
PART I

DEFINITIONS, ILLUSTRATIONS AND ELEMENTARY

THEOREMS

1. Arithmetical definition of ordinary complex numbers.

The following purely arithmetical theory of couples (a, b) of real

numbers differs only in unessential points from the initial theory of

W. R. Hamilton*. Two couples (a, b) and (c, d) are called equal if

and only if a = c, b = d. Addition, subtraction and multiplication of

two couples are defined by the formulast

(a, b) + (c, d) = (a + c, b + d)

(a,b)-(c,d) = (a-c,b-d) (1).

(a, b) (c, d) = (ac- bd, ad + be)

Addition is seen to be commutative and associative:

x + x= x + x, (x + x') + x" = x + (x' + x") (2),

where x, x', x" are any couples. Multiplication is commutative,

associative and distributive:

xx' = x'x, (xx) x" = x (x'x") (3),

x (x + x") = xx' + xx", {x + x") x = x'x + x"x (4).

* Trans. Irish Acad., vol. 17 (1837), p. 293; Lectures on Quaternions, 1853,

Preface.

t Each couple (a, b) uniquely determines a vector from the origin 0 to the

point A with the rectangular coordinates a, b. The sum of two vectors from 0 to

A and the point C — (c, d) is denned to be the vector from O to the fourth vertex S

of the parallelogram having the lines OA and OC as two sides. The coordinates

of S are a + c, b + d. Subtraction of vectors is the operation inverse to addition;

thus OS- OA = OC. To define the product of the vectors from 0 to A and C, we

employ initially the polar coordinates r, 9 and r', 6' of A and C. Then OA . OG is

defined to be the vector from 0 to the point P with the polar coordinates rr',

8 + 9'. Since A has the rectangular coordinates a = rcos0, b = r sin 9, and similarly

for C and P, the expansions of cos (9 + 0') and sin (9 + 9') lead to the third relation

(1) between the rectangular coordinates of A, C, P.
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2 ORDINARY COMPLEX NUMBERS [(5)

Division is defined as the operation inverse to multiplication.

Division except by (0, 0) is possible and unique:

(c, d) _ (ac + bd ad- bc\ ,_«

(a,b) - W+F' or+ 0') ( >'

(a, ft)"

In particular, we have

(a, 0) ± (c, 0) = (a ± c, 0), (a, 0) (c, 0) = (ac, 0),

£$=(<-, 0) if«*0.

(a, 0) \a /

Hence the couples («, 0) combine under the above defined addition,

multiplication, etc., exactly as the real numbers a combine under

ordinary addition, multiplication, etc. Without introducing any con-

tradiction, we may and shall impose upon our system of couples (a, b),

subject to the above definitions of addition, etc., the further assumption *

that the couple (a, 0) shall be the real number a. For brevity write i

for (0, 1). Then

t»=(0,l)(0,l) = (-l,0) = -l,

(a, b) = (a, 0) + (0, b) = a + (b, 0) (0, 1) = a + bi.

The resulting symbol a + bi is called a complex number. Relations

(1) and (5) now take the familiar forms

(« + bi) ±(c + di) = (a ±c) + (b±d)i \

(a + bi) (c + di) = (ac — bd) + (ad + be) i I /g\

c + di _ac + bd ad - be

a + bi a2 + b2 a2 + b2

where, for the last, a + bi=¥ 0, i.e. a and b are not both zero.

2. Number fields. A set of complex numbers is called a

number field (domain of rationality or Korper) if the rational

operations can always be performed unambiguously within the set.

In other words, the sum, difference, product and quotient (the divisor

not being zero) of any two equal or distinct numbers of the set must

be numbers belonging to the set.

In view of (6), all complex numbers a + bi form a field. Again,

all real numbers form a field. The set of all rational numbers is a

field, but the set of all integers is not.

* Just as the natural numbers are included among the signed integers, the

integers among the rational numbers, and the latter among the real numbers

denned by means of them. In the same train of ideas, 1 is often used to denote

the principal unit (§ 7, § 11), and the number e for the scalar matrix S„ (§ 4, second

foot-note).
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§ 3] MATRICES 3

3. Matrices. The concept matrix* affords an excellent in-

troduction to the subject of this tract and, moreover, is of special

importance in the general theory. We shall consider only square

matrices of w rows each containing n elements. For example, if

ra = 2,

fa b\ _ fa fi\

"" Ky

><% «-(;$ «

are matrices, the elements of the first matrix m being a, b, c, d.

Each element may be any number of a given number field F.

We shall say that m and /u. are equal if and only if their corre-

sponding elements are equal, a = at etc. Addition and multiplication

are defined by

/a + a b + P\ faa + by aft + b8\ ...

The element in the ith row and jth column of the product is the sum

of the products of each element of the «th row of the first matrix by

the corresponding element of the jth column of the second matrix,

i.e. first by first, second by second, etc. This rule holds also for

matrices of w2 elements. Of the four possible rules for expressing

the product of two determinants of order n as a determinant of

order n, the above is the only rule which holds also for matrices.

With the exception of (3^, the laws (2)—(4) for addition and

multiplication hold for matrices. Since the product (82) is in general

altered when the Roman and Greek letters are interchanged, matric

multiplication is usually not commutative. Accordingly we shall see

that we must distinguish between two distinct kinds of division of

matrices. To this end, note that

W—0-C2) «

In particular, the unit matrix

Hi") (j«

has the property that Im = rnl=m, for every matrix m. By the

inverse of a matrix m whose determinant A = | m \ is not zero is

meant

* Cayley, Phil. Trans. London, vol. 148 (1858), pp. 17—37 ( = Coll. Math.

Papfrs, 11, pp. 475, 604).
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MATRICES [(H)

(11),

if n = 2, while if n > 2, we employ as the element in the «th row and

^'th column the quotient of the co-factor of the element in the jth

row and ith column of A by A. Then

mm-1 = m-1m = I (12)-

Given two matrices m and p such that | m | 4= 0, we can find one

and only one matrix /a = mr1p such that m^. = p, also one and only

one matrix v=pm-1 such that vm=p. These respective kinds of

division by p by m shall be called right-hand and left-hand division.

On the contrary, if | m \ = 0, there is no matrix /* for which mp. = I,

since this would imply 0 | /* | = 1I\ = 1. Likewise, there is no matrix v

for which vm = I.

Thus right- and left-hand division by m are each always possible

and unique if and only if the determinant of m is not zero.

Addition, subtraction, multiplication and division of matrices with

elements in a field i^lead to matrices with elements in F. Accordingly

we shall speak of the matric algebra over the field F. When F is the

field of all "complex numbers, the field of all real numbers, or that of

all rational numbers, we have the complex, real or rational matric

algebra of square matrices of w2 elements.

4. A matric algebra viewed as a linear algebra*.

Taking n = 2, we shall make use of the particular matrices

*j=(JJ). °»=Qo)' ^=(io)' ^=0 (l3)-

Their sixteen products by twos are

*

eyejk = eik, ei}e<k = 0 (t*j) (14).

If m is a matrix and e is a number, we shall define the product! em

* For references, see § 13.

t In the product (9) we may therefore replace the "scalar matrix" ( )=>?,

VO e)

by the number e. This becomes intuitive if we note that Ss = el. Since

Se + Sf = Se¥f, SeS/ = Se/, etc., the algebra of all scalar matrices over a field F

is abstractly identical with F. This replacement of Se by e is similar to that of

(o, 0) by a in § 1.
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§ 4] MATRIC ALGEBRA AS LINEAR ALGEBRA 5

or me to be the matrix each of whose elements is the product of e by

the corresponding element of m:

la b\ fa b\ tea eb\

-O-Q-CS) <">.

In view of (13), matrices (7) and (8) may be expressed in the

form

m = aen + ben + ce^ + dew ]

, o s" f (16)>

fi = aen + pe^ + y«21 + 6e& J

m + p = (a + a) ^1 + (b + y8) e12 + (c + y) «21 4- (d + 8) e^ \

mp. = (aa + by)e11 + (a/3 + 68) eu + (ca + dy) «a + (cj8 + <#>) e^ J

The last may also be found from (16) by use of relations (14).

The set of hyper-complex numbers aen + ... + de^, in which a, ...,d

range independently over a field F, and for which addition and multi-

plication are defined by (17), is called a linear associative algebra

over F with the four units eu, ...,e& subject to the multiplication

table (14).

For any n, let ey be the square matrix of w2 elements all zero except

that in the ith row and^'th column which is unity. Then relations (14)

hold. We obtain a linear associative algebra with «2 units %.

5. General definition of hyper-complex numbers and

linear algebras*. We shall generalize the notion of couples in § 1

and, with a change of notation, the notion of quadruples (7). Consider

the set of all n-tuples {x1, ...,#„), whose coordinates xu...,xn range

independently over a given number field F.

Two w-tuples are called equal if and only if their corresponding

coordinates are equal.

Addition and subtraction of »-tuples are defined by

(*1,...,*«)±(*1', ...,#,,') = («1±«1', ...,#»±«„') (18).

The product of any number o of the field F and any w-tuple

x = [xu ..., xn)

is defined to be

f,x=xp = (pxu ..., pxn) (19).

* Hamiltou's Lectures on Quaternions, 1853, Introduction. For definitions by

independent postulates, see Dickson, Trans. An1er. Math. Soc., vol. 4 (1903), p. 21;

vol. 6 (1905), p. 344.
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6 GENERAL LINEAR ALGEBRA [(20)

The n units are defined to be

a1 = (l,0,...,0), «,= (0, 1, 0, ...,0), ...,«. = (0,...,0,1).

Hence any m-tuple x can be expressed in the form

We shall call # a hyper-complex number, or briefly a number. In view

of the definition of equality of w-tuples, x and

3D — 3C\ v\ t ... t »t*|[ #n

are equal if and only if x1 = x{, ...,xn = xn'. In particular, x = 0

implies that each #j=0. Hence the units eu ..., en are linearly in-

dependent with respect to the field F.

It is assumed that any two such numbers x and x' can be

combined by an operation called multiplication subject to the dis-

tributive laws (4):

n

xx' = 2 xixj' eiej>

and such that the product xx' is a number 2*% with coordinates in F.

Necessary conditions for the latter property are

n

«i«»= 2 ymek (i,j= 1, ..., n; y's in F) (20).

These are sufficient conditions, since they imply

n

xx' = y = 1ykek, yk = 2 #«r/y<» (*=1, ...,«) (21).

i„?=l

Properties (18) and (19) of w-tuples give

n n

x±x'= 2 (xi±xi')ei, px = xp= 2 (f>a><)«< (22),

»=i i=i

if p is in i^. The set of all numbers 2,xiei, with coordinates in F,

combined under multiplication as in (21), under addition and sub-

traction as in (221), and under multiplication by a number p of F

as in (222), shall be said to form a linear algebra (or system of

hyper-complex numbers) over the field F, with the units eu ...,«„

(linearly independent with respect to F) and the multiplication table

(20). The w8 numbers y<# are called the constants of multiplication.

Neither the commutative nor the associative law of multiplication is

assumed.
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