On the structure of Bernstein algebras.

A finite-dimensional commutative algebra A over a field Φ, equipped with an algebra morphism $\omega: A \to \Phi$, is called a Bernstein algebra if, for all $x \in A$, $(x^2)^2 = \omega(x^2)x^2$.

Every Bernstein algebra has a nonzero idempotent. In characteristic $\neq 2$, if $e \in A$ is such an idempotent, A has the Peirce decomposition $A = \Phi \oplus U_e \oplus V_e$, where $U_e = \{x \in A | 2ex = x\}$, $V_e = \{x \in A | ex = 0\}$ and $\ker(\omega) = U_e \oplus V_e$. The Peirce components satisfy $U_eV_e \subseteq U_e$, $V_e^2 \subseteq U_e$, $U_e^2 \subseteq V_e$, and $U_eV_e^2 = 0$. The set of idempotents of A is given by $I(A) = \{e + u + u^2 | u \in U_e\}$. For two idempotents e and $f = e + u + u^2$, one has the following relations among the Peirce components: $U_f = \{x + 2xu | x \in U_e\}$ and $V_f = \{x - 2x(u + u^2) | x \in V_e\}$. The numbers $\dim U_e$ and $\dim V_e$ being invariants of A, the pair $(1 + \dim U_e, \dim V_e)$ is called the type of A.

In the first paper the authors define the direct product of Bernstein algebras and the usual notions of decomposable and indecomposable Bernstein algebra. The classical Krull-Schmidt theorem is then given.

A commutative algebra A is a Jordan algebra if $x^2(yx) = (x^2y)x$ for all $x \in A$. After recalling the characterization theorem for Bernstein-Jordan algebras, the authors define $J(A)$ as the smallest ideal of A such that $A/J(A)$ is a Jordan algebra. In this way they show that the correspondence $F: A \to A/J(A)$ is a functor preserving the direct product. A Bernstein algebra is said to be reduced if the ideal $U_0(A) = U_e \cap \text{Ann} U_e = 0$. It is known that $A/U_0(A)$ is a Bernstein-Jordan algebra. The authors show that $J(A) \subseteq U_0(A)$ and that $U_0(A/J_0(A)) = U_0(A)/U_0(A) = 0$. Then they establish a sharper version of the Krull-Schmidt theorem for reduced nuclear Bernstein algebras, where a Bernstein algebra is said to be nuclear if $A^2 = A$.

In the second paper the authors use these ideas to give a classification of reduced Bernstein algebras of dimension ≤ 5, and then derive, via several lemmas, a classification of Bernstein-Jordan algebras of dimension ≤ 5.

\textcopyright Copyright American Mathematical Society 1996, 2015

\textbf{Moussa Ouattara}