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1. Introduction

In the book [9] the foundations of evolution algebras are developed. Evolution algebras have many
connections with other mathematical fields including graph theory, group theory, Markov chains,
dynamic systems, knot theory, 3-manifolds and the study of the Riemann-zeta functions [1,3,4,8,9].

Nilpotent algebra is an algebra for which there is a natural number k such that any product of k
elements of the algebra is zero. If there is a non-zero product of k— 1 elements, then k is called the index
of nilpotency of the algebra. Examples of nilpotent algebras are: an algebra with zero multiplication;
direct sums of nilpotent algebras, the nilpotent indices of which are uniformly bounded; and the
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tensor product of two algebras, one of which is nilpotent. Nilpotent subalgebras that coincide with
their normalizer (Cartan subalgebras) play an essential role in the classification of simple Lie algebras
of finite dimension.

The algebraic notions like nilpotency, right nilpotency and solvability might be interpreted in a
biological way as a various types of vanishing (“deaths”) populations.

The structural constants of an evolution algebra are given by a quadratic matrix A (see Section 2).
In [3] the equivalence between nil, right nilpotent evolution algebras and evolution algebras which
are defined by upper triangular matrices A is proved, and the classification of 2-dimensional complex
evolution algebras is obtained.

In [2] the derivations of n-dimensional complex evolution algebras, depending on the rank of the
matrix A, are studied. For an evolution algebra with non-singular matriz it is proved that the space of
derivations is zero. The spaces of derivations for evolution algebras with matrices of rank n — 1 are
described.

The paper [1] is devoted to the study of finite-dimensional complex evolution algebras. The class of
evolution algebras isomorphic to evolution algebras with Jordan form matrices of structural constants
is described. For finite-dimensional complex evolution algebras the criteria of nilpotency is established
in terms of the properties of the corresponding matrices. Moreover, it is proved that for nilpotent n-
dimensional complex evolution algebras the possible maximal nilpotency index is 2" ~!+1. The criteria
of planarity for finite graphs is formulated by means of evolution algebras defined by graphs.

In [5] an evolution algebra E associated to the free population is introduced and using this non-
associative baric algebra, many results are obtained in an explicit form, e.g., the explicit description of
stationary quadratic operators and the explicit solutions of a non-linear evolutionary equation in the
absence of selection, as well as general theorems on convergence to equilibrium in the presence of a
selection.

Dibaric algebras have not non-zero homomorphisms to the set of the real numbers. In [4] a concept
of bg-homomorphism (which is given by two linear maps f, g of the algebra to the set of the real
numbers) is introduced and it is shown that an algebra is dibaric if and only if it admits a non-zero
bg-homomorphism.

In the study of any class of algebras, it is important to describe, up to isomorphism, at least algebras
of lower dimensions because such description gives examples to establish or reject certain conjectures.
In this way in [6] and [10], the classifications of associative and nilpotent Lie algebras of low dimensions
were given.

In this paper we continue the study of algebraic properties of evolution algebras. The paper is
organized as follows. In Section 2 we give some preliminaries. In Section 3 we establish a criterion for
an n-dimensional nilpotent evolution algebra to be of maximal nilpotent index 2"~! + 1. Since these
algebras have maximal index of right nilpotency and maximal index of solvability too, then we might
say that among vanishing populations, these are the latest vanishing populations.

We give the classification of finite-dimensional complex evolution algebras with maximal nilpotent
index. Moreover, foranys = 1, ..., n—1we constructawide class of n-dimensional evolution algebras
with nilpotent index 2" 4 1. Section 4 is devoted to the dibaricity of evolution algebras. We show
that nilpotent real evolution algebras are not dibaric and establish a criterion for two-dimensional real
evolution algebras to be dibaric.

2. Preliminaries

Evolution algebras. Let (E, -) be an algebra over a field K. If it admits a basis {eq, e2, ... }, such that

0, if i £ i
€ € = 1> aye, ifi=j,
K

then this algebra is called an evolution algebra [9]. The basis is called a natural basis. We denote by
A = (aj;j) the matrix of the structural constants of the evolution algebra E.
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The following properties are known [9]:

(1
(2) Evolution algebras are commutative, flexible.

) Evolution algebras are not associative, in general.
)

(3) Evolution algebras are not power-associative, in general.
)
)

(4) The direct sum of evolution algebras is also an evolution algebra.
(5) The Kronecker product of evolution algebras is an evolution algebra.

Definition 2.1. Let E be an evolution algebra, and E; be a subspace of E. If E; has a natural basis
{ei | i € Aq}, which can be extended to a natural basis {e; | j € A} of E, E; is called an evolution
subalgebra, where A1 and A are index sets and A1 is a subset of A.

Definition 2.2. An element a of an evolution algebra E is called nil if there exists n(a) € N such
that (---((a-a)-a)---a) = 0. An evolution algebra E is called nil if every element of the algebra
-

n(a)
is nil.

For an evolution algebra E we introduce the following sequences, k > 1,
E[l] — E<1> —F E[k—H] — E[k]E[k] E<k+1> — E<k>E

k—1
Ef = > FE (2.1)
i=1
The following inclusions hold
E<k> c gk Elk+1] = Ezk.

Since E is a commutative algebra we obtain
/2]
Ek — Z ElEkﬂ,
i=1
where | x| denotes the integer part of x.

Definition 2.3. An evolution algebra E is called right nilpotent if there exists some s € N such that
E<S> = 0. The smallest s such that E<°* = 0 is called the index of right nilpotency.

Definition 2.4. An evolution algebra E is called nilpotent if there exists some n € N such that E" = 0.
The smallest n such that E" = 0 is called the index of nilpotency.

In [1], it is proved that the notions of nilpotent and right nilpotent are equivalent.

Definition 2.5. An algebra A is called solvable if there exits some t € N such that Al = 0. The
smallest ¢ such that All = 0 s called the index of solvability.

Dibaric algebras. A character for an algebra A is a non-zero multiplicative linear form on A, that is,
a non-zero algebra homomorphism from A to R [5]. A pair (A, o) consisting of an algebra A and a
character o on A is called a baric algebra.

As usual, the algebras considered in mathematical biology are not baric.

Definition 2.6. ([7,11]) Let 20 = (w, m)R denote a two-dimensional commutative algebra over R with
multiplicative table
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2 2 1
w”=m"=0, wm:i(w+m).

Then 2 is called the sex differentiation algebra.

Itis clear that 2% = (w + m) is an ideal of 2 which is isomorphic to the field R. Hence the algebra
2 is a baric algebra.

Definition 2.7. ([7]) An algebra A is called dibaric if it admits a homomorphism onto the sex differ-
entiation algebra 21

3. Nilpotent evolution algebras

In [3] it is proved that the notions of nil and right nilpotency are equivalent for evolution algebras.
Moreover, the matrix A of structural constants for such algebras has upper (or lower, up to permutation
of basis elements of the algebra) triangular form.

Let evolution algebra E be aright nilpotent algebra, then it is evident that E is a nil algebra. Therefore

for the related matrix A = (aij)?,j=1' we have
iy iy Ay - - - iy = 0,
forany k € {1,2,...,n}and arbitrary iy, iz, ..., ik € {1, 2, ..., n} with i, # ig forp # q[3].

The following results are known:
Theorem 3.1. ([3]) The following statements are equivalent for an n-dimensional evolution algebra E:

(a) The matrix corresponding to E can be written as

0(112 a3 ... aip
0 0 a3 ... azy

A=|o o0 o ... a4y

(b) E is a right nilpotent algebra;
(c) Eis anil algebra.

Lemma 3.2. Let E be a finite-dimensional evolution algebra and E/, j > 1, the evolution subalgebras of E
defined in (2.1). Then

ks k-
EPH g2 i1 2% k=0,1,.... (3.1)
Proof. We shall use mathematical induction. We have E' = E, E> = EE, and for k = 1,

B3 = EE? = PR, E* = EE® + F2F% = F°E% = B3,

Assume for k the equalities (3.1) are true. We shall prove for k + 1. Using E'H c E!, EHE! = FHEH
and assumptions of the induction we get
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k1 ; 2+ Liy2) P S 2+lif2) c ok s
E2 +i — Z E]Ez +i—j — Z E]E2 +i
j=1 j=1
2k+|j/2j i _ok+1 k+1 k+1 k+1
> FE* =E* =F* E* . O
j=1

Lemma 3.3. Iffor an evolution algebra E there exists s € N such that EZ+1 = E2""'+1 then Ek = E2'+!1
foranyk =25 4+1,254+2,...,2572 4+ 1.

Proof. We have

+1
FPH S P2 5 L o pTH

Hence by condition of the lemma we get EK = EZ*1 forany k = 25 + 1,25+ 2, ..., 25T + 1.1t
remains to prove the equality fork = 2t1 +i4+1,i =1, ..., 2°7. We have

25
s+1 i s+l s s s
2 ZE]EZ 1 g2l g2
j=1
For i = 1 using the above obtained equalities we get
25t142 R j 25t —j42 25+1 25+1
j=1
Now assume the assertion is true for i and we shall show it fori + 1.
25H1+1i/2]
Ezs+1 +i+2 _ Z 2l E25+1+i—j+2.

j=1

Since2’ +1 < 2t 4i—j4+2 <2 +i+1foranyj = 1,2,...2° + 1 + [i/2], using the
assumption of the induction, we get

L 25+1+1i/2] . : :
EZ +it2 _ Z E]EZ +1 _ EEZ +1 _ EZ +1. O
j=1

From this lemma we get the following

Corollary 3.4. Iffor an evolution algebraE there existss € Nsuch that E2+1 = E¥'+1 then gk = g2 +1
forany k > 25 + 1.

Proof. If the condition of Lemma 3.3 is satisfied for s, then it is satisfied for s + 1. So, iterating the
lemma we get EX = E2 ! forany k > 2° + 1. O

From this corollary it follows that an evolution algebra E satisfying the condition of Lemma 3.2 is
not nilpotent.
The following is an example satisfying the condition of Lemma 3.3.
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Example 3.5. Fixsomer € {2, 3, ..., n—1}and consider the evolution algebra with the multiplication
table

2 . . 2 p
e =ejip1, i=1,...,1r—1; e =e, I=r,...,n

It is easy to see that this algebra satisfies the condition of Lemma 3.3 for some s > r. In this case,
E* = {e,} forall k > 25 + 1.

Theorem 3.6. An n-dimensional nilpotent evolution algebra E has maximal nilpotent index, 2"~ + 1, if
and only if

a12033 . .. az—1,n 7# 0.

Proof. Necessity. Assume 12033 . . . ay—1,n = 0 then dim E2 < n—2.SinceEis nilpotent, by Lemma

3.2, for any k we have E2‘+1 2 E2"'+1_ Consequently, dim E2*1 < n — 2 — k. Hence E2"“+1 = 0,
i.e,, E has not maximal nilpotent index.
Sufficiency was proved in [1]. O

Let E be an n-dimensional nilpotent evolution algebra with maximal nilpotent index. Then by the
following scaling of basis

;_ —1/2 —1/4 —(1/2)"1

€1 =0 Gy3° U1 p, €1

;o —1/2 —1/4 —(1/2)"2

€y =0ay3 U3y ~Up_q1, €2

(3.2)

/ o 71/2
€h—1 = dp—1,nbn—1

/

e, =ep

the evolution algebra is isomorphic to an evolution algebra E” with matrix of structural constants

01d5 ... d,
001 ...d,
P LU d,
000 1
000 --- 0

Let E be an n-dimensional nilpotent evolution algebra such that the matrix of structural constants

satisfies aj;j,+1 = -+ = @Gjj+1 = 0, for some s = 1,...,n — 1. Then omitting all multipliers

Gii+1,k =1, ..., sin(3.2) one can show that the evolution algebra E is isomorphic to an evolution

algebra E’ with matrix of structural constants A" = (aj), with @} ; ., = --- = a;; ; = 0and
, ., .

Qg =1, £, ...,

The following theorem gives the classification of evolution algebras with matrix of structural con-
stants as A’
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Theorem 3.7. Any finite-dimensional complex evolution algebra with maximal nilpotent index is isomor-
phic to one of pairwise non-isomorphic algebras with matrix of structural constants

01ays ... at,n—1 0
00 1 ...az,n_10
00 O ...a3,n_10
000 --- 0 1
000 --- 0 0

where one of non-zero a;; can be chosen equal to 1.

Proof. Assume ¢ = (o) j=1
tiplication tables

« is an isomorphism between evolution algebras E and E’ with mul-

,,,,,

n
2 N
e =ei1+ Y aje, i=1,...,n—2,
£ =it2
o,
€h—1 = €n,
2 __
e, = 0.
5 n
/ / / .
e =e 1+ >, bjej, i=1,...,n—2,
E - J=it2
. 72 7
enfl_en’
72
e, =0.

We shall use the following lemma.

Lemma 3.8. ¢ = (o) is defined by

1

aji = afi_ ,on #0; o =0, i#Ej, jE ay eCl (33)

Proof. Fori = n consider

n—2 n
— ey — o2 2 . ‘ 2
0=9p(e;) =e, = Z o | g1 + Z ajses | + oy ,_qen.
j=1

s=j+2
From this equality it follows thatap; = 0,j=1,...,n— 1.
Fori = n — 1 we have
n—1 n—2 n
/ 2 2 2 2 2
€p = Onnen = <p(en—l) = zan—l,iei = zan—l,i €41+ z aijej +an—1,n—1e”'
i=1 i=1 j=i+2
From this equalities we get
— - — 2
op—1,i=0, i=1,...,n—2, Onn = Oy_q pq
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Similarly from e;_lej = 0,we getajp—1 = 0.Hence ay—1j = oj n—1 = 0,j # n— 1. Assume (3.3) is
true fori > k and j # n. We shall check it for i = k — 1. By the assumptions we have

k—1

(ej_ 1)—2% 1,58 Zak 1,5 |€s+1+ Z asjej

Jj=s+2

On the other hand

2
@ (ekfl) =l =¢ + Z b—1.je]
Jj=k+1
n

= QK€K + Uknen + Z bk—l,j (ajj e + jn en).
j=k+1

Hence ay—1; =0,j =1, ..., k — 2. Using the above equalities we get

n n
2 2
Qp_p 1+ | D Q-6 | @p_q 1 = kek + otknen + D br—1;j (jiej + ajnen) (3.4)
j=k+1 Jj=k+1

which gives oy = of_; 4_;-
For s < k using assumptions, we get

k
/ /
0 = gp(ex—1es) = €r_16, = (ak—l,k—lek—l + Olk—l,nen) Zastet + aspen
t=1
n
Ok—1,k—1%,k—1 | €k + Z aijej
j=k+1

2
= Ok—1,k—10%s k—1€;_1

Then os k-1 = 0. Hence
O(j,k,1=O, j</<—], Olk,Lj:O, j;ék—l. Il

Now we shall continue the proof of theorem. From the equality (3.4) we get

n—1
2 2
®p—1,k—1 0k—1,n€n + Z A—1,j € | Xke—1,k—1
j=k+1
n—1 n—1
Z bk—l,j ajjej + | ogn + 2bg—1,n 0tnp + Z bk—],jajn én.
j=k+1 j=k+1
Consequently,
n—1
2
Q1 k—1Tk—1,n = Xn + 2bg—1,n &tnn + z bk—1 jn, k=2,...,n—1.
Jj=k+1

2 .
1 k—1Tk—1,j =Oljjbk_],j, j=k+1,...,n—1.
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. k—1 .
From these formulas using o, = a% , we obtain

k—1 n—1 n—1
afl Ak—1,n = Okn + 2bg—1.n oz%l + z b—1jotjn, k=2,...,n—1.
j=k+1 (3.5)
k=1 5j—1 X
a3 Gg—1j = oy b1, j=k+1,...,n—1.

From the second equation of the system (3.5) we obtain

ok=1_pj—1

br—1;j = aj ag—1j, k=2,....,n—1, j=k+1,...,n—1. (3.6)

Using (3.6), in order to have by_1 , = 0, in the first equation of (3.5) we put

n—1
2/(—1
Qn = 017 Ak—1,n — Z bkfl,jajn
j=k+1
n—1 .
2k—1 2l<—1 _21—1
=oj; G—1n— Z oy ag—1,jn, k=2,...,n—1.
Jj=k+1
—1
. . . ko _ojo—1
If there exist ko, jo such that ay, j, # 0 then taking a3 = a,fo joz , we have

bko,jozl’ k(]:l,...,n—z. O

Remark 3.9. Note that the evolution algebras of Theorem 3.7 are also algebras of maximal index of
solvability and maximal index of right nilpotency.

Example 3.10. Any four-dimensional complex evolution algebra with maximal nilpotent index is
isomorphic to one of the algebras with the following matrix of structural constants

0100 0110
0010 0010
0001| |ooo01
0000 0000

Any five-dimensional complex evolution algebra with maximal nilpotent index is isomorphic to one
of the algebras with the following matrix of structural constants

01000 01000 01010 011b0
00100 00110 001doO 001do
ooo10{, fOOO10|, |JOOO10), [OOOT1O0},
00001 00001 00001 00001
00000 00000 00000 00000

where b, d € C.
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Proposition 3.11. Let E be an evolution algebra with matrix of structural constants

0laz ... aim+1  Amt2 -+ dip—1  Gip
00 1 ... az m+1 am+2 ... az n—1 don
00 0 ... a3 m+1 asm+2 ... (33— asp
A=100 0 ... Gn—1,m+1 OGm—1,m+2 --- Am—1,n—1 Gm—1,n | »

00 0 ... 4mm+1 Amm+2 --- Qmn—1 Amn
00 0 ... 0 0 . 0 1

00 0 ... 0 0 . 0 0

withajjp1 =1,fori#m, i=1,...,n—1, agmy1 = 0and am m+2 7 0 or ap—1,m+1 7 0. Then
2 2 :
i1 ki . (€1 -+ €m_1s€mt2, .- €n), fk<m—2,
(ex43, ..., en), fm—1<k<n-3,

-2
and E2""+1 = 0, iie, its nilpotent index is 2" + 1.

Proof. We have

n n
2 . ) 2
e =e1+ > agje, i=1,....m—1,m+2,....,n—1; e = D  anpe;.
j=it2 j=m+2
2 2 2 2
E =<el,e2,...,en>.
It is easy to see that (e?, i = m + 1,...,n) = (e, i = m+2,...,n) and e2,€3,...,¢e2_,,
em+2, - . . , e are linearly independent. Thus
2 2 2 2
E =<el,ez,...,em71,em+2,...,en>.

E3=EE2=<ezej, ei|i:l,...,m—l,j=i+1,...,n, l<=m+2,...,n>.

i

We have

1

e?e:efz if j=i+1,
P |ager, ifj>i+ 1
n

In case am,m+2 7 0O, from e% = Um,m+2 €m+2 + Z (mj ej, we obtain ey € E3,
j=m+3
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If apm—1,m+1 7 0, then since .ezm_1 em+1 = Om—1,m+1 ezm+1, we conclude that e € E3. Thus we
obtain

E3 :<e§,...,e2m_l,em+2,...,en>.
Now we shall compute E* = EE3 + E?E2. Similarly as in the case EE?, we get
EE3 =<eizej, ei |li=2,....m—1,j=i4+1,...,n, l<=m+2,...,n>
:<e§,...,eﬁ1_l,em+2,...,en>.
E%E? =<e,»2, ejzek, ef,eﬁ li,k=m+2,...,n, j,p,q=1,...,m—1>.

It is easy to see that

eizekzaikeﬁ, i=1,....m—1, k=m+2,...,n.
2 e _
€1 fp=q=1,...,m—1,
e = 2 « 2
P4 apgrieg + D apage;, if p<gq.

j=q+2
Using these equalities, we obtain

2512 2 2 3
E°E =<ez,...,emfl,em+2,...,en>=E.

Consequently, E* = E3.
Lets assume that the equalities (3.7) are true for k, we shall prove it for k + 1.

k+1 k+1 k+1_ k k k k
E2H g2t pap2 1+--'+E2E2“=(E+E2+«~-+E2)E2+1
2k41 2 2
= EE = (et -, en)(€qs v > €m 1> €mt2,s -+ Cn)
2 2
=<ek+2,...,em_l,em+2,...,en>.

We also have
k+2 k+2_ k+2_ k+1 _ok+1 k+1 _ok+1
27 _ pp2 1 p2p2 24 TR S P2
2 2
= <ek+2, cees @1y ema2, ...,en>.

Moreover, we obtain

2 2 2I<+1+] 2k+1+2 2k+2
(eby2 - €hgsemia,-ooren) = E OF D>...DE
2 2
2 <ek+2,...,em_l,em+2,...,en>.
Consequently
2k+1+1 2k+1 +2 2k+2 2 2
E =E =...=F =<ek+2,...,emfl,equ,...,en).

This gives the formula (3.7). Using the formula, we get E2' +1 = 0. O
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The following example shows that the nilpotent index may be 2"~ + 1 foranys =1,...,n — 1.

Example 3.12. Consider an n-dimensional nilpotent evolution algebra E with matrix of structural
constants A = (a;) satisfying

ayj = 0, j=12,...,n—-1, k=1,...,s—1;
ajj, =0, i=1,2,....n, k=1,...,s—1,

where1 < iy <iy < --+ <is_q < n— 2,s < n.Then the nilpotent index of E is 2" 5 + 1.
The following proposition generalizes Example 3.12.

Proposition 3.13. Let E be an n-dimensional evolution algebra with matrix of structural constants A =
(ajj) such that forsomes <n—1land1 < i; < iy < --- <is_1 < n— 2 satisfies

aji, = aj =0, forall j ¢ {iy, ..., is—1,n}, k=1,...,s—1,
Qi = 1, forall k=1,...,s—1.

i.e., A has the following form

01 a3 ... a1i;—1 0 arjp41 ... (1jg_q—1 0 Mijg_1+1  ---  Q1p
00 1 ... az-1 0 ay+1 ... @2 4—1 0 a2i_4+1 ... Q2
00 0 ... 0 1 a,-1i+1 -+ G—1ig_;—1 0 @Gy—1i_1+1 --. Gij—1n
00 0 ... 0 O 0 0 Qiyis_y 0 ... Qi
00 0 ... 0 0 0 coe Oip41ig_q—1 0 iy +1is_q+1 -+ Qij+1n
00 0 ... 0 O 0 ... 0 0 0 .. 1
00 0 ... 0 O 0 . 0 0 0 .. 0

Then the nilpotent index of E is equal to 2max{s=1.n=s} 41,

Proof. The evolution algebra E can be written as E = A + B, where A = (e; | i # i1, ...,i5—1),B =
(ei,, €y, ..., ej_,).Itis easy to see that AB = 0, this implies AB =0,i,j = 1,2, ... Consequently,
E* = Ak 4 Bk, Using similar arguments as above (for computation of the maximal nilpotent index)
one can see that the nilpotent index of A is 2"~ 4+ 1 and the nilpotent index of B is 2°~! 4 1. This
completes the proof. [

Remark 3.14. By [1, Proposition 4.7]if E is an n-dimensional nilpotent evolution algebra with index of
nilpotency not equal to 2" ! 4 1, then it is not greater than 2" 2 + 1. Moreover, in the paper [1], there
is an example of evolution algebra with nilpotent index 3 - 2k=4 1 1, where 4 < k < n. Therefore it
is interesting to know all possible values of the nilpotent index for nilpotent evolution algebras. This
problem is difficult, but for small values of n one can do exact calculations. For example, if n = 3 then
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the nilpotent index can be 2,3,5. For n = 4 all possible values of the nilpotent index are 2,3,4,5,9. The
4-dimensional evolution algebra E, with the following matrix

01b ¢
000 —b?
A= !
000 f
000 O

has nilpotent index 4, where bf # 0. This case is interesting since it has not the form 2k 4+ 1.

4. Dibaric algebras
In this section we will study some dibaricity properties of arbitrary algebras and evolution algebras.
Theorem 4.1. Any finite-dimensional nilpotent evolution algebra E is not dibaric.

Proof. Assume ¢ = (bjj)i—1,....n; j=1,2 is a homomorphism ¢ : E — 21 We shall use the following [

Lemma4.2. Foranyi,j=1,...,n, we have
bi1bjz = bipbj1 = 0. (4.1)

Proof. Without loss of generality we assume i < j and use mathematical induction. Let C denote all
cases of (4.1)with2n — (i+j)+ 1 =k.Fork =1,ie,i =j =n, from g (eﬁ) = 0 we get

bpibpy = 0. (4.2)

For k = 2we havei = n — 1 andj = n. We get

1

0=gp(en—1en) = E(bn—l,lbnz + bp—1,2bp1) (M +w).
This by (4.2) gives

bn—1,1bn2 = bp—1,2bp1 = 0.
Assuming that Ci holds, we have to prove Cy41, thatis, Eq. (4.1), forany i,j = 1, ..., n,i < j, which
satisfy2n — (i+j) +1=k+ 1.

Casei < j: From ¢(ejej) = %(b“ bj» + bipbj1)(m + w) = 0 we get
bi1bjz + bizbj1 = 0. (4.3)

By assumptions we have i < j,2n — 2j + 1 < k and bj;1bj = 0. This by (4.3) gives (4.1).
Case i = j: Consider

s=i+1 s=i+1 s=i+1 s=i+1

® (ezz) =9 ( Z is es) = Z ais p(es) = ( Z aisbsl) m+ < Z aisbSZ) w

1
=g(e)* = Sbinba(m +w).
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Consequently,

n
2 > aibs = bybp,
s=i+1

n (4.4)
2 > aghg = bibp.
s=i+1
Since2n— (i+s) +1 < kforanys =i+ 1,i+ 2, ..., n, by the assumption of the induction we get
bs1biz = bsabiy = 0. (4.5)

Now, multiplying both sides of the first equation of (4.4) by bj>, then by (4.5) we get bj1bj = 0. O

Now we shall continue the proof of the theorem. By Lemma 4.2, if there exists ip such that bj,;; # 0
then bj; = O for allj, i.e., ¢ (e;) = bjym. Such ¢ is not onto.
The following result gives a sufficient condition for an arbitrary algebra to be non dibaric.

Theorem 4.3. Let A be a finite-dimensional real algebra with table of multiplication eje; = Z ag»ek,
k

is the matrix of structural constants, and such that the matrix A = (a"-

k )
)i k=1,..,n

where (aij)i,j,k=l,..‘,n
has det(A) # 0. Then A is not dibaric.

Proof. Assume ¢ = (ajj)i=1,... n; j=1,2 is a homomorphism ¢ : A — 2 We have

¢ () =
v (e) =

Consequently,

M=

@ (as1m + asw).
1

173
Il

(ajnap) (m + w).

N[ —

n
S
2> g = i,

S? (4.6)
2> G = apap.
s=1
Subtracting from first equation of the system (4.6) the second one, we obtain
n
Za?i(aﬂ —ap) =0, i=1,...,n (4.7)
s=1

If det(A) # 0 we get from the system (4.7) that «j; = «;p for all i. Hence ¢(e;) = «j (m + w), but
such ¢ is not onto. [

Remark 4.4. Non dibaric algebras given by Theorem 4.1 show that the condition det(A) # 0 is not
necessary to be non dibaric.

Corollary 4.5. Let E be an evolution algebra with matrix A of structural constants. If det(A) % 0 then E
is not dibaric.
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Definition 4.6. ([4]). For a given algebra A, a pair (f, g) of linear formsf: A — R,g: A — Riscalled
bg-homomorphism if

fly) =glky) = [ew) erf(y)g(x) forany x,y € A. (4.8)

Note that if f = g then condition (4.8) implies that f is a homomorphism.
A bg-homomorphism (f, g) is called non-zero if both f and g are non-zero.

Theorem 4.7. ([4]). An algebra A is dibaric if and only if there is a non-zero bqg-homomorphism (f, g).

In case of Theorem 4.7 the homomorphism ¢ : A — 2 has the form ¢(x) = f(x)m + g(x)w. Lets
denote

Vi={xecA:pkx") =0}
Proposition 4.8. For any n > 3, we have V, = V3.

Proof. Using (m + w)" = m + w and mathematical induction, one can prove the following formula

oty = TOEW

(F) +g@)" > (m+w).

From this formula, forn > 3, we get ¢ (x") = 0ifand only if f (x)g(x) (f (x) +g(x)) = 0.This completes
the proof. O

Remark 4.9. Any solvable algebra A is not dibaric. Indeed, there is an homomorphism ¢ onto 2L. It is
easy to see that

oAM) = o)M= oM = 92 Z R, forall k > 2. (4.9)
By the solvability of A there exists k such that AlKl = 0. Then from (4.9) we get 0 = 2> = R, this is a
contradiction.
Two-dimensional dibaric evolution algebras. In this subsection we find a criterion for two-dimensional

real evolution algebra to be dibaric.
Let the two-dimensional real evolution algebra E be given by the matrix of structural constants

ab
A= .

cd
Proposition 4.10. The two-dimensional real evolution algebra E is dibaric if and only if one of the following
conditions hold

(1) b=d=0andac < 0O;
(2) b #0,ad = bc,D > 0and B> + C* # 0,

where D = (8a — 1) — 32(bd + a?), B = 4a? + 4bd — a + a~/D and C = 4a? + 4bd — a — a~/D.
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o
Proof. Letp = '? be a homomorphism. It is onto if 6 7# y 8. Moreover, ¢ must satisfy
14

2(ax + by) = ap
2(aB + bd) = ap

2(ca +dy) = yé (4.10)
2(cp+ds) =yé
ad+ By =0

The proof follows from the elementary analysis of the system (4.10). O
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