Let K be a commutative ring, R a K-algebra and $T_n(R)$ the algebra of upper triangular matrices. To a graph Γ satisfying certain conditions, G. P. Barker has associated a subalgebra of $T_n(R)$ denoted $T_n(\Gamma, R)$. In this note the author considers automorphisms of Barker algebras $T_n(\Gamma, R)$ in the case when R is nonassociative. For a nonassociative algebra R of characteristic not 2, let $N(R) = \{a: (a, x, y) = (x, a, y) = (x, y, a) = 0\}$ for all $x, y \in R$ and $(a, b, c) = (ab)c - a(bc)$. Moreover, a J-automorphism of R is an automorphism of R equipped with the Jordan product.

It is proved that a J-automorphism ψ of a Barker algebra $A = T_n(\Gamma, R)$ satisfying $\psi(e_{ii}) = e_{ii}$ and $\psi(e_{ij}) \in N(A)$ is the composite of an automorphism induced from an automorphism of R and an inner automorphism based on conjugation by an invertible matrix in $N(A)$.

Finally, derivations of Barker algebras are considered.

{For the entire collection see MR1338148 (96a:17001)}

\textit{Søren Jøndrup}