} be a natural basis of an evolution algebra A and 
let i0 ∈ Λ. The first-generation descendents of i0 are the elements of the subset D1(i0)
given by:

D1(i0) :=
{
k ∈ Λ | e2

i0 =
∑
k

ωki0ek with ωki0 �= 0
}
.

In an abbreviated form, D1(i0) := {j ∈ Λ | ωji0 �= 0}. Note that j ∈ D1(i0) if and only 
if πj(e2

i0
) �= 0 (where πj is the canonical projection of A over Kej).

Similarly, we say that j is a second-generation descendent of i0 whenever j ∈ D1(k)
for some k ∈ D1(i0). Therefore,

D2(i0) =
⋃

k∈D1(i0)

D1(k).

By recurrency, we define the set of mth-generation descendents of i0 as

Dm(i0) =
⋃

k∈Dm−1(i0)

D1(k).

Finally, the set of descendents of i0 is defined as the subset of Λ given by

D(i0) =
⋃
m∈N

Dm(i0).

On the other hand, we say that j ∈ Λ is an ascendent of i0 if i0 ∈ D(j); that is, i0 is a 
descendent of j.

Remark 3.2. From a biological point of view, the first-generation descendents of (the 
genotype) i are the genotypes appearing in e2

i (note that here we are identifying ei
and i).

The second-generation descendents of (the genotype) i are the genotypes appearing 
in the reproduction of the first-generation descendents of ei.

In general, the mth-generation descendents of (the genotype) i are the genotypes 
appearing in the reproduction of the (m − 1)th-generation descendents of ei.

The set of descendents of i are the genotypes appearing in the nth-generation descen-
dents of i for an arbitrary generation n.
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We illustrate the definitions just introduced in terms of the underlying graph associ-
ated to an evolution algebra (relative to a natural basis). We will abuse of the notation 
for simplicity.

Definitions 3.3. Let E be a graph. For a vertex j ∈ E0 we define:

Dm(j) := {v ∈ E0 | there is a path μ such that |μ| = m, s(μ) = vj , r(μ) = v}.

In words, the elements of Dm(j) are those vertices to which vj connects via a path of 
length m. We also define

D(j) =
⋃
m∈N

Dm(j) = {v ∈ E0 | there is a path μ such that s(μ) = vj , r(μ) = v}.

When we want to emphasize the graph E we will write Dm
E (j) and DE(j), respectively.

Examples 3.4. Let E and F be the following graphs:

E : •v2

•v1 •v3 •v4

F : •v4

•v1 •v2 •v3

Some examples of the sets of the nth-generation descendents and of the set of descen-
dents of some indexes are the following.

D1
E(3) = {v4} = D1+2m

E (3); D2
E(3) = {v3} = D2m

E (3) for every m ∈ N, and so 
DE(3) = D1

E(3) ∪D2
E(3) = {v3, v4}.

D1
F (2) = {v3} = D1+3m

F (2); D2
F (2) = {v4} = D2+3m

F (2); D3
F (2) = {v2} = D3m

F (2) for 
every m ∈ N, and so DE(3) = D1

F (2) ∪D2
F (2) ∪D3

F (2) = {v2, v3, v4}.

Next we characterize the descendents (and hence the ascendents) of every index i0 ∈ Λ. 
More precisely, we describe the set Dm(i0).

Proposition 3.5. Let B = {ei | i ∈ Λ} be a natural basis of an evolution algebra A. 
Consider i0, j ∈ Λ and m ≥ 2.

(i) If j ∈ D1(i0) (if and only if ωji0 �= 0), then

eje
2
i0 = ωji0e

2
j .

(ii) j ∈ Dm(i0) if and only if there exist k1, k2, . . . , km−1 ∈ Λ such that

ωjkm−1ωkm−1km−2 · · ·ωk2k1ωk1i0 �= 0,
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in which case,

e2
j =

(
ωjkm−1ωkm−1km−2 · · ·ωk2k1ωk1i0

)−1
ejekm−1ekm−2 . . . ek2ek1e

2
i0 .

Proof. Note that j ∈ D1(i0) if and only if ωji0 �= 0, in which case eje2
i0

= ωji0e
2
j so that

e2
j = ω−1

ji0
eje

2
i0 .

Suppose that the result holds for m − 1. Thus, k ∈ Dm−1(i0) if and only if there exist 
k1, k2, . . . , km−2 ∈ Λ such that

e2
k = (ωkkm−2ωkm−2km−3 · · ·ωk2k1ωk1i0)−1ekekm−2 · · · ek2ek1e

2
i0 .

Let j ∈ Dm(i0). This means that j ∈ D1(k) for some k ∈ Dm−1(i0), so that ωjk �= 0, 
and hence e2

j = (ωjk)−1eje
2
k. Consequently,

e2
j = (ωjkωkkm−2 · · ·ωk2k1ωk1i0)−1ejekekm−2 · · · ek2ek1e

2
i0 ,

as desired. �
From Proposition 3.5 we deduce that if i is a descendent of j, and if j is a descendent 

of k, then i is a descendent of k.
Another direct consequence of the mentioned proposition is the corollary that follows. 

From now on, if S is a subset of an algebra A then we will denote by 〈S〉 the ideal of A
generated by S.

Corollary 3.6. Let B = {ei | i ∈ Λ} be a natural basis of an evolution algebra A. If j ∈ Λ 
is a descendent of i0 ∈ Λ, then 

〈
e2
j

〉
⊆

〈
e2
i0

〉
.

Proposition 3.5 will allow to describe easily the ideal generated by an element in a 
natural basis, as well as the ideal generated by its square.

Corollary 3.7. Let A be an evolution algebra and B = {ei | i ∈ Λ} a natural basis. Then, 
for every k ∈ Λ,〈

e2
k

〉
= lin{e2

j | j ∈ D(k) ∪ {k}} and 〈ek〉 = Kek +
〈
e2
k

〉
.

Proof. Since D1(k) = {j ∈ Λ | ωjk �= 0}, by Proposition 3.5 we have

Ae2
k = lin{e2

j | j ∈ D1(k)}.

Consequently, A(Ae2
k) = lin{e2

j | j ∈ D2(k)}, and, therefore, 
〈
e2
k

〉
= lin{e2

j | j ∈ D(k) ∪
{k}}. The rest is clear. �
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Another proof of Corollary 3.7 will be obtained in Proposition 3.11.

Remark 3.8. Since 〈ek〉 = Kek +
〈
e2
k

〉
, it is clear that 〈ek〉 =

〈
e2
k

〉
if and only if ek ∈

〈
e2
k

〉
. 

On the other hand, because D(k) is at most countable, by definition, the dimension of 
〈ek〉 is, at most, countable.

We can also describe the ideal generated by any element in a natural basis of an 
evolution algebra in terms of multiplication operators. This result will be very useful in 
order to characterize simple evolution algebras.

Definitions 3.9. Let A be an evolution K-algebra. For any element a ∈ A we define the 
multiplication operator by a, denoted by μa, as the following map:

μa : A → A

x �→ ax

By μA we will mean the linear span of the set {μa | a ∈ A}. For an arbitrary n ∈ N, 
denote by μn

A:

μn
A := lin{μa1 . . . μan

| a1, . . . , an ∈ A}.

For n = 0 we define μ0
a as the identity map iA : A → A, while μ0

A denotes KiA. Now, for 
x ∈ A, the notation μn

A(x) will stand for the following linear span:

μn
A(x) := lin{μa1μa2 . . . μan−1μan

(x) | a1, . . . , an ∈ A}

= lin{a1(a2(. . . (an−1(anx)) . . .) | a1, . . . , an ∈ A}.

For example, μ3
A(x) = lin{a1(a2(a3x))) | a1, a2, a3 ∈ A}.

Definition 3.10. Let A be an evolution algebra with a natural basis B = {ei | i ∈ Λ}. For 
any x ∈ A, we define

Λx := {i ∈ Λ | eix �= 0}.

Proposition 3.11. Let A be an evolution algebra with a natural basis B = {ei | i ∈ Λ}.

(i) Let k ∈ Λ be such that e2
k �= 0.

(a) μn
A(e2

k) = lin{e2
j | j ∈ Dn(k)}, for every n ∈ N.

(b)
〈
e2
k

〉
= lin

∞⋃
n=0

μn
A(e2

k).

(c)
〈
e2
k

〉
= lin{e2

j | j ∈ D(k) ∪ {k}}.
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(ii) For any x ∈ A,
(a) μ1

A(x) = lin{e2
i | i ∈ Λx} and for any n ≥ 2, μn

A(x) = lin
⋃

i∈Λx

{e2
j | j ∈ Dn−1(i)}.

(b) 〈x〉 = lin
∞⋃

n=0
μn
A(x).

Proof. We prove (a) in item (i) by induction. Suppose first n = 1. Note that e2
k =∑

i∈D1(k)
ωikei with ωik ∈ K \ {0}. For an arbitrary el ∈ B we have e2

kel =
∑

i∈D1(k)
ωikeiel. 

This sum is zero, if l �= i for every i ∈ D1(k), or it coincides with ωike
2
i if l = i for some i. 

Therefore,

μ1
A(e2

k) ⊆ lin{e2
i | i ∈ D1(k)}.

To show lin{e2
i | i ∈ D1(k)} ⊆ μ1

A(e2
k), take any ei with i ∈ D1(k). By Proposition 3.5(i) 

we have e2
i = ωik

−1e2
kei ⊆ μ1

A(e2
k). This finishes the first step in the induction process.

Assume we have the result for n − 1. Using the induction hypothesis we get:

μn
A(e2

k) = A μn−1
A (e2

k) = A
(
lin{e2

i | i ∈ Dn−1(k)}
)

= lin
⋃

i∈Dn−1(k)

μ1
A(e2

i )

= lin
⋃

i∈Dn−1(k)

{e2
j | j ∈ D1(i)} = lin{e2

j | j ∈ Dn(k)}.

This proves (a) in (i). Item (b) in (i) follows immediately from (a) and item (c) can be 
obtained from (a) and (b).

Now we prove (ii). Note that μ1
A(x) = lin{e2

i | i ∈ Λx}. It is not difficult to see that, 
for n > 1,

μn
A(x) = lin

⋃
i∈Λx

μn−1
A (e2

i ).

Apply condition (b) in item (i) to finish the proof of (a) in (ii). Finally, item (b) in (ii) 
is easy to check. �
Corollary 3.12. Let A be an evolution algebra. Then for any element x ∈ A the dimension 
of the ideal generated by x is at most countable.

Proof. By (ii) in Proposition 3.11 the dimension of the ideal generated by x is the 
dimension of ∪∞

n=0μ
n
A(x). Since any μn

A(x) is finite dimensional, for every n ∈ N ∪ {0}, 
we are done. �
4. Simple evolution algebras

This section is addressed to the study and characterization of simple evolution alge-
bras. We recall that an algebra A is simple if A2 �= 0 and 0 is the only proper ideal.
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Proposition 4.1. Let A be an evolution algebra and let B = {ei | i ∈ Λ} be a natural basis 
of A. Consider the following conditions:

(i) A is simple.
(ii) A satisfies the following properties:

(a) A is non-degenerate.
(b) A = lin{e2

i | i ∈ Λ}.
(c) If lin{e2

i | i ∈ Λ′} is a non-zero ideal of A for a non-empty Λ′ ⊆ Λ then 
|Λ′| = |Λ|.

Then: (i) ⇒ (ii) and (ii) ⇒ (i) if |Λ| < ∞. Moreover, if A is a simple evolution 
algebra, then the dimension of A is at most countable.

Proof. (i) ⇒ (ii). Suppose first that A is a simple evolution algebra. If A is degenerate, 
then e2 = 0 for some element e in a natural basis B of A. Then lin{e} is a nonzero 
ideal of A. The simplicity implies lin{e} = A, but then A2 = 0, a contradiction. This 
shows (a).

Note that A2 = lin{e2
i | i ∈ Λ} is an ideal of A. Since A2 �= 0 and A is simple, we 

have A = A2, which is (b).
If lin{e2

i | i ∈ Λ′} is a non-zero ideal of A, the simplicity of A implies lin{e2
i | i ∈

Λ′} = A = lin{e2
i | i ∈ Λ} = lin{ei | i ∈ Λ}. This gives |Λ′| = |Λ|.

(ii) ⇒ (i). Assume that the dimension of A is finite, say n. Since A satisfies (a), A2 �= 0. 
To prove that A is simple, suppose that this is not the case. Then, there exists u ∈ A

such that 〈u〉 is a non-zero proper ideal of A. Let k ∈ Λ be such that πk(u) �= 0. Then 〈
e2
k

〉
is a non-zero ideal of A contained in 〈u〉, so that 

〈
e2
k

〉
is proper. Proposition 3.11

implies that 
〈
e2
k

〉
= lin{e2

j | j ∈ D(k) ∪ {k}}, which, by (a), is a non-zero ideal of A. 
Use (c) to get |Λ| = |D(k) ∪ {k}|. Since D(k) ∪ {k} ⊆ Λ, we have Λ = D(k) ∪ {k}. Now 
using (b),

〈
e2
k

〉
= lin{e2

j | j ∈ D(k) ∪ {k}} = lin{e2
j | j ∈ Λ} = A,

a contradiction as 
〈
e2
k

〉
is a proper ideal of A.

The dimension of A is at most countable when A is simple by Corollary 3.12. �
Although every simple evolution algebra is non-degenerate, at most countable dimen-

sional and coincides with the linear span of the square of the elements of any natural 
basis, as Proposition 4.1 says, the converse is not true because the hypothesis of finite 
dimension is necessary as the following example shows.

Example 4.2. Let A be an evolution algebra with natural basis {ei | i ∈ N} and product 
given by:
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e2
1 = e3 + e5

e2
3 = e1 + e3 + e5

e2
5 = e5 + e7

e2
7 = e3 + e5 + e7

...

e2
2 = e4 + e6

e2
4 = e2 + e4 + e6

e2
6 = e6 + e8

e2
8 = e4 + e6 + e8

...

Then A satisfies the conditions (a), (b) and (c) in Proposition 4.1(ii) but A is not 
simple as 

〈
e2
1
〉

and 
〈
e2
2
〉

are two nonzero proper ideals.

Example 4.3. Consider the evolution algebra A having a natural basis {e1, e2} and prod-
uct given by e2

i = ei for i = 1, 2. Then 〈ei〉 = Kei is a non-zero proper ideal of A. This 
means that the condition (c) in Proposition 4.1(ii) cannot be dropped.

We show now that there exist simple evolution algebras of infinite dimension.

Example 4.4. Let A be the evolution algebra with natural basis {ei | i ∈ N} and product 
given by:

e2
2n−1 = en+1 + en+2

e2
2n = en + en+1 + en+2

Then A is simple.

Remark 4.5. An evolution algebra A whose associated graph (relative to a natural basis) 
has sinks cannot be simple. The reason is that a sink corresponds to an element in a nat-
ural basis of zero square, hence to an element in the annihilator of A. By Proposition 4.1, 
every simple evolution algebra has to be non-degenerate.

Corollary 4.6. Let A be a finite-dimensional evolution algebra of dimension n and B =
{ei | i ∈ Λ} a natural basis of A. Then A is simple if and only if the determinant of the 
structure matrix MB(A) is non-zero and B cannot be reordered in such a way that the 
corresponding structure matrix is as follows:

M ′ :=
(

Wm×m Um×(n−m)
0(n−m)×m Y(n−m)×(n−m)

)
,

for some m ∈ N with m < n and matrices Wm×m, Um×(n−m) and Y(n−m)×(n−m).

Proof. If A is simple then, by Proposition 4.1, A = lin{e2
i | i ∈ Λ}. This means that the 

determinant of MB(A) is non-zero. To see the other condition, take into account that a 
reordering of the basis B producing a matrix as M ′ would imply that A has a proper 
ideal of dimension m ≥ 1, a contradiction as we are assuming that A is simple.
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Conversely, if |MB(A)| �= 0, then A is generated by the linear span of {e2 | e ∈ B}. 
On the other hand, A cannot be degenerate as, otherwise, ann(A) = lin{e ∈ B | e2 = 0}
(see Proposition 2.18). Decompose B as B = B0 � B1, where B0 = {e ∈ B | e2 = 0}
and B1 = B \ B0 and let B′ be a reordering of B in such a way that the first elements 
correspond to the elements of B0 and the rest to the elements of B1. Then MB′(A) is as 
matrix M ′ in the statement, a contradiction. We have shown that A satisfies conditions 
(a) and (b) in Proposition 4.1(ii). Now we see that condition (c) is also satisfied. Assume 
that Λ′ ⊆ Λ is such that lin{ei | i ∈ Λ′} is a non-zero ideal of A. If we reorder B in 
such a way that the first elements are in {ei | i ∈ Λ′}, then the corresponding structure 
matrix is as M ′ in the statement, a contradiction. Now use Proposition 4.1 to prove that 
A is simple. �

Next we characterize simple evolution algebras of arbitrary dimension.

Theorem 4.7. Let A be a non-zero evolution algebra and B = {ei | i ∈ Λ} a natural basis. 
The following conditions are equivalent.

(i) A is simple.
(ii) If lin{e2

i | i ∈ Λ′} is an ideal for a nonempty subset Λ′ ⊆ Λ, then A = lin{e2
i |

i ∈ Λ′}.
(iii) A = 〈e2

i 〉 = lin{e2
j | j ∈ D(i)} for every i ∈ Λ.

(iv) A = lin{e2
i | i ∈ Λ} and Λ = D(i) for every i ∈ Λ.

Proof. (i) ⇒ (ii). If A is simple, then it is non-degenerate by Proposition 4.1 and hence, 
lin{e2

i | i ∈ Λ′} is a nonzero ideal of A, so that the result follows.
(ii) ⇒ (iii). By Proposition 3.11(ii) we have 〈e2

i 〉 = lin{e2
j | j ∈ D(i) ∪ {i}}. By (ii), 

this set is A. Since ei ∈ A = 〈e2
i 〉 we have i ∈ D(i) and (iii) has being proved.

(iii) ⇒ (iv). Since D(i) ⊆ Λ, we have A = lin{e2
i | i ∈ Λ}. Now, take j ∈ Λ. Then 

ej ∈ A = 〈e2
i 〉 = lin{e2

k | k ∈ D(i)} (by (ii)). It follows that j ∈ D(i) and therefore 
Λ ⊆ D(i).

(iv) ⇒ (i). Let I be a nonzero ideal of A. Since Iei �= 0 for some i ∈ Λ, then e2
i ∈ I

and so I ⊇ 〈e2
i 〉 = A (by (iv)). �

The two conditions in Theorem 4.7(iv) are not redundant as we see in the next ex-
amples.

Examples 4.8. Consider the evolution algebra A with natural basis {e1, e2, e3} and prod-
uct given by e2

1 = e2
3 = e1 + e2; e2

2 = e3. Then {1, 2, 3} = D(i) for every i ∈ {1, 2, 3} but 
lin{e2

i | i = 1, 2, 3} = lin{e1 + e2, e3} �= A.
On the other hand, consider the evolution algebra A given in Example 4.2. Then 

A = lin{e2
i | i ∈ N} but N �= D(i) for every i ∈ N.
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Now we show that in Theorem 4.7(iii) the hypothesis “for every i ∈ Λ” cannot be 
eliminated.

Example 4.9. Let A be the evolution algebra with natural basis B = {en | n ∈ N} and 
product given by:

e2
1 = 0
e2
2 = e3 + e5

e2
4 = e1 + e3 + e5

e2
6 = e5 + e7

e2
8 = e3 + e5 + e7

...

e2
3 = e4 + e6

e2
5 = e2 + e4 + e6

e2
7 = e6 + e8

e2
9 = e4 + e6 + e8

...

Then A = lin{e2
i } for every i ∈ N, but A is not simple as it is not non-degenerate.

Another characterization of simplicity for finite dimensional evolution algebras is the 
following.

Corollary 4.10. If A is a finite dimensional evolution algebra and B a natural basis, then 
A is simple if and only if |MB(A)| �= 0 and Λ = D(i) for every i ∈ Λ.

Proof. Apply Theorem 4.7(iv) taking into account that finite dimensionality of A implies 
that A = lin{e2

i | i ∈ Λ} if and only if |MB(A)| �= 0. �
Remark 4.11. In terms of graphs, the condition “Λ = D(i)” in Theorem 4.7(iv) means 
that the graph associated to A relative to a natural basis B is cyclic, in the sense that 
given two vertices there is always a path from one to the other one.

The following remark shows how to get ideals in non-simple evolution algebras.

Remark 4.12. If A is a non-degenerate evolution algebra having a natural basis B = {ei |
i ∈ Λ} such that every element i ∈ Λ is a descendent of every j ∈ Λ, then A is not simple 
if and only if lin{e2

i | i ∈ Λ} is a proper ideal of A.

5. Decomposition of an evolution algebra into a direct sum of evolution ideals

In this section we characterize the decomposition of any non-degenerate evolution al-
gebra into direct summands as well as the non-degenerate irreducible evolution algebras 
in terms of the associated graph (relative to a natural basis). When the graph asso-
ciated to an evolution algebra and to a natural basis is non-connected then it gives a 
decomposition of the algebra into direct summands. We define the optimal direct-sum 
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decomposition of an evolution algebra and prove its existence and unicity when the 
algebra is non-degenerate.

When the algebra is finite dimensional we determine those elements in the associ-
ated graph relative to a natural basis (respectively in the algebra) which generate a 
decomposition into direct summands.

A decomposition of an evolution algebra can be seen, biologically, as a disjoint union 
of families of genotypes, each of these families reproduces only with the single individuals 
of the proper family.

5.1. Reducible evolution algebras

In this subsection we are interested in the study of those evolution algebras which can 
be written as direct sums of (evolution) ideals.

Definition 5.1. Let {Aγ}γ∈Γ be a nonempty family of evolution K-algebras. We define the 
direct sum of these evolution algebras and denote it by A := ⊕γ∈ΓAγ with the following 
operations: given a =

∑
γ∈Γ

aγ , b =
∑
γ∈Γ

bγ ∈ A and α ∈ K (note that aγ and bγ are zero 

for almost every γ ∈ Γ), define

a + b :=
∑
γ∈Γ

(aγ + bγ) , αa :=
∑
γ∈Γ

(αaγ) , ab :=
∑
γ∈Γ

(aγbγ) .

Note that A is an evolution algebra as, if Bγ is a natural basis of Aγ for every γ ∈ Γ, 
then B := ∪γ∈ΓBγ is a natural basis of A. Here, by abuse of notation, we understand 
Aγ ⊆ A so that every Aγ can be regarded as an (evolution) ideal of A. Moreover, for 
γ �= μ, the ideals Aγ and Aμ are orthogonal, in the sense that AγAμ = 0.

Lemma 5.2. Let A be an evolution algebra. The following assertions are equivalent:

(i) There exists a family of evolution subalgebras {Aγ}γ∈Γ such that A = ⊕γ∈ΓAγ .
(ii) There exists a family of evolution ideals {Iγ}γ∈Γ such that A = ⊕γ∈ΓIγ .
(iii) There exists a family of ideals {Iγ}γ∈Γ such that A = ⊕γ∈ΓIγ .

Proof. (i) ⇒ (ii). By the definition of direct sum of evolution algebras (see Definition 5.1), 
every Aγ is, in fact, an evolution ideal.

(ii) ⇒ (iii) is a tautology.
(iii) ⇒ (i). Suppose A = ⊕γ∈ΓIγ , where each Iγ is an ideal of A. For μ ∈ Γ we have:

Iμ ∼= A/
(
⊕γ∈Γ\{μ}Iγ

)
.

By Lemma 2.12 we obtain that A/ 
(
⊕γ∈Γ\{μ}Iγ

)
is an evolution algebra, and hence Iμ

is an evolution algebra by Corollary 2.15. �
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Definition 5.3. A reducible evolution algebra is an evolution algebra A which can be 
decomposed as the direct sum (in the sense of Definition 5.1) of two non-zero evolution 
algebras, equivalently, of two non-zero evolution ideals, equivalently, of two non-zero 
ideals, as shown in Lemma 5.2. An evolution algebra which is not reducible will be 
called irreducible.

Reducibility of an evolution algebra is related to the connection of the underlying 
graphs, as we show next. For the description of the (existent) connected components of 
a graph see, for example, [1, Definitions 1.2.13].

Proposition 5.4. Let A be a non-zero evolution algebra and E its associated graph relative 
to a natural basis B = {ei | i ∈ Λ}.

(i) Assume E = E1 �E2, where E1 and E2 are nonempty subgraphs of E. Write E0
k =

{vi | i ∈ Λk}, for k = 1, 2, where Λk ⊆ Λ and Λ = Λ1 � Λ2. Then there exist 
non-zero evolution ideals I1, I2 of A such that A = I1 ⊕ I2 and E1, E2 are the 
graphs associated to the evolution algebras I1 and I2, respectively, relative to their 
natural basis Bk = {ei | i ∈ Λk} (for k = 1, 2). Moreover, B = B1 �B2.

(ii) Let E = �γ∈ΓEγ be the decomposition of E into its connected components. For 
every γ ∈ Γ, write E0

γ = {vi | i ∈ Λγ}, where Λγ ⊆ Λ and Λ = �γ∈ΓΛγ. Then there 
exist {Iγ}γ∈Γ, evolution ideals of A, such that A = ⊕γ∈ΓIγ and Eγ is the associated 
graph to the evolution algebra Iγ relative to the natural basis Bγ described below. 
Moreover:
(a) B = �γ∈ΓBγ , where Bγ = {ei | i ∈ Λγ} is a natural basis of Iγ, for every γ ∈ Γ.
(b) Iγ is a simple evolution algebra if and only if Iγ = lin{e2

i | i ∈ Λγ} and D(i) =
Λγ for every i ∈ Λγ .

(c) A is non-degenerate if and only if every Iγ is a non-degenerate evolution algebra.

Proof. (i). Let B = {ei | i ∈ Λ}. The decomposition E = E1 � E2 of E into two 
non-empty components provides a decomposition of A into ideals as follows. Denote by 
vi, with i ∈ Λ, the vertices of E. Write E0 = E0

1 � E0
2 , and let Λk ⊆ Λ be such that 

Λk = {i ∈ Λ | vi ∈ E0
k}, for k = 1, 2. Define Ik = lin{ei | i ∈ Λk}. Then A = I1 ⊕ I2. The 

moreover part follows easily.
(ii). The first part can be proved as (i). Item (a) follows immediately. As for (b), apply 

Theorem 4.7(iv). To prove (c) use Proposition 2.18 and Corollary 2.19. �
Remark 5.5. Once we have defined what an optimal direct-sum decomposition is (see 
Definition 5.10) we can say that if A is non-degenerate then A = ⊕γ∈ΓIγ in Propo-
sition 5.4(ii) is the optimal direct sum decomposition of A, as will follow from Theo-
rem 5.11.

In the next result we characterize when a non-degenerate evolution algebra A is re-
ducible, giving an answer to one of our main questions in this work.
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Theorem 5.6. Let A be a non-degenerate evolution algebra with a natural basis B = {ei |
i ∈ Λ} and assume that A = ⊕γ∈ΓIγ , where each Iγ is an ideal of A. Then:

(i) For every ei ∈ B there exists a unique μ ∈ Γ such that ei ∈ Iμ. Moreover, ei ∈ Iμ if 
and only if e2

i ∈ Iμ.
(ii) There exists a disjoint decomposition of Λ, say Λ = �γ∈ΓΛγ, such that

Iγ = lin{ei | i ∈ Λγ}.

Proof. We show both statements at the same time. Let πi be the linear projection of A
over Kei. We show first that πi(Iγ) �= 0 implies e2

i ∈ Iγ , and hence πi(Iμ) = 0 for every 
μ ∈ Γ \ {γ}. Indeed, if πi(Iγ) �= 0, then there exists y ∈ Iγ such that πi(y) = αei �= 0 for 
some α ∈ K. Multiplying by ei we get eiy = eiπi(y) = αe2

i ∈ Iγ and, therefore, e2
i ∈ Iγ . 

If πi(Iμ) �= 0 for some μ ∈ Γ, reasoning as before, we get e2
i ∈ Iμ, and so e2

i ∈ Iγ ∩Iμ = 0, 
a contradiction because we are assuming that A is non-degenerate.

Define Λγ := {i ∈ Λ | πi(Iγ) �= 0}. It is easy to see that ∪γ∈ΓΛγ = Λ. Moreover, the 
first paragraph of the proof shows that this is a disjoint union, as claimed in (ii).

Now, it is easy to see that for every γ ∈ Γ we have that Iγ ⊆ lin{ei | i ∈ Λγ}. 
To show that lin{ei | i ∈ Λγ} ⊆ Iγ , consider ej ∈ B, with j ∈ Λγ and denote J =
⊕μ∈Γ\{γ}Iμ. Because A = Iγ ⊕ J we may write ej = u + v, with u ∈ Iγ and v ∈ J . 
Then, v = ej − u ∈ lin{ei | i ∈ Λγ} because ej and u are in lin{ei | i ∈ Λγ}. Since 
v ∈ J ⊆ lin{ei | i ∈ ∪μ∈Γ\{γ}Λμ} we deduce that v must be zero. �
Remark 5.7. Theorem 5.6 gives another proof, for non-degenerate evolution algebras, 
of the fact that if an evolution algebra is a direct sum of ideals, then such ideals are 
evolution algebras (and, consequently, evolution ideals). This is the assertion (ii) ⇔ (iii) 
established in Lemma 5.2.

Another application of Theorem 5.6 allows us to recognize easily when a non-
degenerate finite dimensional evolution algebra A is reducible: if B = {ei | i = 1, . . . , n}
is a natural basis of A then A is the direct sum of two (evolution) ideals if and only 
if there is a permutation σ ∈ Sn such that, if B′ := {eσ(i) | i = 1, . . . , n}, then the 
corresponding structure matrix is

MB′ =
(

Wm×m 0(n−m)×(n−m)
0(n−m)×m Y(n−m)×(n−m)

)
,

for some m ∈ N, m < n and some matrices Wm×m and Y(n−m)×(n−m) with entries in K. 
In this case A = I ⊕ J , where I = lin{eσ(1), . . . , eσ(m)} and J = lin{eσ(m+1), . . . , eσ(n)}. 
The basis B′ is what we will called a reordering of B.
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Corollary 5.8. Let A be a non-degenerate evolution algebra, B = {ei | i ∈ Λ} a natural 
basis, and let E be its associated graph. Then A is irreducible if and only if E is a 
connected graph.

Proof. Suppose first that E is connected. To show that A is irreducible suppose, on 
the contrary, that there exist I and J , non-zero ideals of A, such that A = I ⊕ J . By 
Theorem 5.6 there exists a decomposition Λ = ΛI � ΛJ such that I = lin{ei | i ∈ ΛI}
and J = lin{ei | i ∈ ΛJ}. Then E = EI �EJ , a contradiction since we are assuming that 
E is connected.

The converse follows easily: by Proposition 5.4(i), a decomposition E = E1 �E2 into 
two non-empty components provides a decomposition A = I1⊕I2, for I1 and I2 non-zero 
ideals of A, contradicting that A is irreducible. �

In [11, Proposition 2.8] the authors show the result above for finite-dimensional evo-
lution algebras using a different approach.

The hypothesis of non-degeneracy cannot be eliminated in Corollary 5.8.

Example 5.9. Consider the evolution algebra given in Example 2.34, which is not non-
degenerate. Then the graph E, associated to the basis B is connected while the graph F , 
associated to the basis B′ is not.

5.2. The optimal direct-sum decomposition of an evolution algebra

The aim of this subsection is to obtain a decomposition of an evolution algebra in 
terms of irreducible evolution ideals.

Definition 5.10. Let A be a non-zero evolution algebra and assume that A = ⊕γ∈ΓIγ is 
a direct sum of non-zero ideals. If every Iγ is an irreducible evolution algebra, then we 
say that A = ⊕γ∈ΓIγ is an optimal direct-sum decomposition of A.

We show that the optimal direct sum decomposition of an evolution algebra A with 
a natural basis B = {ei | i ∈ Λ} does exist and it is unique whenever the algebra is 
non-degenerate. Moreover, for finite dimensional evolution algebras (degenerated or not), 
we will describe how to get an optimal decomposition of Λ through the fragmentation 
process. This will be done in Subsection 5.3.

Theorem 5.11. Let A be a non-degenerate evolution algebra. Then A admits an optimal 
direct-sum decomposition. Moreover, it is unique.

Proof. We start by showing the existence. Let E be the graph associated to A relative 
to a natural basis B and decompose it in its connected components, say E = �γ∈ΓEγ . 
By Proposition 5.4(ii) we have A = ⊕γ∈ΓIγ , where every Iγ is an ideal of A. Note that, 
by construction (see the proof of Proposition 5.4), every Iγ has a natural basis, say Bγ , 
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consisting of elements of the basis B = {ei | i ∈ Λ} of A. Because A is non-degenerate, 
e2
i �= 0, by Corollary 2.19 and Proposition 2.18. Using again these results we have that 

every Iγ is a non-degenerate evolution algebra. Since Eγ is the graph associated to Iγ
relative to the basis Bγ and Eγ is connected, by Corollary 5.8 every Iγ is an irreducible 
evolution algebra.

Now we prove the uniqueness. Fix a natural basis B = {ei | i ∈ Λ}. Suppose that there 
are two optimal direct-sum decompositions of A, say A = ⊕γ∈ΓIγ and A = ⊕ω∈ΩJω. By 
Theorem 5.6 there exist two decompositions Λ = �γ∈ΓΛγ and Λ = �ω∈ΩΛω such that

Iγ = lin{ei | i ∈ Λγ} and Jω = lin{ei | i ∈ Λω}.

Take i ∈ Λγ for an arbitrary γ ∈ Γ. Then there is an ω ∈ Ω such that ei ∈ Jω. This 
means Iγ ∩ Jω �= 0. Decompose

Iγ = (Iγ ∩ Jω) ⊕ (Iγ ∩ (⊕ω �=ω′∈ΩJω′)) .

Since Iγ is irreducible and Iγ ∩ Jω �= 0, necessarily (Iγ ∩ (⊕ω �=ω′∈ΩJω′)) = 0. Therefore 
Iγ = Iγ ∩ Jω and so Iγ ⊆ Jω. Changing the roles of Iγ and Jω we get Jω ⊆ Iγ , implying 
Iγ = Jω and, consequently, that each decomposition is nothing but a reordering of the 
other one. �

The hypothesis of non-degeneracy cannot be eliminated in order to assure the unicity 
of the optimal direct sum decomposition in Theorem 5.11, as the following example 
shows. It is also an example which illustrates that in Theorem 5.6 non-degeneracy is also 
required.

Example 5.12. Let A be the evolution K-algebra with natural basis B = {e1, e2, e3, e4, e5}
and multiplication given by: e2

1 = e2
2 = e1, e2

3 = e3 + e5 and e2
4 = e2

5 = 0. Then 
A = I1 ⊕ I2 ⊕ I3 ⊕ I4, where I1 := lin{e1, e2 + e4}, I2 := lin{e3 + e5}, I3 := lin{e4} and 
I4 := lin{e5} are irreducible ideals, as we are going to show.

The ideals I2, I3 and I4 are irreducible because their dimension is one. Now we prove 
that I1 is also irreducible. Assume, on the contrary, I1 = J1 ⊕ J2, with J1 and J2
non-zero ideals. Then dim J1 = dim J2 = 1, so that J1 = Ku1 and J2 = Ku2 for some 
u1 = α1e1 + β1(e2 + e4) and u2 = α2e1 + β2(e2 + e4), where α1, α2, β1, β2 ∈ K. Then, 
u1u2 = 0 implies (β1β2 + α1α2)e1 = 0. On the other hand, u1e1 = α1e1 ∈ J1 and 
u2e1 = α2e1 ∈ J2. Since J1 ∩ J2 = 0, then α1 = 0 or α2 = 0. Assume, for example, 
α1 = 0. Then J1 = K(e2 + e4), but this is not an ideal as (e2 + e4)2 = e1. The case 
α2 = 0 is similar.

Now we give another decomposition of A into irreducible ideals. Consider A = J ⊕
I2 ⊕ I3 ⊕ I4, where J := lin{e1, e2}. We claim that J is an irreducible ideal of A. Indeed, 
if J = M1⊕M2, for M1 and M2 non-zero ideals, then M1 = Ku1 and M2 = Ku2 for some 
u1 = α1e1 +β1e2 and u2 = α2e1 +β2e2, where α1, α2, β1, β2 ∈ K. Then, u1e1 = α1e1 and 
u2e1 = α2e1. Since M1 ∩M2 = 0, then α1 = 0 or α2 = 0. Assume α1 = 0. This implies 
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u1 = β1e2 and M1 = Ke2, but this is not an ideal because e2
2 = e1. The case α2 = 0 is 

similar.
Note that we have two different decompositions of A as a direct sum of irreducible 

ideals.

As we have seen (Remark 4.3), non-degenerate evolution algebras are not necessar-
ily simple. On the other hand, concerning reducibility, the next example shows that 
there exist irreducible evolution algebras which are not simple (while, obviously, simple 
evolution algebras are irreducible).

Example 5.13. Let A be an evolution algebra with a natural basis B = {e1, e2} such 
that e2

1 = e2
2 = e2. Then Ke2 is a proper ideal of A. However, A is irreducible because if 

A = I ⊕ J , for some ideals I and J of A. Then, by Theorem 5.6, we have either e1 ∈ I, 
in which case A = I, or e1 ∈ J , in which case, A = J . In any case I or J is zero.

The next definition will be helpful to understand the inner structure of an evolution 
algebra.

Definition 5.14. Let B = {ei | i ∈ Λ} be a natural basis of an evolution algebra A. We 
say that i0 ∈ Λ is cyclic if i0 ∈ D(i0). This means that i0 is descendent (and hence 
ascendent) of itself.

In particular, if D(i0) = {i0} (in which case e2
i0

= ωi0i0ei0 for some ωi0i0 ∈ K \ {0}), 
then we say that the cyclic index i0 is a loop.

If i0 ∈ Λ is cyclic, then the cycle associated to i0 is defined as the set:

C(i0) = {j ∈ Λ | j ∈ D(i0) and i0 ∈ D(j)}.

Note that if i0 is cyclic then C(i0) is non-empty because it contains i0 in particular. 
Moreover, i0 is a loop if and only if C(i0) = {i0}.

We say that a subset C ⊆ Λ is a cycle if C = C(i0), for some cyclic-index i0 ∈ Λ.

Remark 5.15. By identifying an index i with the genotype ei, biologically, an index is 
cyclic if it is a descendent of its descendents. The cycle associated to an index i is the 
set of all its descendents j such that i is a descendent of j.

In the same context as in Definition 5.14, consider i0 ∈ Λ, and let ωi0i0 be the 
corresponding element in the structure matrix for the evolution algebra A. If ωi0i0 �= 0
then we have that i0 is cyclic, independently of the value of the other elements in the 
structure matrix. If ωi0i0 = 0, then i0 is cyclic if and only if it is a descendent of some 
of its own descendents.

On the other hand, if B = {ei | i ∈ Λ} is a natural basis of A, and if i1, i2 ∈ Λ are 
cyclic, then we have either C(i1) = C(i2) or C(i1) ∩ C(i2) = ∅.
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These facts can be understood more easily looking at the corresponding graphical 
concepts, as we will do below.

Now we classify the cycles into two types, depending on if they have or not ascendents 
outside the cycle.

Definition 5.16. Let B = {ei | i ∈ Λ} be a natural basis of an evolution algebra A, 
and let i0 ∈ Λ be a cyclic index. We say that i0 is a principal cyclic index if the set 
of ascendents of i0 is contained in C(i0), the cycle associated to i0. Thus, i0 ∈ Λ is a 
principal cyclic-index if i0 ∈ D(i0) and j ∈ D(i0) for every j ∈ Λ with i0 ∈ D(j).

We say that a subset C of Λ is a principal cycle if C = C(i0), for some principal cyclic 
index i0 ∈ Λ.

It is clear that if i0 ∈ Λ is a principal cyclic index then every j ∈ C(i0) is also a 
principal cyclic index. Moreover, if i0 ∈ Λ is a cyclic index, then C(i0) is not principal if 
and only if there exists j ∈ Λ \ C(i0) such that i0 ∈ D(j).

On the other hand, a non-empty subset C ⊆ Λ is a principal cycle if and only if it 
satisfies the following properties:

(i) For every i, j ∈ C we have that i ∈ D(j) and j ∈ D(i).
(ii) If D(k) ∩ C �= ∅ then k ∈ C.

Note that if i0 is a loop, then {i0} is a principal cycle if and only if i0 has no other 
ascendents than i0. Moreover, if C is a principal cycle, then C = C(i) = C(j) for every 
i, j ∈ C and, hence, D(i) = D(j) for very i, j ∈ C.

Now we will distinguish between cycles that have proper descendents from those that 
do not have them.

Definition 5.17. Let B = {ei | i ∈ Λ} be a natural basis of an evolution algebra A, and 
let S be a subset of Λ. We define the index-set derived from S as the set given by

Λ(S) := S ∪i∈S D(i).

For instance, if i ∈ Λ, then the index set derived from {i} is Λ({i}) := {i} ∪ D(i),
where D(i) is the set of descendents of i.

The index set derived from a principal cycle is obtained next.

Remark 5.18. Let C be a principal cycle. Then, C = C(i) = C(j) and D(i) = D(j), for 
every i, j ∈ C. Moreover, C(i) ⊆ D(i), for every i ∈ C (the inclusion may or may not be 
strict). Thus, C ⊆ Λ(C) = D(i) for every i ∈ C.

Definition 5.14 in terms of graphs gives rise to the following definition.
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Definition 5.19. Let E be a graph with vertices {vi | i ∈ Λ} satisfying Condition (Sing). 
An index j ∈ Λ is said to be cyclic if j ∈ Dm(j) for some m ∈ N (see Definitions 3.3). 
Equivalently, if the graph E has a cycle c such that vj ∈ c0.

If j is a cyclic index, we define

C(j) := {vk ∈ E0 | k ∈ D(j) and j ∈ D(k)},

that is, C(j) are those vertices connected to vj such that vj is also connected to them.
A cyclic index j is called principal (see Definition 5.16) if

{vk ∈ E0 | j ∈ D(k)} ⊆ C(j).

A cyclic index j is principal if and only if it belongs to a cycle without entries or such 
that every entry comes from a path starting at the cycle. By extension, we will also say 
that C(j) is a principal cycle.

Examples 5.20. Consider the following graphs.

E : •v3 •v4

•v1 •v2

F : •v5

•v1 •v2 •v3 •v4

G : •v6

•v1 •v2 •v3 •v4 •v5

Concerning E, the indices 1, 2 and 3 are cyclic and C(1) = C(2) = C(3) = {v1, v2, v3}. 
Also, 1, 2 and 3 are principal indices.

For the graph F , the cyclic indices are 2, 3, 4 and 5. Moreover, C(2) = C(3) = C(5) =
{v2, v3, v5} and C(4) = {v4}. The only index which is principal is 4.

As to the graph G, its cyclic indices are 2, 3, 4 and 6. None of them is principal.

Definition 5.21. Let B = {ei | i ∈ Λ} be a natural basis of an evolution algebra A. We 
say that i0 ∈ Λ is a chain-start index if i0 has no ascendents, i.e., i0 /∈ D(j), for every 
j ∈ Λ. Equivalently, i0 is a chain-start index if and only if all the elements of the i0-th 
row of the structure matrix MB(A) are zero.

Remark 5.22. In terms of graphs, an index i0 is a chain-start index if and only if the 
vertex vi0 is a source. In the graphs of Examples 5.20, the only chain-start index is the 
vertex v1 in F and the vertex v1 in G.
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In the case of finite-dimensional evolution algebras, if the determinant of the structure 
matrix MB(A) is non-zero then Λ has no chain-start indices. The (graphical) reason is 
that |MB(A)| �= 0 implies that MB(A) has no zero rows, hence the associated graph 
relative to B has no sources.

The lack of chain-start indices is a necessary condition for A to be simple. The graph-
ical reason is that if a vertex vi is a source, then the ideal generated by e2

i does not 
contain ei, hence 〈e2

i 〉 is a nonzero proper ideal.

5.3. The fragmentation process

In this subsection we will consider only finite dimensional evolution algebras, degen-
erated or not. We give a process that allows to decompose an evolution algebra into 
direct sums of evolution algebras (the optimal decomposition when the algebra is non-
degenerate).

Definition 5.23. Let A be a finite dimensional evolution algebra, and fix a natural basis 
B = {ei | i ∈ Λ}. Consider the set {C1, . . . , Ck} of the principal cycles of Λ and the set 
{i1, . . . , im} of all chain-start indices of Λ.

Given any i ∈ Λ which is not a chain-start index, there exists j ∈ Λ such that i ∈ D(j), 
and either j is a chain-start index or j belongs to a principal cycle (because Λ is finite). 
Therefore, according to Definition 5.17,

Λ = Λ(C1) ∪ · · · ∪ Λ(Ck) ∪ Λ(i1) ∪ · · · ∪ Λ(im).

This decomposition will be called the canonical decomposition of Λ associated to B.

Note that the sets in the canonical decomposition are not necessarily disjoint. This 
is the case, for example, when two different principal cycles, or two chain-start indices, 
have common descendents.

Definition 5.24. Let Λ be a finite set and let Υ1, . . . , Υn be non-empty subsets of Λ such 
that Λ = ∪n

i=1Υi. We say that Λ = ∪n
i=1Υi is a fragmentable union if there exist disjoint 

non-empty subsets Λ1, Λ2 of Λ satisfying

Λ = ∪n
i=1Υi = Λ1 ∪ Λ2,

and such that for every i = 1, . . . , n, either Υi ⊆ Λ1 or Υi ⊆ Λ2.

For instance, if the sets Υi are disjoint then Λ = ∪n
i=1Υi is fragmentable. Note that a 

fragmentable union may admit different fragmentations.
On the other hand, if Υi ∩ Υj �= ∅ for every i �= j, then the union Λ = ∪n

i=1Υi is not 
fragmentable.
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Definitions 5.25. Let Λ be a finite set and let Υ1, . . . , Υn be non-empty subsets of Λ such 
that Λ = ∪n

i=1Υi is a fragmentable union. A fragmentation of Λ = ∪n
i=1Υi is a union 

Λ = ∪k
i=1Λi such that:

(i) If i ∈ {1, . . . , k} then Λi = ∪j∈Si
Υj for Si a non-empty subset of {1, . . . , n}.

(ii) Λi ∩ Λj = ∅, for every i, j ∈ {1, . . . , k}, with i �= j.

Note that conditions (i) and (ii) imply that for every j ∈ {1, . . . , n} there exists a unique 
i ∈ {1, . . . , k} such that Υj ⊆ Λi.

An optimal fragmentation of a fragmentable union Λ = ∪n
i=1Υi is a fragmentation 

Λ = ∪k
i=1Λi such that for every i ∈ {1, . . . , k} the index set Λi = ∪j∈Si

Υj is not 
fragmentable.

In what follows we build the optimal fragmentation for any Λ = ∪n
i=1Υi.

Let Λ be a finite set and consider Υ1, . . . , Υn, non-empty subsets of Λ such that 
Λ = ∪n

i=1Υi is a fragmentable union. To obtain an optimal fragmentation of this union 
we define the following equivalence relation in the set {Υ1, . . . , Υn}.

We say that Υi ∼ Υj if there exist m1, . . . , mk ∈ {1, . . . , n} such that

Υi ∩ Υm1 �= ∅, Υm1 ∩ Υm2 �= ∅, . . . , Υmk−1 ∩ Υmk
�= ∅, Υmk

∩ Υj �= ∅.

Let S1 := {i ∈ {1, . . . , n} | Υi ∼ Υ1}; define Λ1 := ∪i∈S1Υi. Set S2 = {1, . . . , n} \ S1

and Λ̃2 := ∪i∈S2Υi. Then Λ = Λ1 ∪ Λ̃2 with Λ1 non-fragmentable. If Λ̃2 = ∪i∈S2Υi is 
non-fragmentable then by defining Λ̃2 = Λ2 we have that Λ = Λ1 ∪ Λ2 is the optimal 
fragmentation of Λ = ∪n

i=1Υi. Otherwise, Λ̃2 = ∪i∈S2Υi is fragmentable and, as before, 
we may decompose Λ̃2 := Λ2 ∪ Λ̃3, with Λ2 non-fragmentable. By reiterating the pro-
cess we obtain a decomposition Λ = ∪k

i=1Λi, where every Λi is non-fragmentable. This 
produces an optimal fragmentation Λ = ∪k

i=1Λi of the initial decomposition Λ = ∪n
i=1Υi.

Proposition 5.26. Let Λ be a finite set and let Υ1, . . . , Υn be non-empty subsets of Λ such 

that Λ =
n⋃

i=1
Υi is a fragmentable union. Then the optimal fragmentation Λ = Λ1∪· · ·∪Λk

of Λ =
n⋃

i=1
Υi is unique (unless reordering).

Proof. Suppose that Λ = Λ1 ∪ · · · ∪ Λk and Λ = Λ̃1 ∪ · · · ∪ Λ̃m are two optimal frag-
mentations. Take i ∈ {1, . . . , k}. If there exist j, k ∈ {1, . . . , m} such that Λi ∩ Λ̃j �= ∅
and Λi ∩ Λ̃k �= ∅, then j = k because, otherwise, Λi is fragmentable. It follows that for 
every i ∈ {1, . . . , k} there is a unique j ∈ {1, . . . , m} such that Λi ⊆ Λ̃j . We claim that 
Λi = Λ̃j because otherwise Λ̃j would be fragmentable, a contradiction. We conclude that 
m = k and that Λ = Λ̃1 ∪ · · · ∪ Λ̃m is a reordering of Λ = Λ1 ∪ · · · ∪ Λk. �
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By combining Theorems 4.7 and 5.6 with the optimal fragmentation process we obtain 
the following result.

Theorem 5.27. Let A be a finite-dimensional evolution algebra with natural basis B =
{ei | i ∈ Λ}. Let {C1, . . . , Ck} be the set of principal cycles of Λ, {i1, . . . , im} the set of 
all chain-start indices of Λ and consider the canonical decomposition

Λ = Λ(C1) ∪ · · · ∪ Λ(Ck) ∪ Λ(i1) ∪ · · · ∪ Λ(im). (†)

Let Λ = �γ∈ΓΛγ be the optimal fragmentation of (†) and decompose B = �γ∈ΓBγ , where 
Bγ = {ei | i ∈ Λγ}. Then A = ⊕γ∈ΓIγ , for Iγ = linBγ , which is an evolution ideal 
of A. Moreover, if A is non-degenerate, then A = ⊕γ∈ΓIγ is the optimal direct-sum 
decomposition of A.

Since the optimal direct-sum decomposition of a non-degenerate evolution algebra 
A is unique, we conclude that, in the non-degenerate case, the decomposition given in 
Theorem 5.27 does not depend on the prefixed natural basis B (i.e. any other natural 
basis leads to the same optimal direct sum decomposition).

Remark 5.28. Every finite dimensional evolution algebra A (non-degenerated or not) 
is the direct sum of a finite number of irreducible evolution algebras. Indeed, if A is 
irreducible, then we are done. Otherwise, decompose A = I1 ⊕ I2, for I1, I2 ideals of A. 
If I1 and I2 are irreducible, then we have finished. If this is not the case, we decompose 
them. Since the dimension of A is finite, proceeding in this way in a finite number of 
steps we finish.

For A an evolution algebra of arbitrary dimension such that A = ⊕γ∈ΓIγ is the 
optimal direct-sum decomposition of A, the study of A can be reduced to the study of 
the irreducible evolution algebras Iγ separately.

The last result in this section is a consequence of Proposition 4.1 and Theorem 5.27.

Corollary 5.29. Let A be a non-degenerate finite dimensional evolution algebra with a 
natural basis B = {ei | i ∈ Λ}. Then A = I1 ⊕· · ·⊕ Ik, where Ii is an ideal, simple as an 
algebra, if and only if Λ has the following property: Λ = Λ1 � · · · �Λk, where every Λj is 
non-empty and Ij = lin{ei | i ∈ Λj} = lin{e2

i | i ∈ Λj} and D(i) = Λj, for every i ∈ Λj.

6. The optimal fragmentation computed with Mathematica

We have designed a program that provides the optimal fragmentation of an evolution 
algebra when we introduce the coefficient matrix as input. Moreover, the code identifies 
if an index is a cyclic-index, a principal cyclic index or a chain-start index. On the other 
hand, it calculates the nth-generation descendents of any index for every n. We include 
the Mathematica codes needed for our computations. They consist on a list of functions 
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written in the order they have been used. The computation of the invariants has been 
performed by the Mathematica software.

In order to compute the optimal fragmentation, we have used the proposition that 
follows.

Proposition 6.1. Let Λ be a finite set and let Υ1, . . . , Υn be non-empty subsets of Λ such 

that Λ =
n⋃

i=1
Υi. Let (aij) ∈ Mn(K) be the matrix defined by: aii = 0 for every i, aij = 1

if Υi ∩ Υj �= ∅ and aij = 0 if Υi ∩ Υj = ∅. Let E be the graph whose adjacency matrix 

is (aij). Then, E is connected if and only if Λ =
n⋃

i=1
Υi is not a fragmentable union. 

Moreover, if E is not connected, then the connected components of E form an optimal 
fragmentation of Λ.

Proof. Suppose that Λ =
n⋃

i=1
Υi is a non-fragmentable union. If E is not connected, 

let Ψi denote the connected components of E with i ∈ {1, 2, . . . , m} for some m ∈ N. 
This means that we may write {1, 2, . . . , n} =

m�
i=1

Ψi where Ψi ⊆ {1, 2, . . . , n}. Now, we 

consider the sets: Λi =
⋃

j∈Ψi

Υj . We will show that Λ =
m⋃
i=1

Λi is an optimal fragmentation. 

First, we have to prove that Λi ∩ Λj = ∅ for every i �= j, with i, j ∈ {1, . . . , m}. If there 
exists ω ∈ Λi ∩ Λj , then there are r ∈ Ψi and s ∈ Ψj such that ω ∈ Υr ∩ Υs. This 
implies that Υr∩Υs �= ∅, i.e. r and s are connected. This is a contradiction because they 
belong to different connected components. Conversely, suppose that E is connected. If 
Λ =

n⋃
i=1

Υi is a fragmentable union then there exist Λ1 and Λ2 disjoint subsets of Λ

satisfying that Λ = Λ1 ∪ Λ2 and such that for every i = 1, . . . , n, either Υi ⊆ Λ1 or 
Υi ⊆ Λ2. Let α ∈ Λ1 and β ∈ Λ2. This means that there exist i, j ∈ {1, . . . , n} such that 
α ∈ Υi ⊆ Λ1 and β ∈ Υj ⊆ Λ2. As E is connected, there exists a path from α to β. This 
implies that there exist i1, . . . , ik ∈ {1, . . . , n} such that

Υi ∩ Υi1 �= ∅,Υi1 ∩ Υi2 �= ∅, . . . ,Υik ∩ Υj �= ∅,

a contradiction because α ∈ Υi ⊆ Λ1 and β ∈ Υj ⊆ Λ2. Furthermore, from this reasoning 
we deduce that the connected components of E make an optimal fragmentation of Λ. �

In what follows we provide a list with the routines that have been used together with 
a brief description of them.

• D1: computes the first-generation descendents of i.
• Dn: computes the nth-generation descendents of i.
• CycleQ: checks if P has a cycle.
• DP: computes D(i).
• CyclicQ: checks if P has some cyclic index.
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• CycleAssociated: computes the cycle associated to i.
• Ascendents: computes the ascendents of i.
• PrincipalCycleQ: checks if i is a principal cyclic-index.
• ChainStartQ: checks if i is a chain-start index.
• CanonicalDecomposition: computes a canonical decomposition associated to P.
• OptimalFragmentation: computes an optimal fragmentation associated to P.

Finally, we include the Mathematica code of all these functions.

l = Table[i, {i, n}];
D1[i_,P_] := Select[l,P[[#, i]] �= 0&];

Dn_[i_,P_] := Module[{j, a, s},
a = {}; s = Length[Dn−1[i,P]];
If [n == 1,D1[i,P],
Union[Flatten[Table[D1[Dn−1[i,P][[t]],P], {t,Length[Dn−1[i,P]]}]]]]]

CycleQ[P_] := Module[{n, a}, n = Length[P];
a = Union[Flatten[Table[
Diagonal[MatrixPower[P, i]], {i, 1, n}]]];
MemberQ[a, 1];

DYesCycle[i_,P_] := Module[{j, a},
a = {};
For[j = 1, j <= Length[P], j + +,
AppendTo[a,Dj[i,P]]];
Apply[Union, a]]

DNotCycle[i_,P_] := Module[{j, a},
a = {D1[i,P]};
For[j = 1,Dj[i,P] �= Dj+1[i,P], j + +,
AppendTo[a,Dj+1[i,P]]];
Apply[Union, a]]

DP[i_,P_] := If [CycleQ[P],DYesCycle[i,P],DNotCycle[i,P]]

CyclicQ[i_,P_] := If [MemberQ[DP[i,P], i],
Print[i “is a cyclic index”],Print[i “is not a cyclic index”]]

CycleAssociated[i_,P_] := Module[{j, a},
a = {};
For[j = 1, j <= Length[P], j + +,
IfMemberQ[DP[i,P], j]&&MemberQ[DP[j,P], i],
AppendTo[a, j]]];
a]

Ascendents[i_,P_] := Module[{j, a},
a = {};
For[j = 1, j <= Length[P], j + +,
IfMemberQ[DP[j,P], i],
AppendTo[a, j]]];
a]

Subset[A_,B_] := (Union[A,B] == Union[B])

PrincipalCycleQ[i_,P_] := If [Subset[Ascendents[i,P],CycleAssociated[i,P]],
Print[i “is a principal cyclic-index”],
Print[i “is not a principal cyclic-index”]]

ElementsNotNoneRow[P_] := Module[{j},
Select[Table[j, {j,Length[P]}],P[[#]] == 0P[[1]]&]];

ChainStartQ[i_,P_] := If [MemberQ[ElementsNotNoneRow[P], i],
Print[i “is a chain-start index”],

Print[i “is not a chain-start index”]]
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Λ[i_,P_] := Union[{i},DP[i,P]];

LambdaChainStart[P_] := Table[Λ[ElementsNotNoneRow[P][[i]],P],
{i,Length[ElementsNotNoneRow[P]]}]

LambdaPrincipalCycle[P_] := Module[{j, a},
a = {};
For[j = 1, j <= Length[P], j + +,
If [Subset[Ascendents[j,P],CycleAssociated[j,P]],
AppendTo[a,DP[j,P]]]];
a]

CanonicalDecomposition[P_] := Join[LambdaChainStart[P],LambdaPrincipalCycle[P]]

f [i_, j_,P_] := If [[i == j, 0,
If [Intersection[Part[CanonicalDecomposition[P], i],
Part[CanonicalDecomposition[P], j]] �= 0, 1, 0]]

Matr[P_] := Table[
f [i, j,P], {i,Length[CanonicalDecomposition[P]]}, {j
Length[CanonicalDecomposition[P]]}]

OptimalFragmentation[P_] := ConnectedComponents[AdjacencyGraph[Matr[P]],
VertexLabels → “Name”]

One concrete example showing how this program works can be found in https://
www.dropbox.com/s/2mtdojjaj1o20m8/OptimalFragmentation.pdf?dl=0. We have 
not included it here to not enlarge the paper.
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