The commutative [resp. noncommutative] duplicate $D(A)$ [resp. $D^*(A)$] was defined by I. M. H. Etherington [Proc. Edinburgh Math. Soc. (2) 6 (1941), 222–230; MR0005113 (3,103b)]. His definition was relative to a basis a_0, \cdots, a_n of A, and, e.g., $D(A)$ comprised the linear combinations over the field of A of the unordered pairs (a_i, a_j), with multiplication rule $(a_i, a_j)(a_k, a_l) = (a_ia_ja_k, a_ia_ja_l)$. H. Gonshor [ibid. (2) 17 (1970/71), 289–298; MR0302218 (46 #1371)] gave a basis-free definition, emphasising that the underlying space of $D(A)$ is $A \otimes A/I$, where I is the ideal generated by elements $\{x \otimes y - y \otimes x\}$. The present authors provide a rigorous definition of $D(A)$, exhibiting it as a semidirect product of A^2 by $N(A)$, the kernel of the canonical mapping $M: D(A) \rightarrow A^2$ given by $x \cdot y \rightarrow xy$, where $x \cdot y$ is the symmetric product. The arbitrariness of the basis definition is thus displaced onto the choice of a factor set in the extension from A^2 to $D(A)$ by $N(A)$. Since $N(A)$ is a trivial algebra, this makes it clear that the important properties of $D(A)$ are determined by A^2, not by A. The authors use this fact to sharpen some well-known theorems. For example, if A^2 is a basic algebra, or a Schafer generic algebra, then so is $D(A)$. In characteristic $\neq 2$, if A is a Bernstein algebra, $D(A)$ is a special train algebra with a specified train equation. The authors then ask under what conditions, if A belongs to some class C of algebras, does $D(A)$ also belong to C? They show that it does if A^2 belongs to C, and the function Q giving the factor set of the extension is a 2-cocycle of A^2 with coefficients in $N(A)$. This is applied to associative and Jordan algebras. Next, the relation between the derivation algebras of A^2 and those of $D(A)$ is studied. If $A = A^2$, they are isomorphic under wide conditions. The Bernstein case is studied in detail. Finally, there are sections on automorphisms, duplication as a functor, and on results that hold for noncommutative, but not for commutative duplicates.

P. Holgate

© Copyright American Mathematical Society 1992, 2015