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tural constants. It is known the equivalence between nil, right nilpo-

tent evolution algebras and evolution algebras which are defined by

upper triangular matrices A. We establish a criterion for an

n-dimensionalnilpotentevolutionalgebra tobewithmaximalnilpo-

tent index 2n−1 + 1.We give the classification of finite-dimensional

complex evolution algebras with maximal nilpotent index.

Moreover, for any s = 1, . . . , n − 1 we construct a wide class of

n-dimensional evolution algebras with nilpotent index 2n−s + 1.

We show that nilpotent evolution algebras are not dibaric and es-

tablish a criterion for two-dimensional real evolution algebras to be

dibaric.
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1. Introduction

In the book [9] the foundations of evolution algebras are developed. Evolution algebras have many

connections with other mathematical fields including graph theory, group theory, Markov chains,

dynamic systems, knot theory, 3-manifolds and the study of the Riemann-zeta functions [1,3,4,8,9].

Nilpotent algebra is an algebra for which there is a natural number k such that any product of k

elements of the algebra is zero. If there is a non-zero product of k−1 elements, then k is called the index

of nilpotency of the algebra. Examples of nilpotent algebras are: an algebra with zero multiplication;

direct sums of nilpotent algebras, the nilpotent indices of which are uniformly bounded; and the
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tensor product of two algebras, one of which is nilpotent. Nilpotent subalgebras that coincide with

their normalizer (Cartan subalgebras) play an essential role in the classification of simple Lie algebras

of finite dimension.

The algebraic notions like nilpotency, right nilpotency and solvability might be interpreted in a

biological way as a various types of vanishing (“deaths”) populations.

The structural constants of an evolution algebra are given by a quadratic matrix A (see Section 2).

In [3] the equivalence between nil, right nilpotent evolution algebras and evolution algebras which

are defined by upper triangular matrices A is proved, and the classification of 2-dimensional complex

evolution algebras is obtained.

In [2] the derivations of n-dimensional complex evolution algebras, depending on the rank of the

matrix A, are studied. For an evolution algebra with non-singular matriz it is proved that the space of

derivations is zero. The spaces of derivations for evolution algebras with matrices of rank n − 1 are

described.

The paper [1] is devoted to the study of finite-dimensional complex evolution algebras. The class of

evolution algebras isomorphic to evolution algebras with Jordan formmatrices of structural constants

is described. For finite-dimensional complex evolution algebras the criteria of nilpotency is established

in terms of the properties of the corresponding matrices. Moreover, it is proved that for nilpotent n-

dimensional complexevolutionalgebras thepossiblemaximalnilpotency index is 2n−1+1. The criteria

of planarity for finite graphs is formulated by means of evolution algebras defined by graphs.

In [5] an evolution algebra E associated to the free population is introduced and using this non-

associative baric algebra, many results are obtained in an explicit form, e.g., the explicit description of

stationary quadratic operators and the explicit solutions of a non-linear evolutionary equation in the

absence of selection, as well as general theorems on convergence to equilibrium in the presence of a

selection.

Dibaric algebras have not non-zero homomorphisms to the set of the real numbers. In [4] a concept

of bq-homomorphism (which is given by two linear maps f , g of the algebra to the set of the real

numbers) is introduced and it is shown that an algebra is dibaric if and only if it admits a non-zero

bq-homomorphism.

In the study of any class of algebras, it is important to describe, up to isomorphism, at least algebras

of lower dimensions because such description gives examples to establish or reject certain conjectures.

In thisway in [6] and [10], the classifications of associative andnilpotent Lie algebras of lowdimensions

were given.

In this paper we continue the study of algebraic properties of evolution algebras. The paper is

organized as follows. In Section 2 we give some preliminaries. In Section 3 we establish a criterion for

an n-dimensional nilpotent evolution algebra to be of maximal nilpotent index 2n−1 + 1. Since these

algebras have maximal index of right nilpotency and maximal index of solvability too, then we might

say that among vanishing populations, these are the latest vanishing populations.

We give the classification of finite-dimensional complex evolution algebraswithmaximal nilpotent

index.Moreover, for any s = 1, . . . , n−1weconstruct awideclassofn-dimensional evolutionalgebras

with nilpotent index 2n−s + 1. Section 4 is devoted to the dibaricity of evolution algebras. We show

that nilpotent real evolution algebras are not dibaric and establish a criterion for two-dimensional real

evolution algebras to be dibaric.

2. Preliminaries

Evolution algebras. Let (E, ·) be an algebra over a field K . If it admits a basis {e1, e2, . . . }, such that

ei · ej =
⎧⎪⎨⎪⎩
0, if i �= j;∑
k

aikek, if i = j,

then this algebra is called an evolution algebra [9]. The basis is called a natural basis. We denote by

A = (aij) the matrix of the structural constants of the evolution algebra E.
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The following properties are known [9]:

(1) Evolution algebras are not associative, in general.

(2) Evolution algebras are commutative, flexible.

(3) Evolution algebras are not power-associative, in general.

(4) The direct sum of evolution algebras is also an evolution algebra.

(5) The Kronecker product of evolution algebras is an evolution algebra.

Definition 2.1. Let E be an evolution algebra, and E1 be a subspace of E. If E1 has a natural basis

{ei | i ∈ �1}, which can be extended to a natural basis {ej | j ∈ �} of E, E1 is called an evolution

subalgebra, where �1 and � are index sets and �1 is a subset of �.

Definition 2.2. An element a of an evolution algebra E is called nil if there exists n(a) ∈ N such

that
( · · · (

(a · a) · a) · · · a︸ ︷︷ ︸
n(a)

) = 0. An evolution algebra E is called nil if every element of the algebra

is nil.

For an evolution algebra E we introduce the following sequences, k � 1,

E[1] = E<1> = E, E[k+1] = E[k]E[k], E<k+1> = E<k>E,

Ek =
k−1∑
i=1

EiEk−i. (2.1)

The following inclusions hold

E<k> ⊆ Ek, E[k+1] ⊆ E2
k

.

Since E is a commutative algebra we obtain

Ek =
�k/2�∑
i=1

EiEk−i,

where �x� denotes the integer part of x.

Definition 2.3. An evolution algebra E is called right nilpotent if there exists some s ∈ N such that

E<s> = 0. The smallest s such that E<s> = 0 is called the index of right nilpotency.

Definition 2.4. An evolution algebra E is called nilpotent if there exists some n ∈ N such that En = 0.

The smallest n such that En = 0 is called the index of nilpotency.

In [1], it is proved that the notions of nilpotent and right nilpotent are equivalent.

Definition 2.5. An algebra A is called solvable if there exits some t ∈ N such that A[t] = 0. The

smallest t such that A[t] = 0 is called the index of solvability.

Dibaric algebras. A character for an algebra A is a non-zero multiplicative linear form on A, that is,

a non-zero algebra homomorphism from A to R [5]. A pair (A, σ ) consisting of an algebra A and a

character σ on A is called a baric algebra.

As usual, the algebras considered in mathematical biology are not baric.

Definition 2.6. ([7,11]) LetA = 〈w,m〉R denote a two-dimensional commutative algebra overRwith

multiplicative table
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w2 = m2 = 0, wm = 1

2
(w + m) .

Then A is called the sex differentiation algebra.

It is clear that A2 = 〈w+m〉R is an ideal of Awhich is isomorphic to the fieldR. Hence the algebra

A2 is a baric algebra.

Definition 2.7. ([7]) An algebra A is called dibaric if it admits a homomorphism onto the sex differ-

entiation algebra A.

3. Nilpotent evolution algebras

In [3] it is proved that the notions of nil and right nilpotency are equivalent for evolution algebras.

Moreover, thematrix A of structural constants for such algebras has upper (or lower, up to permutation

of basis elements of the algebra) triangular form.

Let evolution algebra E be a right nilpotent algebra, then it is evident that E is a nil algebra. Therefore

for the related matrix A = (
aij

)n
i,j=1

, we have

ai1i2ai2i3 . . . aiki1 = 0,

for any k ∈ {1, 2, . . . , n} and arbitrary i1, i2, . . . , ik ∈ {1, 2, . . . , n} with ip �= iq for p �= q [3].

The following results are known:

Theorem 3.1. ([3]) The following statements are equivalent for an n-dimensional evolution algebra E:

(a) The matrix corresponding to E can be written as

Â =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 a12 a13 . . . a1n

0 0 a23 . . . a2n

0 0 0 . . . a3n

...
...

... · · · ...

0 0 0 · · · 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
;

(b) E is a right nilpotent algebra;

(c) E is a nil algebra.

Lemma 3.2. Let E be a finite-dimensional evolution algebra and Ej, j � 1, the evolution subalgebras of E

defined in (2.1). Then

E2
k+i = E2

k+1

, i = 1, . . . , 2k, k = 0, 1, . . . . (3.1)

Proof. We shall use mathematical induction. We have E1 = E, E2 = EE, and for k = 1,

E3 = EE2 = E2E2, E4 = EE3 + E2E2 = E2E2 = E3.

Assume for k the equalities (3.1) are true. We shall prove for k + 1. Using Ei+j ⊂ Ei, Ei+jEi = Ei+jEi+j

and assumptions of the induction we get
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E2
k+1+i =

2k+�i/2�∑
j=1

EjE2
k+1+i−j =

2k+�i/2�∑
j=1

EjE2
k+i

=
2k+�i/2�∑

j=1

EjE2
k+1 = EE2

k+1 = E2
k+1

E2
k+1

. �

Lemma 3.3. If for an evolution algebra E there exists s ∈ N such that E2
s+1 = E2

s+1+1, then Ek = E2
s+1

for any k = 2s + 1, 2s + 2, . . . , 2s+2 + 1.

Proof. We have

E2
s+1 ⊇ E2

s+2 ⊇ · · · ⊇ E2
s+1+1.

Hence by condition of the lemma we get Ek = E2
s+1 for any k = 2s + 1, 2s + 2, . . . , 2s+1 + 1. It

remains to prove the equality for k = 2s+1 + i + 1, i = 1, . . . , 2s+1. We have

E2
s+1+1 =

2s∑
j=1

EjE2
s+1−j+1 = EE2

s+1 = E2
s+1.

For i = 1 using the above obtained equalities we get

E2
s+1+2 =

2s+1∑
j=1

EjE2
s+1−j+2 = EE2

s+1 = E2
s+1.

Now assume the assertion is true for i and we shall show it for i + 1.

E2
s+1+i+2 =

2s+1+�i/2�∑
j=1

EjE2
s+1+i−j+2.

Since 2s + 1 < 2s+1 + i − j + 2 � 2s+1 + i + 1 for any j = 1, 2, . . . 2s + 1 + �i/2�, using the

assumption of the induction, we get

E2
s+1+i+2 =

2s+1+�i/2�∑
j=1

EjE2
s+1 = EE2

s+1 = E2
s+1. �

From this lemma we get the following

Corollary 3.4. If for an evolution algebra E there exists s ∈ N such that E2
s+1 = E2

s+1+1, then Ek = E2
s+1

for any k � 2s + 1.

Proof. If the condition of Lemma 3.3 is satisfied for s, then it is satisfied for s + 1. So, iterating the

lemma we get Ek = E2
s+1 for any k � 2s + 1. �

From this corollary it follows that an evolution algebra E satisfying the condition of Lemma 3.2 is

not nilpotent.

The following is an example satisfying the condition of Lemma 3.3.
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Example3.5. Fix some r ∈ {2, 3, . . . , n−1}andconsider theevolutionalgebrawith themultiplication

table

e2i = ei+1, i = 1, . . . , r − 1; e2i = er, i = r, . . . , n.

It is easy to see that this algebra satisfies the condition of Lemma 3.3 for some s � r. In this case,

Ek = {er} for all k � 2s + 1.

Theorem 3.6. An n-dimensional nilpotent evolution algebra E has maximal nilpotent index, 2n−1 + 1, if

and only if

a12a23 . . . an−1,n �= 0.

Proof. Necessity. Assume a12a23 . . . an−1,n = 0 then dim E2 � n − 2. Since E is nilpotent, by Lemma

3.2, for any k we have E2
k+1 � E2

k+1+1. Consequently, dim E2
k+1 � n − 2 − k. Hence E2

n−2+1 = 0,

i.e., E has not maximal nilpotent index.

Sufficiency was proved in [1]. �

Let E be an n-dimensional nilpotent evolution algebra with maximal nilpotent index. Then by the

following scaling of basis

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e′1 = a
−1/2
12 a

−1/4
23 · · · a−(1/2)n−1

n−1,n e1

e′2 = a
−1/2
23 a

−1/4
34 · · · a−(1/2)n−2

n−1,n e2

. . .

e′n−1 = a
−1/2
n−1,nen−1

e′n = en

(3.2)

the evolution algebra is isomorphic to an evolution algebra E′ with matrix of structural constants

A′ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 a′
13 . . . a′

1n

0 0 1 . . . a′
2n

0 0 0 . . . a′
3n

...
...

... · · · ...

0 0 0 · · · 1

0 0 0 · · · 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Let E be an n-dimensional nilpotent evolution algebra such that the matrix of structural constants

satisfies ai1i1+1 = · · · = aisis+1 = 0, for some s = 1, . . . , n − 1. Then omitting all multipliers

aikik+1, k = 1, . . . , s in (3.2) one can show that the evolution algebra E is isomorphic to an evolution

algebra E′ with matrix of structural constants A′ = (a′
ij), with a′

i1i1+1 = · · · = a′
isis+1 = 0 and

a′
ii+1 = 1, i �= i1, . . . , is.
The following theorem gives the classification of evolution algebras with matrix of structural con-

stants as A′.



96 J. Casas et al. / Linear Algebra and its Applications 439 (2013) 90–105

Theorem 3.7. Any finite-dimensional complex evolution algebra with maximal nilpotent index is isomor-

phic to one of pairwise non-isomorphic algebras with matrix of structural constants⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 a13 . . . a1,n−1 0

0 0 1 . . . a2,n−1 0

0 0 0 . . . a3,n−1 0

...
...

... · · · ...
...

0 0 0 · · · 0 1

0 0 0 · · · 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where one of non-zero aij can be chosen equal to 1.

Proof. Assume ϕ = (αij)i,j=1,...,n is an isomorphism between evolution algebras E and E′ with mul-

tiplication tables

E :

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
e2i = ei+1 +

n∑
j=i+2

aijej, i = 1, . . . , n − 2,

e2n−1 = en,

e2n = 0.

E′ :

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
e′i

2 = e′i+1 +
n∑

j=i+2

bije
′
j, i = 1, . . . , n − 2,

e′2n−1 = e′n,
e′2n = 0.

We shall use the following lemma.

Lemma 3.8. ϕ = (αij) is defined by

αii = α2i−1

11 , α11 �= 0; αij = 0, i �= j, j �= n; αin ∈ C. (3.3)

Proof. For i = n consider

0 = ϕ(e2n) = e′2n =
n−2∑
j=1

α2
nj

⎛⎝ej+1 +
n∑

s=j+2

ajses

⎞⎠ + α2
n,n−1en.

From this equality it follows that αnj = 0, j = 1, . . . , n − 1.

For i = n − 1 we have

e′n = αnnen = ϕ(e2n−1) =
n−1∑
i=1

α2
n−1,ie

2
i =

n−2∑
i=1

α2
n−1,i

⎛⎝ei+1 +
n∑

j=i+2

aijej

⎞⎠ + α2
n−1,n−1en.

From this equalities we get

αn−1,i = 0, i = 1, . . . , n − 2, αnn = α2
n−1,n−1.
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Similarly from e′n−1ej = 0, we get αj,n−1 = 0. Hence αn−1,j = αj,n−1 = 0, j �= n − 1. Assume (3.3) is

true for i � k and j �= n. We shall check it for i = k − 1. By the assumptions we have

ϕ(e2k−1) =
k−1∑
s=1

α2
k−1,se

2
s =

k−1∑
s=1

α2
k−1,s

⎛⎝es+1 +
n∑

j=s+2

asjej

⎞⎠ .

On the other hand

ϕ
(
e2k−1

)
= e′2k−1 = e′k +

n∑
j=k+1

bk−1,je
′
j

= αkkek + αknen +
n∑

j=k+1

bk−1,j (αjj ej + αjn en).

Hence αk−1,j = 0, j = 1, . . . , k − 2. Using the above equalities we get

α2
k−1,k−1ek +

⎛⎝ n∑
j=k+1

ak−1,jej

⎞⎠ α2
k−1,k−1 = αkkek + αknen +

n∑
j=k+1

bk−1,j (αjjej + αjnen) (3.4)

which gives αkk = α2
k−1,k−1.

For s < k using assumptions, we get

0 = ϕ(ek−1es) = e′k−1e
′
s = (

αk−1,k−1ek−1 + αk−1,nen
) ⎛⎝ k∑

t=1

αstet + αsnen

⎞⎠
= αk−1,k−1αs,k−1e

2
k−1 = αk−1,k−1αs,k−1

⎛⎝ek +
n∑

j=k+1

akjej

⎞⎠ .

Then αs,k−1 = 0. Hence

αj,k−1 = 0, j < k − 1, αk−1,j = 0, j �= k − 1. �

Now we shall continue the proof of theorem. From the equality (3.4) we get

α2
k−1,k−1 ak−1,n en +

⎛⎝ n−1∑
j=k+1

ak−1,j ej

⎞⎠ α2
k−1,k−1

=
n−1∑

j=k+1

bk−1,j αjj ej +
⎛⎝αkn + 2bk−1,n αnn +

n−1∑
j=k+1

bk−1,jαjn

⎞⎠ en.

Consequently,

α2
k−1,k−1ak−1,n = αkn + 2bk−1,n αnn +

n−1∑
j=k+1

bk−1,jαjn, k = 2, . . . , n − 1.

α2
k−1,k−1ak−1,j = αjjbk−1,j, j = k + 1, . . . , n − 1.
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From these formulas using αkk = α2k−1

11 , we obtain

α2k−1

11 ak−1,n = αkn + 2bk−1,n α2n−1

11 +
n−1∑

j=k+1

bk−1,jαjn, k = 2, . . . , n − 1.

α2k−1

11 ak−1,j = α2j−1

11 bk−1,j, j = k + 1, . . . , n − 1.

(3.5)

From the second equation of the system (3.5) we obtain

bk−1,j = α2k−1−2j−1

11 ak−1,j, k = 2, . . . , n − 1, j = k + 1, . . . , n − 1. (3.6)

Using (3.6), in order to have bk−1,n = 0, in the first equation of (3.5) we put

αkn = α2k−1

11 ak−1,n −
n−1∑

j=k+1

bk−1,jαjn

= α2k−1

11 ak−1,n −
n−1∑

j=k+1

α2k−1−2j−1

11 ak−1,jαjn, k = 2, . . . , n − 1.

If there exist k0, j0 such that ak0,j0 �= 0 then taking α11 = a

−1

2k0−2j0−1

k0,j0
, we have

bk0,j0 = 1, k0 = 1, . . . , n − 2. �

Remark 3.9. Note that the evolution algebras of Theorem 3.7 are also algebras of maximal index of

solvability and maximal index of right nilpotency.

Example 3.10. Any four-dimensional complex evolution algebra with maximal nilpotent index is

isomorphic to one of the algebras with the following matrix of structural constants

⎛⎜⎜⎜⎜⎜⎜⎝
0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎜⎜⎝
0 1 1 0

0 0 1 0

0 0 0 1

0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ .

Any five-dimensional complex evolution algebra with maximal nilpotent index is isomorphic to one

of the algebras with the following matrix of structural constants

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0

0 0 1 1 0

0 0 0 1 0

0 0 0 0 1

0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 1 0

0 0 1 d 0

0 0 0 1 0

0 0 0 0 1

0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 b 0

0 0 1 d 0

0 0 0 1 0

0 0 0 0 1

0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where b, d ∈ C.
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Proposition 3.11. Let E be an evolution algebra with matrix of structural constants

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 a13 . . . a1,m+1 a1,m+2 . . . a1,n−1 a1n

0 0 1 . . . a2,m+1 a2,m+2 . . . a2,n−1 a2n

0 0 0 . . . a3,m+1 a3,m+2 . . . a3,n−1 a3n

...
...

...
...

...
...

...
...

...

0 0 0 . . . am−1,m+1 am−1,m+2 . . . am−1,n−1 am−1,n

0 0 0 . . . am,m+1 am,m+2 . . . am,n−1 amn

...
...

...
...

...
...

...
...

...

0 0 0 . . . 0 0 . . . 0 1

0 0 0 . . . 0 0 . . . 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

with ai,i+1 = 1, for i �= m, i = 1, . . . , n − 1, am,m+1 = 0 and am,m+2 �= 0 or am−1,m+1 �= 0. Then

E2
k+1 = E2

k+2 = · · · = E2
k+1 =

⎧⎪⎨⎪⎩
〈e2k+1, . . . , e

2
m−1, em+2, . . . , en〉, if k � m − 2,

〈ek+3, . . . , en〉, if m − 1 � k � n − 3,

(3.7)

and E2
n−2+1 = 0, i.e., its nilpotent index is 2n−2 + 1.

Proof. We have

e2i = ei+1 +
n∑

j=i+2

aijej, i = 1, . . . ,m − 1,m + 2, . . . , n − 1; e2m =
n∑

j=m+2

amjej.

E2 =
〈
e21, e

2
2, . . . , e

2
n

〉
.

It is easy to see that 〈e2i , i = m + 1, . . . , n〉 = 〈ei, i = m + 2, . . . , n〉 and e21, e
2
2, . . . , e

2
m−1,

em+2, . . . , en are linearly independent. Thus

E2 =
〈
e21, e

2
2, . . . , e

2
m−1, em+2, . . . , en

〉
.

E3 = EE2 =
〈
e2i ej, e2k | i = 1, . . . ,m − 1, j = i + 1, . . . , n, k = m + 2, . . . , n

〉
.

We have

e2i ej =
{
e2j , if j = i + 1,

aij e
2
j , if j > i + 1.

In case am,m+2 �= 0, from e2m = am,m+2 em+2 +
n∑

j=m+3

amj ej , we obtain em+2 ∈ E3.
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If am−1,m+1 �= 0, then since e2m−1 em+1 = am−1,m+1 e
2
m+1, we conclude that em+2 ∈ E3. Thus we

obtain

E3 =
〈
e22, . . . , e

2
m−1, em+2, . . . , en

〉
.

Now we shall compute E4 = EE3 + E2E2. Similarly as in the case EE2, we get

EE3 =
〈
e2i ej, e2k | i = 2, . . . ,m − 1, j = i + 1, . . . , n, k = m + 2, . . . , n

〉
=

〈
e23, . . . , e

2
m−1, em+2, . . . , en

〉
.

E2E2 =
〈
e2i , e2j ek, e2pe

2
q | i, k = m + 2, . . . , n, j, p, q = 1, . . . ,m − 1

〉
.

It is easy to see that

e2i ek = aike
2
k, i = 1, . . . ,m − 1, k = m + 2, . . . , n.

e2pe
2
q =

⎧⎪⎪⎨⎪⎪⎩
e2p+1, if p = q = 1, . . . ,m − 1,

ap,q+1e
2
q+1 +

n∑
j=q+2

apjaqje
2
j , if p < q.

Using these equalities, we obtain

E2E2 =
〈
e22, . . . , e

2
m−1, em+2, . . . , en

〉
= E3.

Consequently, E4 = E3.

Lets assume that the equalities (3.7) are true for k, we shall prove it for k + 1.

E2
k+1+1 = EE2

k+1 + E2E2
k+1−1 + · · · + E2

k

E2
k+1 = (

E + E2 + · · · + E2
k )
E2

k+1

= EE2
k+1 = 〈e1, . . . , en〉〈e2k+1, . . . , e

2
m−1, em+2, . . . , en〉

=
〈
e2k+2, . . . , e

2
m−1, em+2, . . . , en

〉
.

We also have

E2
k+2 = EE2

k+2−1 + E2E2
k+2−2 + · · · + E2

k+1

E2
k+1 ⊇ E2

k+1

E2
k+1

=
〈
e2k+2, . . . , e

2
m−1, em+2, . . . , en

〉
.

Moreover, we obtain〈
e2k+2, . . . , e

2
m−1, em+2, . . . , en

〉
= E2

k+1+1 ⊇ E2
k+1+2 ⊇ · · · ⊇ E2

k+2

⊇
〈
e2k+2, . . . , e

2
m−1, em+2, . . . , en

〉
.

Consequently

E2
k+1+1 = E2

k+1+2 = · · · = E2
k+2 =

〈
e2k+2, . . . , e

2
m−1, em+2, . . . , en

〉
.

This gives the formula (3.7). Using the formula, we get E2
n−2+1 = 0. �
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The following example shows that the nilpotent index may be 2n−s + 1 for any s = 1, . . . , n − 1.

Example 3.12. Consider an n-dimensional nilpotent evolution algebra E with matrix of structural

constants A = (aij) satisfying

aikj = 0, j = 1, 2, . . . , n − 1, k = 1, . . . , s − 1;
ajik = 0, j = 1, 2, . . . , n, k = 1, . . . , s − 1,

where 1 � i1 < i2 < · · · < is−1 � n − 2, s < n. Then the nilpotent index of E is 2n−s + 1.

The following proposition generalizes Example 3.12.

Proposition 3.13. Let E be an n-dimensional evolution algebra with matrix of structural constants A =
(aij) such that for some s < n − 1 and 1 � i1 < i2 < · · · < is−1 � n − 2 satisfies

ajik = aikj = 0, for all j /∈ {i1, . . . , is−1, n}, k = 1, . . . , s − 1,

aikik+1
= 1, for all k = 1, . . . , s − 1.

i.e., A has the following form

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 a13 . . . a1i1−1 0 a1i1+1 . . . a1is−1−1 0 a1is−1+1 . . . a1n

0 0 1 . . . a2i1−1 0 a2i1+1 . . . a2is−1−1 0 a2is−1+1 . . . a2n

.

.

.
.
.
.

.

.

. . . .
.
.
.

.

.

.
.
.
. . . .

.

.

.
.
.
.

.

.

. . . .
.
.
.

0 0 0 . . . 0 1 ai1−1i1+1 . . . ai1−1is−1−1 0 ai1−1is−1+1 . . . ai1−1n

0 0 0 . . . 0 0 0 . . . 0 ai1 is−1
0 . . . ai1n

0 0 0 . . . 0 0 0 . . . ai1+1is−1−1 0 ai1+1is−1+1 . . . ai1+1n

.

.

.
.
.
.

.

.

. . . .
.
.
.

.

.

.
.
.
. . . .

.

.

.
.
.
.

.

.

. . . .
.
.
.

0 0 0 . . . 0 0 0 . . . 0 0 0 . . . 1

0 0 0 . . . 0 0 0 . . . 0 0 0 . . . 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Then the nilpotent index of E is equal to 2max{s−1,n−s} + 1.

Proof. The evolution algebra E can be written as E = A + B, where A = 〈ei | i �= i1, . . . , is−1〉, B =
〈ei1 , ei2 , . . . , eis−1

〉. It is easy to see that AB = 0, this implies AiBj = 0, i, j = 1, 2, . . . Consequently,

Ek = Ak + Bk . Using similar arguments as above (for computation of the maximal nilpotent index)

one can see that the nilpotent index of A is 2n−s + 1 and the nilpotent index of B is 2s−1 + 1. This

completes the proof. �

Remark 3.14. By [1, Proposition 4.7] if E is an n-dimensional nilpotent evolution algebrawith index of

nilpotency not equal to 2n−1 +1, then it is not greater than 2n−2 +1. Moreover, in the paper [1], there

is an example of evolution algebra with nilpotent index 3 · 2k−4 + 1, where 4 � k � n. Therefore it

is interesting to know all possible values of the nilpotent index for nilpotent evolution algebras. This

problem is difficult, but for small values of n one can do exact calculations. For example, if n = 3 then
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the nilpotent index can be 2,3,5. For n = 4 all possible values of the nilpotent index are 2,3,4,5,9. The

4-dimensional evolution algebra E, with the following matrix

A =

⎛⎜⎜⎜⎜⎜⎜⎝
0 1 b c

0 0 0 −b2f

0 0 0 f

0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ ,

has nilpotent index 4, where bf �= 0. This case is interesting since it has not the form 2k + 1.

4. Dibaric algebras

In this sectionwewill study some dibaricity properties of arbitrary algebras and evolution algebras.

Theorem 4.1. Any finite-dimensional nilpotent evolution algebra E is not dibaric.

Proof. Assume ϕ = (bij)i=1,...,n; j=1,2 is a homomorphism ϕ : E → A. We shall use the following �

Lemma 4.2. For any i, j = 1, . . . , n, we have

bi1bj2 = bi2bj1 = 0. (4.1)

Proof. Without loss of generality we assume i � j and use mathematical induction. Let Ck denote all

cases of (4.1) with 2n − (i + j) + 1 = k. For k = 1, i.e., i = j = n, from ϕ
(
e2n

)
= 0 we get

bn1bn2 = 0. (4.2)

For k = 2 we have i = n − 1 and j = n. We get

0 = ϕ(en−1en) = 1

2
(bn−1,1bn2 + bn−1,2bn1)(m + w).

This by (4.2) gives

bn−1,1bn2 = bn−1,2bn1 = 0.

Assuming that Ck holds, we have to prove Ck+1, that is, Eq. (4.1), for any i, j = 1, . . . , n, i � j, which

satisfy 2n − (i + j) + 1 = k + 1.

Case i < j: From ϕ(eiej) = 1
2
(bi1bj2 + bi2bj1)(m + w) = 0 we get

bi1bj2 + bi2bj1 = 0. (4.3)

By assumptions we have i < j, 2n − 2j + 1 � k and bj1bj2 = 0. This by (4.3) gives (4.1).

Case i = j: Consider

ϕ
(
e2i

)
= ϕ

⎛⎝ n∑
s=i+1

ais es

⎞⎠ =
n∑

s=i+1

ais ϕ(es) =
⎛⎝ n∑

s=i+1

aisbs1

⎞⎠m +
⎛⎝ n∑

s=i+1

aisbs2

⎞⎠w

= ϕ(ei)
2 = 1

2
bi1bi2(m + w).
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Consequently,⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
2

n∑
s=i+1

aisbs1 = bi1bi2,

2

n∑
s=i+1

aisbs2 = bi1bi2.

(4.4)

Since 2n − (i + s) + 1 � k for any s = i + 1, i + 2, . . . , n, by the assumption of the induction we get

bs1bi2 = bs2bi1 = 0. (4.5)

Now, multiplying both sides of the first equation of (4.4) by bi2, then by (4.5) we get bi1bi2 = 0. �

Nowwe shall continue the proof of the theorem. By Lemma 4.2, if there exists i0 such that bi01 �= 0

then bj2 = 0 for all j, i.e., ϕ(ei) = bi1m. Such ϕ is not onto.

The following result gives a sufficient condition for an arbitrary algebra to be non dibaric.

Theorem 4.3. Let A be a finite-dimensional real algebra with table of multiplication eiej = ∑
k

akijek,

where
(
akij

)
i,j,k=1,...,n

is the matrix of structural constants, and such that the matrix A =
(
akii

)
i,k=1,...,n

has det(A) �= 0. Then A is not dibaric.

Proof. Assume ϕ = (αij)i=1,...,n; j=1,2 is a homomorphism ϕ : A → A. We have

ϕ
(
e2i

)
=

n∑
s=1

asii (αs1m + αs2w).

ϕ
(
e2i

)
= 1

2
(αi1αi2)(m + w).

Consequently,⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
2

n∑
s=1

asiiαs1 = αi1αi2,

2

n∑
s=1

asiiαs2 = αi1αi2.

(4.6)

Subtracting from first equation of the system (4.6) the second one, we obtain

n∑
s=1

asii(αs1 − αs2) = 0, i = 1, . . . , n. (4.7)

If det(A) �= 0 we get from the system (4.7) that αi1 = αi2 for all i. Hence ϕ(ei) = αi1(m + w), but
such ϕ is not onto. �

Remark 4.4. Non dibaric algebras given by Theorem 4.1 show that the condition det(A) �= 0 is not

necessary to be non dibaric.

Corollary 4.5. Let E be an evolution algebra with matrix A of structural constants. If det(A) �= 0 then E

is not dibaric.
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Definition 4.6. ([4]). For a given algebra A, a pair (f , g) of linear forms f : A → R, g : A → R is called

bq-homomorphism if

f (xy) = g(xy) = f (x)g(y) + f (y)g(x)

2
for any x, y ∈ A. (4.8)

Note that if f = g then condition (4.8) implies that f is a homomorphism.

A bq-homomorphism (f , g) is called non-zero if both f and g are non-zero.

Theorem 4.7. ([4]). An algebra A is dibaric if and only if there is a non-zero bq-homomorphism (f , g).

In case of Theorem 4.7 the homomorphism ϕ : A → Ahas the form ϕ(x) = f (x)m + g(x)w. Lets

denote

Vn = {x ∈ A : ϕ(xn) = 0}.
Proposition 4.8. For any n � 3, we have Vn = V3.

Proof. Using (m + w)n = m + w and mathematical induction, one can prove the following formula

ϕ(xn) = f (x)g(x)

2n−1

(
f (x) + g(x)

)n−2
(m + w).

From this formula, for n � 3,we getϕ(xn) = 0 if and only if f (x)g(x)
(
f (x)+g(x)

) = 0. This completes

the proof. �

Remark 4.9. Any solvable algebra A is not dibaric. Indeed, there is an homomorphism ϕ onto A. It is

easy to see that

ϕ(A[k]) = ϕ(A)[k] = A
[k] = A

2 ∼= R, for all k � 2. (4.9)

By the solvability of A there exists k such that A[k] = 0. Then from (4.9) we get 0 = A2 ∼= R, this is a

contradiction.

Two-dimensional dibaric evolution algebras. In this subsection we find a criterion for two-dimensional

real evolution algebra to be dibaric.

Let the two-dimensional real evolution algebra E be given by the matrix of structural constants

A =
⎛⎝a b

c d

⎞⎠.

Proposition 4.10. The two-dimensional real evolution algebra E is dibaric if and only if one of the following

conditions hold

(1) b = d = 0 and ac < 0;

(2) b �= 0, ad = bc, D � 0 and B2 + C2 �= 0,

where D = (8a − 1)2 − 32(bd + a2), B = 4a2 + 4bd − a + a
√

D and C = 4a2 + 4bd − a − a
√

D.
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Proof. Let ϕ =
⎛⎝α β

γ δ

⎞⎠ be a homomorphism. It is onto if αδ �= γβ . Moreover, ϕ must satisfy

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

2(aα + bγ ) = αβ

2(aβ + bδ) = αβ

2(cα + dγ ) = γ δ

2(cβ + dδ) = γ δ

αδ + βγ = 0

(4.10)

The proof follows from the elementary analysis of the system (4.10). �
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