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LEIBNIZ ALGEBRAS, COURANT ALGEBROIDS, AND
MULTIPLICATIONS ON REDUCTIVE HOMOGENEOUS SPACES

By MicHAEL K. KiINYON and ALAN WEINSTEIN

Abstract. We show that the skew-symmetrized product on every Leibniz algebra £ can be realized
on a reductive complement to a subalgebra in a Lie algebra. As a consequence, we construct a
nonassociative multiplication on £ which, when £ is a Lie algebra, is derived from the integrated
adjoint representation. We apply this construction to realize the bracket operations on the sections
of Courant algebroids and on the “omni-Lie algebras” recently introduced by the second author.

1. Introduction. Skew-symmetric bilinear operations which satisfy weak-
ened versions of the Jacobi identity arise from a number of constructions in
algebra and differential geometry. The purpose of this paper is to show how cer-
tain of these operations, in particular the Courant brackets on the doubles of Lie
bialgebroids, can be realized in a natural way on the tangent spaces of reduc-
tive homogeneous spaces. We use our construction to take steps toward finding
group-like objects which “integrate” these not-quite-Lie algebras.

The main ideas behind our construction come from work of K. Nomizu,
K. Yamaguti, and M. Kikkawa. Nomizu [18] showed that affine connections
with parallel torsion and curvature are locally equivalent to invariant connec-
tions on reductive homogeneous spaces, and that each such space has a canonical
connection for which parallel translation along geodesics agrees with the natu-
ral action of the group. Yamaguti [22] characterized the torsion and curvature
tensors of Nomizu’s canonical connection as pairs of algebraic operations, one
bilinear and the other trilinear, satisfying axioms defining what he called a “gen-
eral Lie triple system,” and what Kikkawa later called a “Lie triple algebra.” In
this paper, we will call these objects Lie-Yamaguti algebras. When the trilinear
operation is zero, the bilinear operation is a Lie algebra operation, and the homo-
geneous space is locally a Lie group on which the connection is the one which
makes left-invariant vector fields parallel. Finally, Kikkawa [7] showed how to
“integrate” Lie-Yamaguti algebras to nonassociative multiplications on reductive
homogeneous spaces, and he characterized these multiplications axiomatically.
Unfortunately, Kikkawa’s construction when applied in our setting does not quite
reproduce the multiplication on a Lie group when the curvature is zero; rather it
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gives the loop operation (x,y) — x+exp (ad x/2)y on the Lie algebra itself. This
limitation extends to our own work, so that we do not finally succeed in finding
the group-like object which we seek.

The starting point of our investigations was a skew-symmetric but non-Lie
bracket introduced by T. Courant [2]. It is defined on the direct sum £ = X (P) ®
Q!(P) of the smooth vector fields and 1-forms on a differentiable manifold P by

1
(1.1) [(€1,61), (&2, 02)] = <[€1,§2],£§1 0 — Le, 01 — Ed(i£1 0 — i§291)> ,

where L¢ and i¢ are the operations of Lie derivative and interior product by
the vector field . The term —%d(igl t — i¢,01) will be especially important to
our discussion. It distinguishes the bracket from that on the semidirect product
of the vector fields acting on the 1-forms by Lie derivation, and it spoils the
Jacobi identity. On the other hand, with this term (this was Courant’s original
motivation for introducing this bracket), the graph of every Poisson structure
I'r: QY(P) — X(P) and every closed 2-form Tw: X(P) — Ql(P)isa subalgebra
of £. Thus, although £ is not a Lie algebra, it contains many Lie algebras. Is there
a “group-like” object associated to £ which contains the (infinite-dimensional,
possibly local) Lie groups associated to the Lie subalgebras of £?

Courant’s brackets live on infinite dimensional spaces, but we may obtain a
simplified, finite-dimensional bracket by “linearization.” Namely, we let P be the
dual V* of a vector space V, and we consider the first derivatives of vector fields
vanishing at 0, along with the values of 1-forms at 0. The resulting bracket on
the finite dimensional space £ = gl(V) x V is given by

1
(1.2) [(X,uw),Y, )] = ([X, Y], E(XU — Yu)>

for X, Y € gl(V) and u, v € V. The factor of 1/2 is now the “spoiler” of the Jacobi
identity, but it yields the following nice property of the bracket. If adg: V — gl(V)
is the adjoint representation of any skew-symmetric operation B: V xV — V,
then (V,B) is a Lie algebra if and only if the graph of adp is a subalgebra of
(gl(V)x V,[I-, 1), which is then isomorphic to (V, B) under the projection onto the
second factor [21]. The problem at the end of the last paragraph now becomes:
is there a group-like object associated to (gl(V) x V,[[-,-]) which contains Lie
groups associated to all the Lie algebra structures on V?

In this paper, we give a partial solution to these problems. We show that
each of the algebras denoted by £ above can be embedded in a Lie algebra D of
roughly twice the size. There is a direct sum decomposition D = £ @ £ invariant
under the adjoint action of &, a subalgebra. The bracket on £ is obtained from
the bracket in D by projection along &.

Denoting by G and H the groups associated to D and & respectively, we may
identify £ with the tangent space at the basepoint of the reductive homogeneous
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space S(€) = G/H.If L C £ is any Lie subalgebra, such as the graph of a Poisson
structure or of an adjoint representation, then there is a reductive homogeneous
space S(L£) which sits naturally inside S(£). This is as close as we have come so far
to solving our problem. It is not a complete solution since S(L) is not a group. It
does, however, carry a multiplication which “partially integrates” the Lie algebra
structure on L. The general procedure for constructing such multiplications is as
follows.

Any reductive homogeneous space G/H corresponds to a reductive Lie al-
gebra decomposition g = h @ m; i.e., b is a subalgebra with [, m] C m. (Note
that this is “reductive” in the sense of Nomizu [18], not in the sense of having
a completely reducible adjoint representation.) In general m is not a subalgebra,
but a neighborhood of the identity in M = exp (m) C G can still be identified with
a neighborhood of the base point in G/H. Ignoring for simplicity of exposition
the restriction to neighborhoods of the identity (which is in fact unnecessary in
many cases), we may now take two elements x and y of G/H, multiply their
representatives in M to get a result in G, and project to get a product xy in G/H.
Unless M is a subgroup, this multiplication will not, in general, be associative,
but it will satisfy the axioms which make G/H into a group-like object called
a homogeneous Lie loop [7]. Each Lie-Yamaguti subalgebra [ of m will then
correspond to a subloop of G/H.

In the example &£ = gl(V) x V, the Lie algebra D may be taken to be simply
the semidirect product of gl(V) acting on the vector space gl(V) x V by the direct
sum of the adjoint and standard representations. The subalgebra £ is the first (i.e.
the nonabelian) copy of gl(V), and the reductive complement is the graph of the
mapping (X, u) — X/2 from the last two factors of gl(V) x gl(V) x V to the first
one. The construction for the original Courant bracket is similar and is described
in detail in §4 below.

The construction of the enveloping Lie algebra D was in fact worked out in a
more general setting. It was observed in [11] that adding a symmetric term to the
skew-symmetric Courant bracket “improved” some of its algebraic properties.
Y. Kosmann-Schwarzbach and P. Xu, as well as P. Severa (all unpublished),
observed that this unskewsymmetrized operation, which we will denote by -,
satisfies the derivation identity

x-(y-9=(@x-y)-z+y (x-2)

defining what Loday [12] has called a Leibniz algebra. The central result in our
paper (Theorems 2.6 and 2.9) is that the skew-symmetrization of every Leibniz
algebra structure can be extended in a natural way to a Lie-Yamaguti structure
and hence can be realized as the projection of a Lie algebra bracket onto a
reductive complement of a subalgebra. Thus, the Leibniz algebra is “integrated”
to a homogeneous left loop. Whether this loop will enable us to lasso Loday’s
elusive “coquecigrue” [12] remains to be seen.
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In the last section of the paper, we discuss further directions for research. One
is to attempt to take into account the fact that the algebra X' (P) ®Q(P) is also the
space of sections of a vector bundle, and to try to build a corresponding structure
into its enveloping Lie algebra. A second goal is to construct a group-like object
for a Leibniz algebra which is actually a group in the case of a Lie algebra. We end
the paper with an idea for constructing such an object as a quotient of a path space.

Acknowledgments. We would like to thank the many people from whom
we have learned important things about Courant algebroids, path spaces, and
nonassociative algebras, among them Anton Alekseev, Hans Duistermaat, Nora
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berg, Arthur Sagle, Pavol Severa, Jim Stasheff, and Ping Xu. The second author
would also like to thank Setsuro Fujiie and Yoshitsugu Takei for their invitation
to speak on “Omni-Lie algebras” and to publish a report in the proceedings of
the RIMS Workshop on Microlocal Analysis of Schrodinger Operators. Although
that report had little to do with the subject of the workshop, the stimulus to write
a manuscript led to the posting of a preprint [21] on the arXiv server and the
subsequent collaboration which has resulted in the present paper.

2. Leibniz algebras. All vector spaces, algebras, etc. in this section will
be over a ground field K of characteristic 0. Most results extend in obvious ways
to positive characteristic (not 2), or even to commutative rings with unit. By
an algebra (£,-) we will mean a vector space £ over K with a not necessarily
associative bilinear operation -: £ xX& — £. Forx € £, let A\(x): € = E;y— x-y
denote the left multiplication map. Let Der(£) denote the Lie subalgebra of gl(£)
consisting of the derivations of £. A linear map & € gl(€) is a derivation of (£, -)
if and only if

2.1 [£, A0)] = A(€x)

for all x € £. For the class of algebras of interest to us, the left multiplication
maps have a stronger compatibility with the derivations.

Definition 2.1. An algebra (€, ) is called a Leibniz algebra if
2.2) X (y-g)=(-y)-z+y-(x-2)
for all x,y,z € L.
Clearly, an algebra (£, ) is a Leibniz algebra if and only if A(€) C Der(€),

or equivalently, A: (£,-) — (gl(&),[-,-]) is a homomorphism. Thus we have a
homomorphism A: (£,-) — (Der(€), [-,-]) when (£, -) is a Leibniz algebra.
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Leibniz algebras were introduced by Loday [12]. (For this reason, they have
also been called “Loday algebras” [10].) A skew-symmetric Leibniz algebra struc-
ture is a Lie bracket; in this case, (2.2) is just the Jacobi identity. In particular,
given a Leibniz algebra (&, -), any subalgebra on which - is skew-symmetric is
a Lie algebra, as is any skew-symmetric quotient. The skew-symmetrization of a
Leibniz algebra (&, -) is an interesting structure in its own right. We will denote
the skew-symmetrized operation by

1
(2.3) [[x,y]]=§(x-y—y-x)

for x,y € £. In general, (&,[-,-]) is not a Lie algebra, i.e. (£,-) is not Lie-
admissible [16]. (In particular, Leibniz algebras are not the same as a related
class of algebras arising in differential geometry which is known by such names
as pre-Lie algebras [5], Vinberg algebras [17], or left-symmetric algebras.)
From (2.2), we have that A(x) € Der(&,[[-,-]) for all x € &£, and that
A (&, D) — Der(€) is a homomorphism of anticommutative algebras.
Let

JT=x-x|xef)

be the two-sided ideal of (£,-) generated by all squares. Then J contains all
symmetric products x - y+y - x for x,y € £. Since A\(x - x) = [A(x), A(x)] for all
x € &, it follows that 7 C ker(\). Let M C £ be any ideal containing 7. Since
X-y+M=—-y-x+x-y+y-x)+ M =—y-x+ M for x,y € &, the Leibniz
product in £ descends to a Lie bracket [-,-] in £/ M. Conversely, if M C £ is
an ideal such that the quotient £/ M is a Lie algebra, then for x € £, we have
x-x+ M =M, and thus J C M. In particular, 7 itself is the smallest two-sided
ideal of &€ such that £/.7 is a Lie algebra.

We now introduce one of our principal examples, which can be viewed as a
non-skew-symmetrized semidirect product of Lie algebras.

Example 2.2. Let (h,[-,-]) be a Lie algebra, and let V be an h-module with
left action h x V — V: (£,x) — &x. The induced left action of h on h x V is just
the restricted adjoint action of fj on the semidirect product f x V:

(2.4) Em,y) = [(£,0),(n,y)] = (&1, &)

for £,m € b, y € V. Define a binary operation - on £ = § X V by

(& x) - (m,y) =£&0,y)

for&,nebh, x,y eV;ie.

(2.5) (& x) - (n,y) = ([& 0], E).
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Then (&, ) is a Leibniz algebra, and if h acts nontrivially on V, then (&, -) is not
a Lie algebra. We call £ with this Leibniz algebra structure the hemisemidirect
product of h with V, and denote it by h xgy V.

The skew-symmetrized product in (£, ) is

1
26 16000 = (1611, & = 0)

for &,m € h, x,y € V. We call £ with the bracket [[-, -]| the demisemidirect product
of h with V, and we denote it by h xp V. As we noted in §1, the factor of 1/2
generally spoils the Jacobi identity for this bracket. We have

J ={0} xhv
ker(\) = {£€3(h) [ EV =0} xV

where 3(h) is the center of h. If the representation of §h on V is faithful and if
hV =V, then J = ker (\). For example, if h = gl(V), then J = ker(\) = {0} x V.

Let my: € — b denote the projection onto the first factor. Then 7y is b-
equivariant, i.e.

(27) [é" T (77, .X)] =Ty (5(77, )C))

for all £, € b, x € V. The homomorphism A: & — Der(£) factors through
and the action (2.4):

(2.8) A& 0)(n,y) = mh(&,0)(1, ).

The preceding paragraph motivates the following definition.

Definition 2.3. Let (£, -) be a Leibniz algebra. Let ) be a Lie algebra with a
derivation action ) — Der(€), i.e. E(x-y)=&x-y+x-Eyforall £ € h, x,y € £.
Let f: £ — b be an h-equivariant linear map such that the diagram

s X Der(€)
(2.9) fl
b

commutes. Let g = h x & be the semidirect product Lie algebra, £ being considered
as a Lie algebra with the zero bracket. We say that the triple (g, b,f) is an
enveloping Lie algebra of (£,-). We will justify this name with Theorem 2.9
below. (Note that our notion of enveloping Lie algebra of a Leibniz algebra is
not the same as Loday’s universal enveloping algebra [12]; the latter is not a
Lie algebra, but rather an algebra with two associative multiplications satisfying
some compatibility conditions.)
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In terms of equations, the h-equivariance of f and the commuting of (2.9)
are expressed by

(2.10) [Ef)] = f(&x)
(2.11) fx)y = Ax)y

for all x,y € &, £ € . (The h-equivariance of f implies that f(£) is a Lie ideal
of h.) Properties (2.10) and (2.11) imply that

[y =f(fy) = [f).f (W]

for x,y € &; that is, f is a homomorphism of Leibniz algebras. In particular,
f(x-x)=0forall x € &, and

F ([, ¥ = L), f(D].

By (2.11), if f(x) = 0, then A(x) = 0. Therefore we have the inclusions
J Cker(f) C ker(N).

Just as (2.7) and (2.8) motivated the definition of enveloping Lie algebra, so
do they imply the following.

ProposITION 2.4. (h x &, b, 7y) is an enveloping Lie algebra for the hemisemi-
direct product £ = xg V.

Every Leibniz algebra (£, -) has enveloping Lie algebras. By (2.2), A(€) is a
Lie subalgebra of Der(€). Since left multiplication maps are Der(£)-equivariant
(see (2.1)), the following holds.

PrOPOSITION 2.5. Let (£,-) be a Leibniz algebra, and let ) be a Lie algebra
satisfying AM(€) C b C Der(E). Then (h x £,h, \) is an enveloping Lie algebra for
(g’ )

If (g,b,f) is an enveloping Lie algebra of a Leibniz algebra (&, -), then so is

(8,f(E),f) where § = f(€) x £. For our purposes, the case where f(£) = b is of
most interest. In this case we have

h = E/ker(f).

Conversely, let M be an ideal of (£, -) satisfying J C M C ker(\). Then b :=
E/M is a Lie algebra, and the Leibniz algebra homomorphism \: & — Der(E)
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descends to a Lie algebra homomorphism \: h — Der(€) such that

s X Der(€)
gl /
X

b

commutes, where g: £ — b is the natural projection. The following result, which
is our main construction of enveloping Lie algebras, is an immediate consequence
of these considerations.

THEOREM 2.6. Let (€, ) be a Leibniz algebra, let M be an ideal of € satisfying
J C M C ker(N), and let h) = E/M. Then (h x £,1,q) is an enveloping Lie
algebra for (€, -).

Example 2.7. Let £ = h xy V be the hemisemidirect product, and assume
that the representation of h on V is faithful and that HV = V. Then J = ker (}),
and h = £/J. We may identify the natural projection ¢: € — £/J with the
projection 7: £ — b onto the first factor. In this case, the enveloping Lie algebra
of Proposition 2.4 is that of Theorem 2.6.

Remark 2.8. Let h be a Lie algebra, let £ be a left h-module, and let f: £ — b
be a h-equivariant linear map. Define a binary operation - on &€ by x - y = f(x)y.
Then (&, ) is clearly a Leibniz algebra. We will discuss this point further in §3.
Loday and Pirashvili [13] have shown that f: £ — h can be considered to be a
Lie algebra object in what they call the infinitesimal tensor category £LM of linear
mappings. The assignments (f: € — h) ~ (£,-) and (£,) ~ (¢: € — £/T)
are adjoint functors between the category of Lie algebra objects in LM and the
category of Leibniz algebras.

We now move on to our main result, which is to show how to recover the
skew-symmetrized structure (&, [[-,-]) of a Leibniz algebra (£,-) from the Lie
algebra structure of an enveloping Lie algebra (g, h,f). Let mg: g — & denote
the projection onto the second factor. For each s € K, define a section o5: £ — ¢
of m¢ by

(2.12) o5(x) = (sf(x), x)

for x € £. The image

E=04(8) = {(Sf(x)’x) | X e g}
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is a copy of £ which is a complement of h = ker (7¢). We will write the corre-
sponding vector space decomposition of g as

2.13) G haE,.

Note that the case s = 0 is just the semidirect product of h with £.

Since &; is essentially the graph of the h-equivariant map sf: £ — b, oy itself
is equivariant for the adjoint action (2.4) of hh on g. Indeed, for x € £, £ € b, we
have

§ os(x) = ([€, sf(x)], Ex)
(sf(£x), €x)
o5(§x).

This shows that the bracket of an element of f with an element of £ relative to
the decomposition (2.13) agrees with the action of f on &, independently of the
value of s:

[€,x] = &x.
Since

(2.14) [h,E]1CE

the decomposition (2.13) is reductive [18].
Now we consider the bracket of two elements of £ = & relative to (2.13).
Here, unlike (2.14), we expect the result to depend on s. For x,y € £, we have

[o5(x), o(V)] = [(sf ), %), (sf(¥), )]

(SPLFQ). LD, s(fx)y — F()x))

= (% (Ix, yI), 2sllx, y1)

= (=[x, y1), 0) + 2s*f([x, y1), 2s[Lx, yT)

= (—=s*f([Ix, y1), 0) + o (2s[[x, Y1)

We use the components of the result of this computation to define skew-symmetric
bilinear maps [[-,-]l;; € X & — £ and A;: € x & — §h by

(2.15) [x, y1Is
(2.16) As(x,y)

e ([o5(x), o5(M)]) = 2s[[x, y]]
7 ([o5(x), o5(0]) = —s*F([x, 1)

for x,y € £.
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Observe that the choice s = 1/2 recovers the original skew-symmetrized
Leibniz product on &:

(2.17) [, 11 /2 = %, y])
for x,y € £. This gives us the following result.

THEOREM 2.9. Let (£,-) be a Leibniz algebra with enveloping Lie algebra
(9, 0.f), and let 0y/: £ — g be defined by (2.12). Then the skew-symmetrized
product (2.3) is given in terms of the Lie bracket in g by

[x, y1l = ¢ ({01/2()6),01/2()’)])

forx,y € £.

In §5, we will show that the map A;: € x £ — h defined by (2.16) introduces
additional structure into £.

Example 2.10. Let £ = hx gz V be the hemisemidirect product, and let (g, h, 7p)
be the enveloping Lie algebra obtained in Proposition 2.4. The section oy: € — g
is given by

o5(&, %) = (s€, &, %)

for £ € h, x € V. A calculation shows that the skew-symmetric maps [, -]ls: € X
E— € and A;: £ x £ — h are given by

(2.18) (€, x), (1, ]
(2.19) Ay ((€, %), (1, )

1
2s <[£,77] , E(Sy - 77x)>
—s*[&,m]

for &,m € b, x,y € V. If we take s = 1/2, (2.18) reduces to the demisemidirect
product bracket (2.6).

3. Omni-Lie and Omni-Leibniz algebras. In this section we will show
that every Leibniz algebra can be embedded in a hemisemidirect product Leibniz
algebra.

Let (£,-) be a Leibniz algebra with enveloping Lie algebra (g, b, f), and let
os: € — g be the section of m¢ defined by (2.12). The vector space g = h x £
has (at least) four natural algebra structures which are related to the structure
of £. First, g = h x £ is a semidirect product Lie algebra. We have shown in
Theorem 2.9 that the section o/, can be used to recover the skew-symmetrized
structure (&, [[-,-]]) from the semidirect product g = b x £. Second, g = h x &
also has the structure of a direct product of Leibniz algebras. As noted before,
each &; is the graph of the map sf: £ — h. Since each sf is a homomorphism of
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Leibniz algebras, each &; is trivially a subalgebra of the direct product g = x &,
which, for s # 0, is isomorphic to (£, -) under the map (1/s)7¢|e,.

Third and fourth, g also has the hemisemidirect product structure g = h Xy &
and the demisemidirect product structure g = hh X p €. The next result shows how
these are related to the Leibniz and skew-symmetrized Leibniz algebra structures,
respectively, on £.

ProposITION 3.1. (1) 01: (€,-) — b Xy & is a monomorphism of Leibniz alge-
bras.

2) o1: &, [[-,-D — b xp & is a monomorphism of skew-symmetrized Leibniz
algebras.

Proof. For x,y € £, we compute

(f ), x) - (F(3), y)
([FC. L] . f(x)y)
(flx-y),x-y)
or(x-y)

o1(x) - o1(y)

where in the penultimate equality, we have used the fact that f is a homomorphism
of Leibniz algebras and (2.11). This establishes (1), and (2) follows from (1). O

Since every Leibniz algebra has enveloping Lie algebras, we have the fol-
lowing.

COROLLARY 3.2. (1) Every Leibniz algebra can be embedded as a subalgebra
in a hemisemidirect product.

(2) Every skew-symmetrized Leibniz algebra can be embedded as a subalgebra
in a demisemidirect product.

By Propositions 2.5 and 3.1, the monomorphism x +— (A(x), x) embeds a given
Leibniz algebra (€, -) as a subalgebra of the hemisemidirect product Der(€, 1) X &,
which in turn can be embedded as a subalgebra of the hemisemidirect product
gl(€) xy £. While different Leibniz algebra structures on the vector space &
can lead to different derivation algebras, gl(£) Xy £ contains all Leibniz algebra
structures on £. We now show that, in fact, this exactly characterizes the Leibniz
algebras among all algebra structures on &.

Let (£, ) be an algebra, and let

Gr={(A\(x),x) |xe &}

denote the graph of A as a subspace of gl(£) x &.
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ProposSITION 3.3. An algebra (E,-) is a Leibniz algebra if and only if Gy is a
subalgebra of gI(€) x g &. If these conditions hold, then Tg|g, is an isomorphism

from (G, ) to (€, ).

Proof. For x,y € V, we have

(3.1) A, x) - (A(Y), y) = ([AX), A(W)], x - y).

Thus G, is closed under the product - if and only if A is a homomorphism. The
remaining assertions are clear. O

We see from Proposition 3.3 that the class of all Leibniz algebra structures
on & corresponds to the class of all linear maps from £ to gl(€) whose graphs
are subalgebras of the hemisemidirect product. Recalling that a skew-symmetric
subalgebra of a Leibniz algebra is a Lie algebra, we see that gi(€) xy £ also
contains all Lie algebra structures on £. From (3.1), it is immediate that the
operation - in Gy is skew-symmetric if and only if the operation - in £ is skew-
symmetric.

COROLLARY 3.4. An algebra (£,-) is a Lie algebra if and only if Gy is a Lie
subalgebra of gI(€) x g &. If these conditions hold, then Tg|g, is an isomorphism

from (G, ) to (€, ).

In case £ = R", the demisemidirect product (gl(€) xp &, [, -1) is the “omni-
Lie algebra” with bracket (1.2) of [21]. Symmetrizing the Leibniz product in
gl(€) xp £ defines a commutative product o by

1
(€00 (n.y) = (o, G nx)) ,

which was called an “£-valued bilinear form” in [21]. The hemisemidirect product
Leibniz algebra gl(€) Xz £ combines both of these structures. The following
restatement of Corollary 3.4 encompasses both Proposition 1 in [21] and the
subsequent discussion.

COROLLARY 3.5. An algebra (£,-) is a Lie algebra if and only if (i) for all

&, x),(n,y) € Gy, (§,x) o (n,y) =0, and (ii) (G, -, 1) is a Lie subalgebra of
g[(E) Xp E.

In particular, if (£,-) is an anticommutative algebra, then it is a Lie alge-
bra if and only if the graph of its adjoint representation is a subalgebra of the
demisemidirect product gl(€) xp E.

4. Courant algebroids. In this section, we will apply the methods of §2 to
Courant algebroids, which include as special cases the doubles of Lie bialgebras
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and the bundles TP @& T*P with the bracket on sections given by (1.1). The
following definition was introduced in [11].

Definition 4.1. A Courant algebroid is a vector bundle E — P equipped with
a nondegenerate symmetric bilinear form (, - on the bundle, a skew-symmetric
bracket [[-, -]] on the space £ = I'(E) of smooth sections of E, and a bundle map
p: E — TP such that, for any x,y,z € £ and f,g € A = C®°(P):

(1) Sy Y1, 21 = DT(x, 3, 2);

(2) plix, yI = [px, pyl;

) [0 = fIx, yI + (p(x)f )y — (x, y)Df ;

(4) psD =0; i.e., for any f, g, (Df,Dg) =0;

(5) p(x)(y,2) = (%Y1 + D(x,y),2) + (¥, [x, 2] + D{x,2)).
Here, Z(x’y’z) denotes the sum over cyclic permutations of x, y, and z, T(x,y,2)
is the function on P defined by:

1
T,y.2) =3 > (Ixyl.2)

(x,y,2)

and D: A — €& is the map defined by D = % B~ p*d, where /3 is the isomorphism
between E and E* given by the bilinear form. In other words,

1
(Df,x) = EP(X)f-

It was already noted in [11] that adding the symmetric term (x,y) — D(x,y)
to the bracket of a Courant algebroid leads to an operation - with nicer proper-
ties. In fact, as noted independently by Kosmann-Schwarzbach, Severa, and Xu,
the operation - makes £ into a Leibniz algebra. (Details may be found in §2.6
of [19].)

This time, we will use our main construction of Theorem 2.6 to find an
enveloping Lie algebra for £. By the definition of the operation -, the image
D(A) contains the ideal J generated by squares. In fact, by the identity x - Df =
D(x,Df) (Lemma 2.6.2 of [19]), D(A) is an ideal in &, so it can play the role
of M in our general construction; i.e. £/D(A) is a Lie algebra acting on £. We
may therefore form the semidirect product Lie algebra g = £/D(A) x £, which
functions as an enveloping Lie algebra. Continuing with the application of our
general construction in Theorem 2.9, we see that the Courant algebroid bracket on
£ is obtained from the Lie algebra bracket on g = £/D(A) x £ by identification
of £ with the graph of % times the quotient map from & to £/D(A), by projection
along the subalgebra £/D(A) x {0}.

Example 4.2. If P is a single point, £ is just a Lie algebra with an invariant
symmetric bilinear form, and D = 0. The enveloping Lie algebra is then £xE. The
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bracket on £ is recovered by projection along the first factor onto the subspace
(not a subalgebral) {(3x,x) | x € £}.

For the original Courant bracket (1.1) on X (P)®Q!(P), the symmetric bilinear
form is

1
((1,01),(52.00)) = E(igl 0> +i¢,01),

p. TP & T*P — TP is projection on the first factor, and D is the operator
f — (0,df), so the Leibniz product is

(&1, 01) - (&2, 02) = ([§1,&2], Le 02 — i, dby).

The Lie algebra £/D(A) is thus X (P) ® Q!(P)/dC>(P), on which the bracket,
since we can add to i¢,df); the exact form dig, ), is just the semidirect product
bracket of X(P) acting on Q!'(P)/dC>(P) by Lie derivation, i.e. £/D(A) =
X (P) x Q'(P)/dC>(P).

The enveloping Lie algebra is thus a “double semidirect product”

(X(P) x Q(P)/dC®(P)) x (X(P) x Q'(P)).

The action of X'(P) x Ql(P)/dCOO(P) on X(P) x QI(P) may be described as
follows. Elements of X'(P) act by Lie derivation on both the vector fields and
the 1-forms. A 1-form ¢ (modulo exact 1-forms) acts by the nilpotent operation

(&,0) — (0, —icd9).

Remark 4.3. Pavol Severa has pointed out to us a nice interpretation of the
action just described. First of all, we pass from the Lie algebra to the group
which is the semidirect product of the diffeomorphisms and the abelian group of
1-forms modulo exact forms. The diffeomorphisms act in the obvious way. To
understand the action of the 1-forms, we think of the action not just on the product
X (P) x Q!(P), but on the space of subspaces of X'(P) x Q' (P) which are graphs
of 2-forms. Then the action of a 1-form ¢ on a 2-form is simply to add —d¢.
These two operations on 2-forms—transformation by diffeomorphisms and the
addition of exact forms—are precisely the operations which may be considered
as symmetries of the variational problem defined by integration of the 2-form
over 2-dimensional submanifolds of P.

Remark 4.4. When P is a compact, oriented manifold of dimension n, the
space Q!(P)/dC>(P) is in natural duality, by integration, with the space of closed
n — l-forms on P. If P carries a volume element, then the latter space may be
identified with the Lie algebra of volume-preserving vector fields. The Lie algebra
X(P) x Q'(P) /dC>°(P) may then be seen as an enlargement of the Lie algebra
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of the cotangent bundle of the group of volume preserving diffeomorphisms. It
would be interesting to relate this interpretation to other aspects of the material
in this paper.

Remark 4.5. Finally, we note that the constructions in this section can be
carried out equally well in the setting of (R,.4A) C-algebras. These algebraic
objects, introduced in [21], include as special cases both the spaces of sections
of Courant algebroids and the omni-Lie algebras of §3.

5. Lie—-Yamaguti structures. Let (£, ) be a Leibniz algebra, and let (g, b, f)
be an enveloping Lie algebra. As in §2, we have the reductive decomposition
g = bhdE& . We found that (2.17) recovers the original skew-symmetrized
operation [, -] in £. We will now show that the skew-symmetric bilinear map
Ajjp: € x & — b induces an additional operation and additional structure on &.

More generally, let g be a Lie algebra with a reductive decomposition g =
hdm,ie. [h,H] Chand [h,m] C m. On m, define bilinear maps [-,-]: m x m
— m and A: m x m — b by the projections of the Lie bracket:

(5.1) [x, vl = 7w ([x,5])
(5.2) A(x,y) = 7y ([x,])

for x,y € m. Then define a ternary product on m by

{)C, Y, Z} =[Ax, y),2]

for x,y,z € m. It is straightforward to show that (m,[[-,-], {-,,-}) satisfies the
following definition.

Definition 5.1. A Lie-Yamaguti algebra (m, [[-,-],{-,-,-}) is a vector space m
together with a bilinear operation [[,-]: m X m — m and a trilinear operation
{",-,}: m x m x m — m such that, for all x,y,z,u,v,w € m:

LYD) [x, vl = =MLy, xII;

(LY2) {x,y,z} = —{v.x,2};

(LY3) 3y ([x.y1 2D + {x. v, 2}) =0

LY4) 3y 1% ¥1, 2, u} = 0;

(LYS5) {x,y,[u, v} = [{x,y,u}, o] + [u, {x,y, v}1;

(LYO6) {x,y,{u,v,w}} = {{x,y,u},v,w}+{u,{x,y, v} ,wh+{u, v, {x,y,w}}.

The properties of the binary and ternary operations of a Lie-Yamaguti algebra
can be found in the work of Nomizu [18] as properties satisfied by the torsion
and curvature tensors, respectively, in a reductive homogeneous space; we will
discuss this further in §6. The notion of a Lie-Yamaguti algebra is a natural
abstraction made by K. Yamaguti [22], who called these algebras “general Lie
triple systems.” M. Kikkawa [7] dubbed them “Lie triple algebras.”
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Notice that, if the trilinear product in a Lie-Yamaguti algebra is trivial, i.e.,
{-,-,-} = 0, then (LY2), (LY4), (LY5), and (LY6) are trivial, and (LY1) and
(LY3) define a Lie algebra. On the other hand, if the binary product is trivial,
ie., [-,-1 =0, then (LY1), (LY4), and (LY5) are trivial, and (LY2), (LY3), and
(LY6) define a Lie triple system.

Now we apply these considerations to the case of a Leibniz algebra (&, )
with enveloping Lie algebra (g, b,f). The map A=A 5: € x & — b is given by
(2.16); we repeat it here for convenience:

1
A, y) == f (Ix.y)

for x,y € £. Therefore the ternary product is given in terms of the Leibniz and
skew-symmetrized Leibniz products by

1
(5.3) {x,y,z} = _Z[[x’y]] -z

for x,y,z € £. Since AM(x - y+y-x) =0, we can also write the ternary product
purely in terms of the Leibniz product:

1
(5.4) oy =—700 2
Summarizing, we have the following.

PROPOSITION 5.2. Let (£, ) be a Leibniz algebra. Then (E,[-,-1,{:,-,-}) is a
Lie-Yamaguti algebra, where [[-, -] is the skew-symmetrization of -, and {-,,-} is

defined by (5.3) or (5.4).

Example 5.3. For the hemisemidirect product £ = h xg V of Example 2.2,
a short calculation using (5.3) and (2.5) shows that the trilinear product in the
associated Lie-Yamaguti algebra (&, [[-, -1, {-,-,-}) is given by

1
{0, 9,2} = 4 (&, 71, <1, [€,n)2)
for &,n,( € b, x,y,z€ V.

Example 5.4. For the Courant bracket (1.1), the associated trilinear product
is

1
{(&1,00),(&2,02),(&3,05)}) = —Z([[ﬁl,52],53],5[51,52]93 — g, d(Le 0p — Le,01)).

Another approach to this bracket, and to spaces of sections of more gen-
eral Courant algebroids, is to consider them as strongly homotopy Lie algebras
[19, 20]. Here, the not-quite-Lie algebra also carries a differential d, and the Ja-



LEIBNIZ ALGEBRAS, COURANT ALGEBROIDS, AND MULTIPLICATIONS 541

cobiator ., - [llx, yll, zIl is expressed as the differential applied to a completely
antisymmetric trilinear product. A higher-order Jacobiator of the trilinear product
is again a differential, and so on. In the Lie-Yamaguti approach, it is essential
that the trilinear operation not be completely antisymmetric.

We showed that a Lie algebra with a reductive decomposition naturally in-
duces the structure of a Lie-Yamaguti algebra on the reductive complement to the
subalgebra. Now we show the converse: for any Lie-Yamaguti algebra m, there
exists a Lie algebra g with a reductive decomposition g = fj @ m such that the
induced Lie-Yamaguti structure on m agrees with the original one.

Let (m,[[,-1,{:,-,-}) be a Lie-Yamaguti algebra, and let Der(m) denote the
Lie subalgebra of gl(m) consisting of derivations of both the bilinear and trilinear
products. Let h be a Lie algebra with a derivation action ) — Der(m), and let
A: m x m — [ be a skew-symmetric bilinear mapping satisfying the following
properties:

(5.5) A(x, y)z = {x,y,2}
(5.6) (£, A(x, )] = A6x,y) + A(x, £y)
(5.7 A(llx,yl,2) + ALy, zIl, x) + Az, x],y) =0

for all x,y,z € m, £ € h. On the vector space g = h ®m, define a skew-symmetric
bracket [-,-]: g x g — g by

(5.8) [E+x,n+y] =& n]+ AKX, y) + (Ey — nx + [x, ¥

PROPOSITION 5.5. g is a Lie algebra, and g = h @& m is a reductive decom-
position. The Lie-Yamaguti bilinear and trilinear products on m induced by the
decomposition agree with [[-, -] and {-, -, -}, respectively.

Proof. It is straightforward to check that (5.5)—(5.7) and (LY 3) give the Jacobi
identity for the bracket (5.8). That [h,m] C m is immediate from (5.8), and
so the decomposition is reductive. From (5.8) we have mn,([x,y]) = [[x,y] and
[mn([x, D, z] = [A(x, ¥), 2] = {x,y,z} for x,y,z € m, which proves the remaining
assertion. O

Definition 5.6. Let (m,[[-,-],{,-,-}) be a Lie-Yamaguti algebra, let h be a
Lie algebra with a derivation action f) — Der(m), and let A: m xm — § be a
skew-symmetric bilinear mapping satisfying (5.5)—(5.7). The Lie algebra (g, [-, ]),
where g = h @ m and [, -] is given by (5.8), is called an enveloping Lie algebra
of (m, [, -1, {, -}

Since a Leibniz algebra has a natural Lie-Yamaguti structure, the coincidence
of their notions of enveloping Lie algebra is both clear and expected.
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ProposITION 5.7. Let (€,-) be a Leibniz algebra with enveloping Lie algebra
(9,9./). Theng = h@&E s, is an enveloping Lie algebra of the induced Lie-Yamaguti
algebra (-1, {", - }D)-

To conclude this section, we follow Yamaguti [22] to show that every Lie-
Yamaguti algebra has an enveloping Lie algebra.

Let (m,[[-,-1,{- -, -}) be a Lie-Yamaguti algebra. Define a bilinear mapping
0: m x m — gl(m) by

(5.9) 6(x, )z ={x,y,z}

for x,y,z € m. By (LY2), ¢ is skew-symmetric. By (LYS5) and (LY6), 6(x,y) €
Der(m) for all x,y € m. We call 6(x, y) an inner derivation of m. Let IDer(m) de-
note the subspace of Der(m) spanned by the inner derivations. By (LY6), IDer(m)
is a Lie algebra. Now let ) be any Lie algebra satisfying IDer(m) C f C Der(m).
Then (5.9) implies (5.5) and (5.6) directly, while (5.7) follows from both (5.9)
and (LY4).

Summarizing, we have established the following [22].

PrOPOSITION 5.8. Every Lie-Yamaguti algebra has an enveloping Lie algebra.

Remark 5.9. It was essentially by this route, after guessing the ternary product
(5.3), that we first discovered the enveloping Lie algebras of Leibniz algebras.

Remark 5.10. It would be interesting to find conditions on a reductive de-
composition g = h & m (equivalently, on a Lie-Yamaguti algebra m) which would
insure that m is the skew-symmetrization of a Leibniz algebra. What is neces-
sary, of course, is that A: m x m — b factors into an h-equivariant linear map
—4lf : m — b and the binary product [-,-]: m X m — m. The question then
becomes: what conditions on the decomposition guarantee the existence of such
a factorization?

6. Reductive homogeneous spaces and loops. Let G be a Lie group with
Lie algebra g, let H C G be a closed subgroup with Lie algebra h C g, and let
M = G/H. The homogeneous space M is said to be reductive if there exists a
reductive complement m of h in g, i.e.,

6.1) g=h®dm
6.2) Adg (H)m C m.

Condition (6.2) implies that

(6.3) adg(h)m C m.
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When H is connected, (6.3) implies (6.2). We may identify m with the tangent
space Ty (M) where e € G is the identity element and m: G — M is the
canonical projection.

Now let (€, -) be a Leibniz algebra with enveloping Lie algebra (g, b, f), and
let H be a Lie group with Lie algebra h. Suppose that the derivation action of b
on & lifts to an automorphism action H — Aut(£), i.e. h(x-y) = hx-hy for h € H,
x,y € £. Let G = H x £ be the semidirect product group, £ considered as usual
as an abelian Lie group. Then G is a Lie group with Lie algebra g =h x &.

For s # 0, we already know that (6.3) is satisfied with m = o,(£). Now since
H acts by automorphisms, the mapping f: £ — b is H-equivariant: for all 4 € H,
xeé,

(6.4) Ad(h)f (x) = f(hx).

It follows that the sections oy: &€ — g defined by x — (sf(x),x) are also H-
equivariant, i.e.,

hoy(x) = h(sf (x), x) = (sf (hx), hx) = o(hx).

Thus (6.2) holds. Therefore G/H is a reductive homogeneous space.

The vector space projection mg: g — &£ defined by (£, x) — x exponentiates
to the group projection 7g: G — &; (h,x) — x. The sections o, exponentiate to
the group sections &5: € — G defined by

G5(x) = (exp (sf(x)), x).

For (h,x) € G=H x &£, we have

(h,x) = G5(x)(exp (—sf(x))h, 0).

This is clearly a unique factorization of (h,x) into an element of the image
& = 64(&) and an element of H ¥ H x {0}. This implies that g is a left
transversal of H in G, i.e., a subset of G consisting of one representative of each
left coset in G/H.

Summarizing, we use the semidirect product structure of G to identify the
homogeneous space (H x £)/H with & itself, and we have a distinguished family
of sections 6;: & — G whose images are transversals of the subgroup H.

In order to motivate our next construction for £, we will temporarily forget
about differentiable structure. Let G be a group acting transitively on a set X.
Fix a distinguished element e € X, and let H be the isotropy subgroup of e.
Associated to e is the canonical projection nx: G — X;g +— g(e). Assume that
¢: X — G is a section of wy, i.e., mx(p(x)) = ¢(x)(e) = x for all x € X, and
assume that ¢(e) =1 € G. Let my: G — H be the corresponding projection onto
H defined by my(g) = ((ﬁ(ﬂx(g)))_lg. We define a binary operation o: X XX — X
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and a mapping I: X x X — H by

(6.5) xoy
(6.6) I(x,y)

mx(P(X)P(y))
TH(P(X)P(Y))

for x,y € X. Then (X,¢) is a left loop [9], i.e., given a,b € X, the equation
a o x = b has a unique solution x € X, and eva =aoe = a for all a € X.
(Conversely, every left loop can be realized in this way, specifically, as a left
transversal in a group.) For a,b € X, the action of l(a,b) € H on X defines a
permutation L(a, b): X — X, called a left inner mapping, by L(a, b)(c) = l(a,b)(c)
for all ¢ € X. Left inner mappings measure the nonassociativity of (X, ¢); they are
equivalently defined by the equation a¢ (boc) = (aob)oL(a, b)(c) for a,b,c € X.

Two useful conditions on sections ¢: X — G are the following:

(H1) For each x € X, there exists (a necessarily unique) x’ € X such that

P(x) ! = p(x').

(H2) Forall x € X, h € H,

h(h™ " = p(h(x)).

If (H1) holds, then the left loop (X, ¢) satisfies the left inverse property, which
means that @’ o (aob) =a o (a’ o b) = b for all a,b € X. If (H2) holds, then the
action of H on X is by automorphisms of (X, ¢), i.e.

h(x o y) = h(x) o h(y)

for all x,y € X, h € H. In particular, every left inner mapping L(a,b) is an
automorphism, and in this case, (X, ) is said to have the A; (or left A or left
special) property. A left loop with both the left inverse and A; properties is said
to be homogeneous. For more on these matters, see [9] and the references therein.

Remark 6.1. Let G be a Lie group with closed (Lie) subgroup H C G and a
smooth section ¢: G/H — G of the natural projection G — G/H. Kikkawa [7]
showed that if (H1) and (H2) hold, then G/H is a reductive homogeneous space.
The converse problem, which is to characterize reductive homogeneous spaces
G/H such that there exists a smooth section ¢: G/H — G satisfying (H1) and
(H2), is still open.

We apply the preceding notions to the sections &5 £ — G in the group
G=Hx E&. For x,y € £, we have

G5(x)5(y) = (exp (sf(x)), x)(exp (s£(¥)), y)
= (exp (sf(x)) exp (sf(¥)), x + exp (sf (x))y).
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Following (6.5), we take the projection of this product onto £ to define a family
of left loop structures (£, ¢5) by

(6.7) X o5y =X+ exp (sf(x)y

for x,y € £. Also, following (6.6), we define a corresponding family of maps
Iy ExXE— Hby

Is(x,y) = exp (s( — x — exp (sf(x))y)) exp (sf (x)) exp (s (¥))
for x,y € €.
Before considering homogeneity, we first note the following important prop-
erty.
PROPOSITION 6.2. The left loops (£,¢y) defined by (6.7) depend only on the

Leibniz algebra structure (€, ), and not on the choice of enveloping algebra (g, b, f).
In particular,

(6.8) X0y =x+exp(sA(x))y
forallx,y € £.

Proof. Indeed, for x,y € £, we have
exp (sf(x))y = exp (sA(x))y
using (2.13). This establishes the equivalence of (6.7) and (6.8). O

Next we turn to homogeneity. For each x € £, we have

(6.9) 65x) "1 = (exp (sf(x)),x) !
= (exp (—sf(x)), — exp(—sf(X))x).

Now

exp (—sf(x))

exp (—s Ad (exp (—sf(x)))f (x))
exp (sf (— exp( — sf(x))x)),

using (6.4). Applying this to (6.9), we have

65(x) 7" = 64(— exp(—sf (X))).
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Thus (H1) holds, and the left loops (&£, ¢y) satisfy the left inverse property. In
particular, the inverse of x in (&, ¢5) is given by

x' = —exp(—sA\(x))x.

The Adg(H)-invariance of £ implies that H normalizes 6,(E). More precisely,
forh € H,x €€,

(h,0)3,(x)(h",0) = (hexp (sf(x))h ', hx)

= (exp (sAd(h)f (x)), hx)
(exp (sf(hx), hx)
Gs(hx).

Thus (H2) holds, and so (£, <;) has the A; property. Summarizing, we have the
following.

PrOPOSITION 6.3. Let (£, ) be a Leibniz algebra, and for s # 0, let o5: € X E —
& be defined by

X o5y =X+ exp(sA(x))y

for x,y € E. Then (€, oy) is a homogeneous left loop for which the binary bracket
in the associated Lie-Yamaguti algebra is 2s times the skew-symmetrized Leibniz
product. In particular, the skew-symmetrized Leibniz product itself is recovered
when s =1/2.

In addition, (€, ¢,) is a geodesic left loop, which means that it agrees with the
natural local left loop structure defined in a neighborhood of 0 € £ by parallel
transport of geodesics along geodesics [6, 7]. We note that the loop structure ¢
was described in the case of Lie algebras by Kikkawa in Proposition 4 of [8].

Example 6.4. For the hemisemidirect product Leibniz algebra f xy V of
Example 2.2, built from the representation p: h — gl(V), the left loop structures
coming from Proposition 6.3 are

(£, %) 05 (n,y) = (£ +exp (ad(s§))(n), x + exp (p(sE))y).

Example 6.5. For the Courant bracket (1.1) on X(P) ® Q'(P), the left loop
structures coming from Proposition 6.3 are

(&1,01) o5 (§2,02) = (£, 0),
where

£=¢& +(exps&)) o,
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and
0= 0, + (expsé) 0 — (expst))*(€2)d /0 " (exp1&)) fydr.

7. Connections. The following classification theorem for G-invariant con-
nections on reductive homogeneous spaces is due to Nomizu ([18], Thm. 8.1).

ProposITION 7.1. Let M = G/H be a reductive homogeneous space with fixed
decomposition (6.1)—(6.2). There exists a one-to-one correspondence between the
set of all G-invariant connections on M and the set of all Adg(H)-equivariant
bilinear mappings cc: m X m — m.

The Adg(H)-equivariance of a: m X m — m means that Ad(h)a(X,Y) =
a(Ad(h)X, Ad(h)Y) for all h € H, X,Y € m. Equivalently, if one thinks of (m, o)
as a nonassociative algebra, Adg(H) is a subgroup of the automorphism group
Aut(m, o).

Let (m,[-,-1,{, -, }) be the Lie-Yamaguti algebra structure on m determined
by the decomposition (6.1)—(6.2); thus [+, -] = [-, ]m and {-, -, -} = [[-, -1y,], Where,
as before, the subscripts indicate projections. The zero bilinear mapping on m
corresponds to the canonical connection (of the 2nd kind) on M. This connection
is characterized by the following property: for each X € m, parallel displacement
of tangent vectors along the curve m(expX) is the same as the translation of
tangent vectors by the natural action of exp#X on M. The torsion and curvature
are

(7.1) TX,Y) = —[X,Y]
(7.2) RX,Y)Z = —{X,Y.,Z}
for X,Y,Z € m.

If M = G/H is a homogeneous left loop, Kikkawa showed that the canon-
ical connection can be constructed directly from the loop multiplication ([7],
Thm. 3.7). The torsion and curvature tensors then define a Lie-Yamaguti alge-
bra structure on m by (7.1)—(7.2), which is considered to be the tangent algebra
structure of the homogeneous loop. In case H = {1}, the canonical connection is
just Cartan’s (—)-connection on G, and the corresponding Lie-Yamaguti algebra
is the Lie algebra of G ([7], Ex. 3.3).

Now let (£,-) be a Leibniz algebra with enveloping Lie algebra g = h & &,
and homogeneous left loop structure (£, ;). We identify £ with the reductive
homogeneous space G/H. Following Kikkawa [7] (see also Miheev and Sabinin
[15]), one finds that the canonical connection is given by

(7.3) (VxY)(x) = DY(x)X(x) — sX(x) - Y(x)
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for x € £. Here X and Y are vector fields on £ which we are identifying with
mappings X,Y: &€ — €.

We observe that: (1) the reductive decompositions g = h & & give a one-
parameter deformation of the semidirect product g = h x &£; (2) the connection
(7.3) is a deformation of the standard flat, torsion-free connection on &; (3) the
loop structures ©; form a deformation of the addition operation on £.

8. Further questions. We recall from §4 that Courant’s algebra £ = X'(P)®
Q!'(P) is a Courant algebroid; i.e. it is also the C>°-module of sections of a
vector bundle over P, and the bracket satisfies identities which relate it to the
module structure. A simpler version of these identities defines Lie algebroids [14],
which are the infinitesimal objects associated to Lie groupoids. The sections of
a Lie algebroid form a Lie algebra which acts by derivations of C*°(P), and
the corresponding group of “bisections” of the groupoid acts by automorphisms,
i.e., by diffeomorphisms of P. It has been our hope to find a group-like object
associated to £ = X(P) @ Q!(P) which has something like an action on P,
and which can be considered as the sections of some kind of nonassociative
generalization of a groupoid (a loopoid?). So far, we have not succeeded. The
difficulty might be related to the absence of a natural adjoint representation of
a Lie algebroid on itself (as opposed to the adjoint representation of the Lie
algebra of sections). Perhaps a weak version of the adjoint representation, such
as is described in the appendices of [4], could be a model for what we seek in
the case of Courant algebroids.

Finally, we are left with the problem of constructing a group-like object
attached to a Leibniz algebra in such a way that the object is a group when
the Leibniz algebra is a Lie algebra. A possible approach to this problem is via
path spaces. At the end of chapter 1 in [3], Duistermaat and Kolk prove “Lie’s
third theorem” by beginning with a Lie algebra £ and defining a Banach Lie
group structure on the space P(£) of continuous paths v: [0,1] — £. When
the Lie algebra of this group is identified with P(€) itself, the integration map
I v +— fol ~(t)dt is found to be a homomorphism from P(£) to £. The closed
ideal ker/ integrates to a normal Lie subgroup Py(£) C P(E) which is shown
to be closed. The quotient P(E)/Py(E) is then a Lie group whose Lie algebra is
isomorphic to £. (Nothing comes for free. The proof that Py(E) is closed relies on
the same vanishing theorem for the second cohomology of a finite dimensional
simply connected Lie group which goes into other proofs of Lie IIl. Of course,
the result holds only when £ is finite dimensional, as it should.)

Cattaneo and Felder [1] have used a similar path space construction to con-
struct symplectic groupoids from Poisson manifolds. Their construction is a vari-
ation of the Duistermaat-Kolk construction applied to the cotangent bundle Lie
algebroid. Rather than using an associative product corresponding to pointwise
multiplication of group(oid) paths, they use concatenation of Lie algebroid paths,
which becomes a groupoid structure only after an equivalence relation is applied;



LEIBNIZ ALGEBRAS, COURANT ALGEBROIDS, AND MULTIPLICATIONS 549

the idea should be extendible to arbitrary Lie algebroids. Here, the resulting
groupoid may have singularities; only the local groupoid is smooth.

We have begun to investigate the Duistermaat-Kolk construction when (&, -)
is a Leibniz algebra. If we use the same formula as in [3], the multiplication on
P(E) is, remarkably, still associative, so we still have a Banach Lie group. On
the other hand, the kernel Py(€) of the integration map is no longer an ideal; in
fact it is not even a subalgebra unless £ is a Lie algebra. We can still recover the
skew-symmetrized Leibniz bracket by identifying £ with the constant paths, and
projecting the path space Lie bracket along Py(£), but since the latter is not a
Lie subalgebra, it is not clear how to pass the group product to a quotient space.

Although the kernel Py(£) is not a subalgebra, there is a different complement
of the constant paths which is a subalgebra, namely the kernel of the evaluation
map Ej;: v = 7(1/2) (a crude “midpoint approximation” to I). The kernel
kerE|/; is also the corresponding Lie subgroup of P(€). Although the adjoint
action of ker Ey/, does not leave the constant paths invariant, we can still use
projection along ker £/, to construct Lie algebra and loop structures on &. The
projected bracket turns out to be the antisymmetrized Leibniz product [ . ]|, while
the projected product is the same multiplication ¢/, which was obtained in §6
by a completely different method.

In a sense, then, we are back where we started. What we still need is a
construction which incorporates the best properties of I (which produces the
right group when & is a Lie algebra) and E;/, (whose kernel is a subalgebra
for any Leibniz algebra &), to reduce P(£) to manageable size. Our search will
continue.
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