MR1647082 (2000f:17047) 17D92 17D99
Costa, R. [Costa, Roberto C. F.] (BR-SPL); Ikemoto, L. S. [Murakami, Lucia Ikemoto] (BR-SPL); Suazo, A.
On the multiplication algebra of a Bernstein algebra. (English summary)

The (associative) multiplication algebra $M(A)$ of a Bernstein algebra $A = K e + U + V$ is considered in this paper. It is proved that $M(A)$ has a Peirce decomposition $M(A) = K(2L_e^2 - L_e) + U + V_{11} + V_{01} + V_{10} + V_{00}$, where $2L_e^2 - L_e$ is an idempotent element in $M(A)$ and the other subspaces consist of multiplications that transform $U + V$ into zero, U into U and V into 0, U into V and V into 0, U into 0 and V into U, and U into 0 and V into V, respectively.

Well-known properties of Bernstein algebras, such as normality or exceptionality, can be characterized in terms of the above subspaces. So, it is proved that (1) A is exceptional if and only if $V_{01} = 0$, (2) A is normal if and only if $V_{10} = 0$, (3) $U(UV) = 0$ if and only if $V_{00} = 0$.

It is also proved that $\dim M(A) \geq \dim U + 2$ and the algebra A is normal if and only if $\dim M(A) = 2 + 2 \dim U + \dim U^2 - \dim L$, where L denotes the Jordan ideal of A, that is, the set of all elements of U that act by multiplication as 0 on an arbitrary element of U.

© Copyright American Mathematical Society 2000, 2015