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This paper is devoted to the classifications of some nilpotent Leibniz algebras. The
technique of central extensions of nilpotent Lie algebras was firstly developed in [T.
Skjelbred and T. Sund, “On the classification of nilpotent Lie algebras”, research
report, Mat. Inst., Univ. Oslo, 1977]. The advantage of this technique is that any
nilpotent Lie algebra can be obtained as a central extension of some nilpotent algebra
of lower dimension. The adaptation of the method of central extensions for nilpotent
Leibniz algebras was suggested in [I. S. Rakhimov, S. J. Langari and M. B. Langari, Int.
J. Algebra 3 (2009), no. 5-8, 271-280; MR2519573].

In the present paper the authors classify all central extensions of null-filiform and
naturally graded filiform non-Lie Leibniz algebras. Namely, they prove that the central
extensions of complex null-filiform Leibniz algebras and the k-dimensional central ex-
tensions (k > 5) of naturally graded filiform non-Lie Leibniz algebras are split.

Sh. A. Ayupov
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