The authors study automorphisms and derivations of commutative baric algebras \((A, \omega)\) over an infinite field \(K\) of characteristic not 2, 3 satisfying the identity
\[x^3 - (1 + \gamma)\omega(x)x^2 + \gamma\omega(x)x = 0 \]
with \(\gamma \neq \frac{1}{2}\). It is known that there exists an idempotent \(e\) and a Peirce decomposition \(A = Ke \oplus N_{1/2} \oplus N_0\). They prove that the automorphism group \(\text{Aut}(A, \omega)\) is a semidirect product of the stabilizer of \(e\) and the group of Peirce automorphisms acting transitively on the set of nonzero idempotents of \(A\). In fact, the main results can be obtained from the theory of Jordan algebras in the following way. Define a new multiplication on \(A\):
\[x \ast y = (1 - 2\gamma)^{-1}(xy - \gamma\omega(y)x - \gamma y\omega(x)) \]
one can easily check that \(A\) is a Jordan baric algebra with the same weight \(\omega\) and the same automorphism group.

"Alexander V. Ityakov"