Let K be an infinite field of characteristic $\neq 2$, A a finite-dimensional commutative algebra, $\omega : A \to K$ a nonzero homomorphism of algebras. (A, ω) is called a second order Bernstein algebra if $x^4 = \omega(x)x^3$, where the plenary powers x^n of x are defined by $x^1 = x$ and $x^{k+1} = x^k x^k$ for $k > 1$. If e is one nonzero idempotent element of A then $\omega(x) = 1$ and A has a Peirce decomposition $A = Ke + U + Z$, where $U = \{x \in \text{Ker} \omega | ex = \frac{1}{2}x\}$ and $Z = \{x \in \text{Ker} \omega | e(ex) = 0\}$.

In this paper the authors study the algebra of derivations $\text{Der}(A)$ of a second order Bernstein algebra A. They seek a bound for $\dim_K \text{Der}(A)$ in the case of a second order Bernstein algebra that satisfies $eZ \neq 0$, $(U + Z)^2 \subseteq Z$ or A is a power associative algebra. They prove that in a Jordan second order Bernstein algebra $\text{Der}(A) \neq 0$ and give a description of the ideal of inner derivations of A.

{For the entire collection see MR1751123 (2001a:17002)}

Moussa Ouattara

© Copyright American Mathematical Society 2001, 2015