1. Let f_{1}, f_{2}, f_{3} be a basis for the zygotic algebra:

$$
\begin{gathered}
f_{1} f_{1}=f_{1}, \quad f_{1} f_{2}=f_{2} f_{1}=\frac{1}{2}\left(f_{1}+f_{2}\right), \quad f_{1} f_{3}=f_{3} f_{1}=f_{2} \\
f_{2} f_{2}=\frac{1}{2} f_{1}+\frac{1}{4} f_{3}+\frac{1}{2} f_{2}, \quad f_{2} f_{3}=f_{3} f_{2}=\frac{1}{2}\left(f_{3}+f_{2}\right), \quad f_{3} f_{3}=f_{3}
\end{gathered}
$$

Define, for $i=1,2,3, e_{i}=\alpha_{1 i} f_{1}+\alpha_{2 i} f_{2}+\alpha_{3 i} f_{3}$, and assume that e_{1}, e_{2}, e_{3} is a natural basis, that is, assume that the zygotic algebra is an evolution algebra.
(a) If $e_{i} e_{j}=A f_{1}+B f_{2}+C f_{3}$, then calculate A, B and C for $i \neq j$.
(b) Let M be the matrix with respect to f_{1}, f_{2}, f_{3} of the linear transformation T defined by $T f_{i}=e_{i}$. Why is M a non-singular matrix?
2. Let A be any algebra
(a) Show that A is power associative, that is, $\left(a^{i} a^{j}\right) a^{k}=a^{i}\left(a^{j} a^{k}\right)$ for all $i, j, k \geq 1$ and all $a \in A$, if and only if $a^{k+\ell}=a^{k} a^{\ell}$ for all $k, \ell \geq 1$ and all $a \in A$.
(b) (Revised) For an evolution algebra A, define $A^{2}=\left\{\sum_{i=1}^{n} a_{i} b_{i}: a_{i}, b_{i} \in A\right\}$

Prove
(a) A^{2} is the linear span of e_{i}^{2}, where $e_{1}, e_{2}, \ldots, e_{m}$ is any natural basis.
(b) $A^{2}=A$ if and only if $\operatorname{det} M_{B}(A) \neq 0$
(c) If $\operatorname{det} M_{B}(A) \neq 0$ for some natural basis B, then $\operatorname{det} M_{B}^{\prime}(A) \neq 0$ for any other natural basis
(d) If A is power associative and $\operatorname{det} M_{B}(A) \neq 0$ for some natural basis B, then $M_{B}(A)$ is diagonal
3. Let A be an evolution algebra with natural basis e_{1}, e_{2}, e_{3}, with $e_{1}^{2}=e_{1}+e_{2}, e_{2}^{2}=$ $-e_{1}-e_{2}, e_{3}^{2}=-e_{2}+e_{3}$. Let A^{\prime} be the linear span of the two vectors $u_{1}=e_{1}+e_{2}$ and $u_{2}=e_{1}+e_{3}$. Show that A^{\prime} is a two dimensional subalgebra of A but it is not an evolution algebra, that is, it does not have a natural basis. Hence it is not an evolution subalgebra.
4. Let A be an evolution algebra with natural basis e_{1}, e_{2}, e_{3} with $e_{1}^{2}=e_{2}+e_{3}, e_{2}^{2}=$ $e_{1}+e_{2}, e_{3}^{2}=-e_{1}-e_{2}$. Let I be the linear span of the two vectors $u_{1}=e_{1}^{2}=e_{2}+e_{3}$ and $u_{2}=e_{2}^{2}=e_{1}+e_{2}$. Show that I is a two dimensional ideal of A, but it is not an evolution algebra, that is, it does not have a natural basis. Hence it is not an evolution ideal.
5. Let A be an evolution algebra with natural basis e_{1}, e_{2}, e_{3}, with $e_{1}^{2}=e_{3}, e_{2}^{2}=e_{1}+$ $e_{2}, e_{3}^{2}=e_{3}$. Let I be the linear span of the two vectors $e_{1}+e_{2}$ and e_{3}. Show that I is an evolution ideal but that it does not have the extension property, that is, no natural basis of I can be extended to a natural basis of A. Explicitly, if $u=\alpha\left(e_{1}+e_{2}\right)+\beta e_{3}$ and $v=\gamma\left(e_{1}+e_{2}\right)+\delta e_{3}$ is a natural basis for I, then $\{u, v, w\}$, where $w=\lambda e_{1}+\mu e_{2}+\rho e_{3}$ cannot be a natural basis for A.

