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DERIVATIONS AND AUTOMORPHISMS OF NILPOTENT

EVOLUTION ALGEBRAS WITH MAXIMAL NILINDEX

FARRUKH MUKHAMEDOV, OTABEK KHAKIMOV, BAKHROM OMIROV,
AND IZZAT QARALLEH

Abstract. In this paper is devoted to nilpotent finite-dimensional evolution
algebras E with dimE

2 = dimE− 1. We described Lie algebras associated with
evolution algebras whose nilindex is maximal. Moreover, in terms of this Lie
algebra we fully construct nilpotent evolution algebra with maximal index of
nilpotency. Furthermore, this result allowed us fully characterize all local and
2-local derivations of the considered evolution algebras. All automorphisms and
local automorphisms of the nilpotent evolution algebras with maximal nilindex
are found.
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1. Introduction

Recently in [19] a new type of evolution algebra is introduced. This algebra
also describes some evolution laws of the genetics. The study of evolution algebras
constitutes a new subject both in algebra and the theory of dynamical systems.
There are many related open problems to promote further research in this subject
(for more details we refer to [18]).
We notice that evolution algebras are not defined by identities, and therefore

they do not form a variety of non-associative algebras, like Lie, Jordan or alterna-
tive algebras. Hence, the investigation of such kind of algebras needs a different
approach (see [2, 3, 6]).
In [6] the equivalence between nil, right nilpotent evolution algebras and evo-

lution algebras, which are defined by an upper triangular matrix of structural
constants, have been established. A classification of low dimensional evolution
algebras have been carried out in [4, 9, 11, 12]. However, a full classification of
nilpotent evolution algebras is far from its solution. Therefore, in the present pa-
per we are going to investigate certain properties of nilpotent evolution algebras
with maximal nilindex.
It is known that in the theory of non-associative algebras, particularly, in genetic

algebras, the Lie algebra of derivations of a given algebra is one of the important
1
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tools for studying its structure. There has been much work on the subject of
derivations of genetic algebras ( [7], [8], [10], [13]).
In fact, in [3] the authors investigate several properties of derivations of n-

dimensional complex evolution algebras, depending on the rank of the appropriate
matrices. In the present paper we explicitly describe the space of derivations of evo-
lution algebras with maximal nilindex which allows us to study further properties
of the evolution algebras. Moreover, we describe all local and 2-local derivations
of the considered algebra. We stress that the notions of local automorphism and
local derivation were introduced and investigated independently by Kadison [15]
and Larson and Sourour [16]. Later, in 1997, P. Šemrl [17] introduced the concepts
of 2-local automorphisms and 2-local derivations. The above papers gave rise to
series of works devoted to description of mappings which are close to automor-
phisms and derivations of C∗-algebras and operator algebras. For details and the
survey we refer to the paper [1].
The paper is organized as follows. In Section 2 we provide preliminary informa-

tion about evolution algebras. It is well known that derivations of non-associative
algebras form Lie algebra, so, in Section 3 we describe the Lie algebra associated
with evolution algebras whose nilindex is maximal. Moreover, in terms of this Lie
algebra we fully construct nilpotent evolution algebra with maximal index of nilpo-
tency. Furthermore, in Section 4 by means of result Section 3 we describe local
and 2-local derivations of the considered evolution algebras. In Section 5 we find
all automorphisms and local automorphisms of the nilpotent evolution algebras
with maximal nilindex.

2. Evolution algebras

Recall the definition of evolution algebras. Let E be a vector space over a field
K. In what follows, we always assume that K has characteristic zero. The vector
space E is called evolution algebra w.r.t. natural basis {e1, e2, ...} if a multiplication
rule · on E satisfies

ei · ej = 0, i 6= j,

ei · ei =
∑

k

aikek, i ≥ 1.

From the above definition it follows that evolution algebras are commutative
(therefore, flexible).
We denote by A = (aij)

n
i,j=1 the matrix of the structural constants of the finite-

dimensional evolution algebra E. Obviously, rankA = dim(E · E). Hence, for
finite-dimensional evolution algebra the rank of the matrix does not depend on
choice of natural basis.
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In what follows for convenience, we write uv instead u · v for any u,v ∈ E and
we shall write E2 instead E · E.
A linear map ψ : E1 → E2 is called an homomorphism of evolution algebras if

ψ(uv) = ψ(u)ψ(v) for any u,v ∈ E1. Moreover, if ψ is bijective, then it is called
an isomorphism. In this case, the last relation is denoted by E1

∼= E2.
For an evolution algebra E we introduce the following sequence, k ≥ 1

Ek =
k−1
∑

i=1

EiEk−i. (2.1)

Since E is commutative algebra we obtain

Ek =

⌊k/2⌋
∑

i=1

EiEk−i,

where ⌊x⌋ denotes the integer part of x.

Definition 2.1. An evolution algebra E is called nilpotent if there exists some
n ∈ N such that Em = 0. The smallest m such that Em = 0 is called the index of
nilpotency.

Theorem 2.2. [6] An n-dimensional evolution algebra E is nilpotent iff it admits
a natural basis such that the matrix of the structural constants corresponding to E

in this basis is represented in the form

Ã =



















0 ã12 ã13
... ã1n

0 0 ã23
... ã2n

...
...

...
. . .

...

0 0 0
... ãn−1,n

0 0 0
... 0



















Due to Theorem 2.2 any nilpotent evolution algebra E with dim(E2) = n − 1
has the following form:

e2i =







n
∑

j=i+1

aijej, i ≤ n− 1;

0, i = n.

(2.2)

where aij ∈ K and ai,i+1 6= 0 for any i < n.

Theorem 2.3. [5] Let E be a nilpotent evolution algebra. Then E has maximal
index of nilpotency 2n−1+1, if and only if the multiplication table of E is given by
(2.2).
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In what follows, we are going to work with nilpotent evolution algebras with
maximal index of nilpotency. Due to last theorem we only consider evolution
algebras with multiplication table given by (2.2).

Lemma 2.4. Let E and E′ be evolution algebras with basis {ei}
n
i=1 and {fi}

n
i=1

respectively, defined by

e2i =







ai,i+1ei+1 + ainen, i < n− 1;
an−1,nen, i = n− 1;
0, i = n.

f2i =

{

fi+1, i < n;
0, i = n.

If ai,i+1 6= 0 for every i < n, then E ∼= E′.

Proof. Let ai,i+1 6= 0 for every i < n. If n = 2 after changing the basis e1, e2 to
f1 = e1 and f2 = e21 we immediately get E′.
So. let us suppose n ≥ 3. Then the linear mapping ϕ : E → E′ defined by

ϕ :















f1 = e1
f2 = e21

fi+1 =
i−1
∏

k=1

a2
i−k

k,k+1e
2
i , 2 ≤ i < n

(2.3)

is an isomorphism from E to E′. �

3. Derivations

In this section, we consider derivations of nilpotent evolution algebras with max-
imal index of nilpotency.
Recall that derivation of an evolution algebra E is a linear mapping d : E → E

such that d(uv) = d(u)v + ud(v) for all u,v ∈ E.
We note that for any algebra, the space Der(E) of all derivations is a Lie algebra

w.r.t. the commutator multiplication:

[d1, d2] = d1d2 − d2d1, ∀d1, d2 ∈ Der(E).

Lemma 3.1. Let E1, E2 be two isomorphic evolution algebras. Then Der(E1) ∼=
Der(E2).

Proof. Let ϕ be an isomorphism from E1 to E2. It is easy to check that a linear
mapping ψ defined on Der(E1) by

ψ(d) = ϕ(d)ϕ−1

is an isomorphism of Lie algebras Der(E1) and Der(E2). �

For a given structural matrix A = (aij)
n
i,j≥1 of nilpotent evolution algebra E

with dim(E2) = n− 1 we denote

IA = {(i, j) : i+ 1 < j < n, aij 6= 0}. (3.1)
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Theorem 3.2. Let E be an evolution algebra with structural matrix A = (aij)
n
i,j≥1

in a natural basis {ei}
n
i=1. If E is a nilpotent with rankA = n−1, then the following

statements hold

(i) if IA 6= ∅ then

Der(E) =



































0 0 . . . 0 β

0 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 0
0 0 . . . 0 0













: β ∈ K























(ii) if IA = ∅ then

Der(E) =



































α 0 . . . 0 β

0 2α . . . 0 (2− 2n−1)αa1n
...

...
. . .

...
...

0 0 . . . 2n−2α (2n−2 − 2n−1)αan−2,n

0 0 . . . 0 2n−1α













: α, β ∈ K























Proof. The (i) and (ii) are easy to check for n = 2, 3. So, we consider only the
case n > 3. Let d be a derivation. We represent d in a matrix form in the basis
{ei}

n
i=1 as follows d(ei) =

∑n
j=1 dijej . Then, we have djie

2
i + dije

2
j = 0 for all

1 ≤ i < j ≤ n. Since e2i and e2j are linearly independent, then dij = dji = 0 for
any 1 ≤ i < j < n. If we take j = n, then taking into account that e2n = 0 from
dnie

2
i + dine

2
n = 0 one has dni = 0 for any i < n.

Hence, we have shown the following:

dij = 0, if i 6= j, i ≤ n, j < n (3.2)

On the other hand, we have d(e2i ) = 2diie
2
i for any i ≤ n. Then, for i = n−1 using

(2.2) we obtain d(an−1,nen) = 2dn−1,n−1an−1,nen. Due to an−1,n 6= 0 one gets

dnn = 2dn−1,n−1 (3.3)

Furthermore, assume that i < n− 1. Then, one finds

d(e2i ) = d

(

n
∑

j=i+1

aijej

)

=

n
∑

j=i+1

aijd(ej)

=

n−1
∑

j=i+1

aijdjjej +

n
∑

j=i+1

aijdjnen (3.4)
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On the other hand, from

d(e2i ) = 2diie
2
i = 2dii

n
∑

j=i+1

aijej .

with (3.4) one finds

2dii = di+1,i+1, 1 ≤ i < n− 1 (3.5)

aijdjj = 2aijdii, i+ 2 ≤ j ≤ n− 1 (3.6)

n
∑

j=i+1

aijdjn = 2diiain, 1 ≤ i < n− 1. (3.7)

From (3.5),(3.6) we can easily derive

djj = 2j−1d11, 2 ≤ j ≤ n− 1 (3.8)

aijd11 = 0, i+ 2 ≤ j ≤ n− 1. (3.9)

Now we consider (3.7). We claim:

di+1,n =
(2i − 2n−1)d11ain

ai,i+1

, 1 ≤ i ≤ n− 2. (3.10)

Let us prove it by induction. Let i = n− 2. Then, from (3.7) one gets

an−2,n−1dn−1,n = (2dn−2,n−2 − dnn)an−2,n.

Noting an−2,n−1 6= 0 and plugging (3.3) and (3.8) into the last one, we obtain

dn−1,n =
(2n−2 − 2n−1)d11an−2,n

an−2,n−1

. (3.11)

Now assume that (3.10) holds for any 2 ≤ i ≤ n − 2. Then from (3.7) for any
2 ≤ i ≤ n− 2 one finds

ai−1,idi,n = (2di−1,i−1 − dnn)ai−1,n −
n−1
∑

j=i+1

ai−1,jdj,n

= (2i−1 − 2n−1)ai−1,n −
n−1
∑

j=i+1

ai−1,jdj,n

= (2i−1 − 2n−1)ai−1,n −
n−1
∑

j=i+1

ai−1,j
(2j−1 − 2n−1)d11aj−1,n

aj−1,j
. (3.12)
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Due to (3.6) we infer ai−1,jd11 = 0 for any 2 ≤ i < j < n. Keeping this fact and
noting ai−1,i 6= 0 from (3.12) one finds

di,n =
(2i−1 − 2n−1)ai−1,n

ai−1,i

, 1 < i < n− 1.

This equality together with (3.11) implies (3.10) for any 1 ≤ i ≤ n− 2.
So, from (3.2),(3.3),(3.8),(3.9) and (3.10) we conclude that d is a derivation of

evolution algebra given by (2.2) if and only if

dij = dni = 0, 1 ≤ i 6= j ≤ n− 1; (3.13)

dii = 2i−1d11, 2 ≤ i ≤ n; (3.14)

aijd11 = 0, i+ 2 ≤ j ≤ n− 1; (3.15)

di+1,n = (2i − 2n−1)d11ain, 1 ≤ i ≤ n− 2. (3.16)

Case IA 6= ∅. In this case, we have ai0j0 6= 0 for some pair (i0, j0) satisfying
i0+2 ≤ j0 < n. Then, from (3.15) one finds d11 = 0. Plugging this fact into (3.14)
and (3.16) we obtain

Der(E) =



































0 0 . . . 0 β

0 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 0
0 0 . . . 0 0













: β ∈ K























.

Case IA = ∅. In this case (3.15) is true for any d11 ∈ K. So, from (3.13),(3.14)
and (3.16) we conclude that

Der(E) =



































α 0 . . . 0 β

0 2α . . . 0 (2− 2n−1)αa1n
...

...
. . .

...
...

0 0 . . . 2n−2α (2n−2 − 2n−1)αan−2,n

0 0 . . . 0 2n−1α













: α, β ∈ K























.

This completes the proof. �

Remark 3.3. From the proved theorem we infer that 1 ≤ dimDer(E) ≤ 2. This
kind of result could be proved using Jacobson [14]. But the advantage of Theorem
3.2 is that it fully describes structure of the derivations in the natural basis.

Now it is natural to consider the following question: if the Der(E) is given is it
possible to reconstruct a nilpotent evolution algebra E. To solve this question we
need an auxiliary fact.
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Lemma 3.4. Let E be an evolution algebra with a natural basis {ek}
n
k=1 and mul-

tiplaction table:

e2i =







ai,i+1ei+1 + ainen, i < n− 1
an−1,nen, i = n− 1
0, i = n.

(3.17)

If dim(E2) < n− 1 then the Lie algebra Der(E) has dimension more than two.

Proof. For the evolution algebra (3.17) let us denote

I = {1, 2, . . . , n− 1},
I1 = {i ∈ I : ai,i+1 6= 0},
I2 = {i ∈ I : ai,i+1 = 0, ain 6= 0},
I3 = {i ∈ I : ai,i+1 = 0, ain = 0}.

It is clear that I = I1 ∪ I2 ∪ I3 and Ii ∩ Ij = ∅ for i 6= j. We note that n− 1 6∈ I2.
Since dim(E2) < n− 1 we have I2 ∪ I3 6= ∅. Take an arbitrary derivation d of the
algebra E. Then, due to d(e2i ) = 2diie

2
i for all i ∈ I, we obtain

ai,i+1di+1,i+1 + aindn,i+1 = 2ai,i+1dii, i < n− 1
ai,i+1di+1,n + aindnn = 2aindii, i < n− 1
ai,i+1di+1,k + aindnk = 0, i < n− 1, k 6∈ {i+ 1, n}
an−1,ndnn = 2an−1,ndn−1,n−1

an−1,ndnk = 0, k < n.

(3.18)

Furthermore, from d(eiej) = 0 for all i 6= j one has

ai,i+1dji = 0, i < n− 1, j < n,

aindji + ajndij = 0, i, j ∈ I

dni = 0, i 6∈ I3

(3.19)

Case I1 = ∅. In this case from (3.18) and (3.19) one gets

dn,i+1 = 0, i ∈ I2
dnn = 2dii, i ∈ I2
dnk = 0, i ∈ I2, k 6∈ {i+ 1, n}
dji = −

ajn
ain
dij , i, j ∈ I2, i 6= j

dji = 0, i ∈ I2, j ∈ I3
dni = 0, i ∈ I2.

According to n − 1 6∈ I2, we infer that there exist at least three free variables:
d1n, dnn and dn−1,n−1, which means that dim(Der(E)) ≥ 3.
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Case I1 6= ∅, I3 = ∅. In this case, we have I2 6= ∅. We note that n − 1 ∈ I1,
i.e., an−1,n 6= 0. Then, from (3.18),(3.19) for all i ∈ I1 one gets

di+1,i+1 = 2dii, i ∈ I1
di+1,n = ain

ai,i+1
(2dii − dnn), i ∈ I1 \ {n− 1}

di+1,k = 0, i ∈ I1, ∀k 6∈ {i+ 1, n}
dji = 0, i ∈ I1 \ {n− 1}, j ∈ I, j 6= i

ajndij + aindji = 0, i, j ∈ I, j 6= i

dnn = 2dii, i ∈ I2

From last ones we conclude that again one can find at least three values d1n, dnn
and di0+1,n for some i0 ∈ I2, which are free variables, hence, dim(Der(E)) ≥ 3.
Case I1 6= ∅, I3 6= ∅. First, we suppose that n− 1 ∈ I1, i.e., an−1,n 6= 0. Then

from (3.18),(3.19) we obtain

di+1,i+1 = 2dii, i ∈ I1
di+1,n = ain

ai,i+1
(2dii − dnn), i ∈ I1 \ {n− 1}

di+1,k = 0, i ∈ I1, k 6∈ {i+ 1, n}
dji = 0, i ∈ I1 \ {n− 1}, j ∈ I, i 6= j

aindji + ajndij = 0, i, j ∈ I, i 6= j

dnn = 2dii, i ∈ I2

From last ones we conclude that there exist at least three values d1n, dnn and
di0+1,n for some i0 ∈ I3, which are free variables. Hence, dim(Der(E)) ≥ 3.
Let us assume that n − 1 ∈ I3, i.e., an−1,n = 0. Then from (3.18),(3.19) we

obtain

di+1,i+1 = 2dii −
ain

ai,i+1
dn,i+1, i ∈ I1

di+1,n = ain
ai,i+1

(2dii − dnn), i ∈ I1

di+1,k = − ain
ai,i+1

dnk, i ∈ I1, k 6∈ {i+ 1, n}

dji = 0, i ∈ I1, j ∈ I, i 6= j

aindji + ajndij = 0, i, j ∈ I, i 6= j

dn,i+1 = 0, i ∈ I2
dnk = 0, k < n, k − 1 6∈ I2
dni = 0, i 6∈ I3
dnn = 2dii, i ∈ I2

If I2 = ∅ then we have at least three values d1n, d11 and dnn which are independent.
If I2 6= ∅ then we have at least three values d1n, dnn and di0+1,n for i0 ∈ I2 which
are independent. �

Now we are ready to formulate result related to the posed question.
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Theorem 3.5. Let E be an evolution algebra with a natural basis {ei}
n
i=1. Assume

that

Der(E) =



































α 0 . . . 0 β

0 2α . . . 0 αd1
...

...
. . .

...
...

0 0 . . . 2n−2α αdn−2

0 0 . . . 0 2n−1α













: α, β ∈ K























(3.20)

where {di}
n−2
i=1 are fixed numbers. Then E is a nilpotent evolution algebra with

maximal index of nilpotency. Moreover, its multiplication table is given by

e2i =







ai,i+1ei+1 +
ai,i+1di+1

2i−2n−1 en, i < n− 2
an−1,nen, i = n− 1
0, i = n

(3.21)

Here ai,i+1 6= 0 for every i < n.

Proof. Let E be an evolution algebra with structural matrix A = (aij)
n
i,j≥1. Sup-

pose that Der(E) is given by (3.20). Let us fix an arbitrary derivation d ∈ Der(E)
such that d11 6= 0. Then from d(e2i ) = 2diie

2
i , we have

n−1
∑

j=1

aijdjjej +
n
∑

j=1

aijdjnen = 2dii

n
∑

j=1

aijej .

From the last equality for any i ≤ n one finds

aijdjj = 2aijdii, i 6= j < n

n
∑

k=1

aikdkn = 2aindii
(3.22)

Since djj = 2j−idii from the first equality of (3.22) one gets aijdii = 0. Noting
d11 6= 0 we have

aij = 0, ∀j 6∈ {i+ 1, n} (3.23)

Rewrite the second equality of (3.22) for i = n as

n
∑

k=1

ankdkn = 2anndnn. (3.24)

Putting (3.23) into (3.24) we find ann = 0.
So, we have shown that a multiplication table of E is given by

e2i =







ai,i+1ei+1 + ainen, i < n− 1
an−1,nen, i = n− 1
0, i = n.

(3.25)
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It is clear that dim(Der(E)) = 2, then due to Lemma 3.4 one has ai,i+1 6= 0 for
any i < n. Applying this fact, Theorem 3.2 in the second equality of (3.22) one
gets

ain =
ai,i+1di+1,n

2dii − dnn
=

ai,i+1di

2i − 2n−1
, i < n− 1

Finally putting the last one into (3.25) we obtain (3.21).
This completes the proof. �

Due to Lemmas 2.4 and 3.1 from the last theorem we obtain the following results:

Corollary 3.6. If the derivation algebra of evolution algebras is given by (3.20),
then these evolution algebras are isomorphic.

Corollary 3.7. The Lie algebras

E =





















































α 0
... 0 β

0 2α
... 0 0

...
...

. . .
...

...

0 0
... 2n−2α 0

0 0
... 0 2n−1α



















: α, β ∈ K



































and

E′ =





















































α 0
... 0 β

0 2α
... 0 αd1

...
...

. . .
...

...

0 0
... 2n−2α αdn−2

0 0
... 0 2n−1α



















: α, β ∈ K



































are isomorphic for any di ∈ K, i = 1, n− 2.

Remark 3.8. We stress that isomorphisms of Lie algebras does not imply isomor-
phism of the corresponding evolution algebras (see Example 1).

4. Local and 2-local derivations for evolution algebras

The results of section 3 will allow us to describe local and 2-local derivations of
nilpotent evolution algebra. In this section, we want to fully describe local and 2-
local derivations of nilpotent evolution algebras with maximal index of nilpotency.
Recall that a linear mapping ∆ on E is called local derivation if for every u ∈ E

there is a derivation du such that ∆(u) = du(u). A mapping (not necessary linear)
D : E → E is called 2-local derivation of algebra E if for every u,v ∈ E there
exists a derivation du,v of E such that D(u) = du,v(u) and D(v) = du,v(v).
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Therefore, it is natural to find all local derivations of E.

Theorem 4.1. Let E be an n-dimensional nilpotent evolution algebra with maximal
index of nilpotency. Then the following statements hold:

(i) If n = 2, then the space of all local derivations has the following form:
{(

α β

0 2α

)

,

(

α β

0 0

)

: α, β ∈ K

}

(4.1)

(ii) If n > 2 then every local derivation of E is a derivation.

Proof. (i) Let n = 2. Then due to Lemma 2.4 we may assume that an evolution
algebra E is given by e21 = e2 and e22 = 0. Take an arbitrary linear map ∆ on E,
i.e.,

∆(u) = (∆11u1 +∆21u2)e1 + (∆12u1 +∆22u2)e2, ∀u = u1e1 + u2e2.

If ∆ is local derivation then for any u there exist αu and βu such that

∆11u1 +∆21u2 = αuu1
∆12u1 +∆22u2 = βuu1 + 2αuu2

From the first equation we get ∆21 = 0. If we take u such that u1 = 0 then from
the second equation we immediately find ∆22 ∈ {0, 2∆11}. It is easy to that ∆ is
a derivation of E if ∆22 = 2∆11.
Suppose ∆22 = 0 and ∆11 6= 0. Then for every u we can find derivation du

satisfying ∆(u) = du(u) as follows

du =



















(

∆11 ∆12 −
2∆11u2

u1

0 2∆11

)

, if u1 6= 0,

(

0 0
0 0

)

, if u1 = 0.

This means that a linear mapping defined by

∆ =

(

α β

0 2α

)

, α, β ∈ K (4.2)

is a local derivation of E.
Finally, since every derivation of algebra E is local derivation and due to (4.2)

one gets (4.1)
(ii) Let ∆ be a non zero local derivation given by matrix (∆ij)

n
i,j≥1. Assume that

IA 6= ∅. Then due to ∆(ei) = dei(ei) for any i ≤ n we immediately get ∆1n = βe1
and ∆ij = 0 otherwise. It yields that ∆ ∈ Der(E).
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Suppose that IA = ∅. Let us establish that ∆ ∈ Der(E) for any local derivation
∆. Due to Lemmas 2.4 and 3.1 in order to show every local derivation can be
derivation it is enough to check only for evolution algebra E′ (see Lemma 2.4).
Since ∆(ei) = dei(ei) for any i ≤ n we can easily find

∆ii = d
(ei)
ii , i ≤ n

∆1n = d
(e1)
1n

∆ij = 0, otherwise

(4.3)

Taking u =
∑n−1

k=1 ek we obtain

∆ii = 2i−1∆11, i < n (4.4)

Consider v = e2 + en. Then there exists a derivation dv such that ∆(v) = dv(v).
Due to the assumption (ii) of Theorem 3.2 we have

∆22e2 +∆nnen = 2d
(v)
11 e2 + 2n−1d

(v)
11 en.

This implies that

2d
(v)
11 = ∆22

2n−1d
(v)
11 = ∆nn

Plugging last ones into (4.4) we obtain ∆ii = 2i−1∆11. Then using (4.3) one finds

∆ii = d
(e1)
ii , i ≤ n

∆1n = d
(e1)
1n

∆ij = 0, otherwise

Hence, due to Theorem 3.2 we conclude that ∆ is a derivation.
This completes the proof. �

Theorem 4.2. Every 2-local derivation of nilpotent evolution algebras with maxi-
mal index of nilpotency is a derivation.

Proof. Let D be a non zero 2-local derivation of E. Denote Γ = {u ∈ E : u1 6= 0}.
Case IA = ∅. By definition there exist functionals αu,v and βu,v such that

D(u) =
n−1
∑

k=1

2k−1αu,vukek +

(

βu,vu1 + 2n−1αu,vun + αu,v

n−2
∑

k=1

dkuk+1

)

en

D(v) =
n−1
∑

k=1

2k−1αu,vvkek +

(

βu,vv1 + 2n−1αu,vvn + αu,v

n−2
∑

k=1

dkvk+1

)

en

(4.5)

where u =
∑n

k=1 ukek and v =
∑n

k=1 vkek.



14FARRUKHMUKHAMEDOV,OTABEKKHAKIMOV, BAKHROMOMIROV, AND IZZATQARALLEH

Take an arbitrary non-zero u ∈ E. Then, for any v,v′ ∈ E from the last ones
we find

n−1
∑

k=1

2k−1αu,vukek +

(

βu,vu1 + 2n−1αu,vun + αu,v

n−2
∑

k=1

dkuk+1

)

en

=
n−1
∑

k=1

2k−1αu,v′ukek +

(

βu,v′u1 + 2n−1αu,v′un + αu,v′

n−2
∑

k=1

dkuk+1

)

en

which is equivalent to

αu,vuk = αu,v′uk, k = 1, n− 1

βu,vu1 + 2n−1αu,vun + αu,v

n−2
∑

k=1

dkuk+1

= βu,v′u1 + 2n−1αu,v′un + αu,v′

n−2
∑

k=1

dkuk+1

Since, u 6= 0 we get αu,v = αu,v′ for any v,v′ ∈ E. This means that

αu,v =: αu (4.6)

Moreover, if u ∈ Γ then one finds

βu,v =: βu (4.7)

Taking (4.6),(4.7) into (4.5) we conclude that mapping D can be defined as follows

D(u) =



















n
∑

k=1

2k−1αuukek +

(

βuu1 + αu

n−2
∑

k=1

dkuk+1

)

en, if u ∈ Γ

n−1
∑

k=2

2k−1αuukek +

(

2u−1un +
n−2
∑

k=1

dkuk+1

)

αuen, if u 6∈ Γ

(4.8)

Then for any u′,v′ ∈ E we can find derivation d given by

dij =















2i−1α, if i = j

β, if i = 1, j = n

αdi−1, if 1 < i < n, j = n

0, otherwise

such that D(u′) = d(u′), D(v′) = d(v′). Then from (4.8) one gets

αu′ = αv′ = α for any u′,v′ ∈ E. (4.9)

This means that functional αu is a constant.
To complete the proof we show βu = const for any u ∈ E. Let us consider non-

zero points u,v ∈ Γ. Using the first equality of (4.8) and noting (4.9) by definition
of 2-local derivation we get βu = βv. This means that βu does not depend u, i.e.,
βu = β for any u ∈ Γ. Putting this fact and (4.9) into (4.8) yields that D has the
following form
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D(u) =

n−1
∑

k=1

2k−1αukek +

(

βu1 + 2n−1αun + α

n−2
∑

k=1

dkuk+1

)

en.

Due to Theorem 3.2 (ii) D is a derivation.
Case IA 6= ∅. By definition there exist functionals αu,v and βu,v such that

D(u) = βu,vu1en

D(v) = βu,vv1en
(4.10)

Take arbitrary u ∈ Γ. Then from the first equation of (4.10) we obtain βu,v =
βu,v′ for any v,v′ ∈ E. This means that βu,v does not depend on v, i.e., βu,v =
βu, ∀u ∈ Γ. On the other hand, from the second equation of (4.10) we get
βu,v = βv for any v ∈ Γ. These facts yield that βu =: β for any u,v ∈ E.
Consequently, we have

D(u) = βu1e1.

Due to Theorem 3.2 (i) we obtain D ∈ Der(E).
�

5. Automorphisms and local automorphisms

Recall that by an automorphism of an evolution algebra E we mean an isomor-
phism of E into itself. The set of all automorphisms is denoted by Aut(E). It is
known that Aut(E) is a group. In this section we are going to describe Aut(E) of
nilpotent evolution algebras with maximal index of nilpotency.
If IA 6= ∅, then by η we denote the largest common divisor of all numbers 2j−1−2i

where (i, j) ∈ IA, i.e.,

η = LCD(i,j)∈IA(2
j−1 − 2i) (5.1)

Theorem 5.1. Let E be an n-dimensional nilpotent evolution algebra with maximal
index of nilpotency and A = (aij)

n
i,j=1 be its structural matrix in a natural basis

{ei}
n
i=1. Then the following statements hold:

(i) if IA 6= ∅ then

Aut(E) =









































α 0 . . . 0 β

0 α2 . . . 0 ϕ2n
...

...
. . .

...
...

0 0 . . . α2n−2

ϕn−1,n

0 0 . . . 0 α2n−1















: α, β ∈ K, αη = 1


























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where η is defined as (5.1), and ϕin is given by the following recurrence
formula

ϕn−1,n = an−2,n(α
2n−2

− α2n−1

),

ϕn−i,n = an−i−1,n(α
2n−i−1

− α2n−1

)−
i−1
∑

k=1

an−i−1,n−kϕn−k,n, 1 < i < n− 1.

(ii) if IA = ∅ then

Aut(E) =









































α 0 . . . 0 β

0 α2 . . . 0 a1,n(α
2 − α2n−1

)
...

...
. . .

...
...

0 0 . . . α2n−2

an−2,n(α
2n−2

− α2n−1

)

0 0 . . . 0 α2n−1















: α, β ∈ K, α 6= 0



























Proof. Let ϕ be a linear mapping on E. Now we represent ϕ on the basis elements
as follows:

ϕ(ei) =
n
∑

j=1

ϕijej , 1 ≤ i ≤ n.

We want to describe matrix (ϕij)
n
i,j=1 when ϕ is an automorphism of E. Suppose

that ϕ is an automorphism. Then we have

ϕ(ei)ϕ(ej) = 0, i 6= j

ϕ(e2i ) = [ϕ(ei)]
2, 1 ≤ i ≤ n

which is equivalent to the followings:

n−1
∑

k=1

ϕikϕjke
2
k = 0, i 6= j (5.2)

n
∑

j=i+1

aij

n
∑

k=1

ϕjkek =

n−1
∑

k=1

ϕ2
ike

2
k, i ≤ n− 2 (5.3)

an−1,n(
n
∑

k=1

ϕnkek) =
n−1
∑

k=1

ϕ2
n−1,ke

2
k, (5.4)

n−1
∑

k=1

ϕ2
nke

2
k = 0. (5.5)

The linear independence of {e21, e
2
2, · · · , e

2
n−1} together with (5.2),(5.5) implies
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ϕikϕjk = 0, i 6= j, k ≤ n− 1 (5.6)

ϕnk = 0, k ≤ n− 1 (5.7)

We notice that ϕnn 6= 0. Now plugging (5.7) into (5.4) one finds

ϕnn = ϕ2
n−1,n−1

ϕn−1,k = 0, k ≤ n− 2
(5.8)

Inserting e2l =
∑n

j=l+1 aljej , l ≤ n− 1 into (5.3) we obtain

n
∑

j=i+1

aijϕjl =
l−1
∑

j=1

ajlϕ
2
ij, i ≤ n− 2, l ≥ 2 (5.9)

n
∑

j=i+1

aijϕj1 = 0, i ≤ n− 2 (5.10)

We claim:
ϕil = 0, l + 1 ≤ i

ϕj+1,j+1 = ϕ2
jj, j ≤ n− 1

(5.11)

Let us prove the last relations by induction. Due to (5.7),(5.8) the first step is
satisfied. Take an arbitrary i0 > 1 and assume that for any i > i0 assertion (5.11)
holds.
We must prove that ϕi0l = 0 for any l ≤ i0 − 1 and ϕi0i0 = ϕ2

i0−1,i0−1. Rewriting
(5.9) for i = i0 > 1 one finds

n
∑

j=i0+1

ai0jϕjl =
l−1
∑

j=1

ajlϕ
2
i0j
, l ≥ 2 (5.12)

If j > i0 then due to the assumption we have ϕjl = 0 for any l ≤ i0. So, for any
l ≤ i0 the left side of (5.12) equals to zero. Hence,

l−1
∑

j=1

ϕ2
i0j
ajl = 0, 2 ≤ l ≤ i0 (5.13)

If l = 2 then form (5.13) we obtain a12ϕi01 = 0. Noting a12 6= 0 one has ϕi0,1 = 0.
Suppose that ϕi0,l = 0 for every l < l0 ≤ i0. Then this fact together with (5.13)
for l = l0 implies al0−1,l0ϕi0,l0 = 0. From al0−1,l0 6= 0 it follows ϕi0,l0 = 0. Thus, we
have shown that ϕi0,l = 0 for every l ≤ i0. From the arbitraryness of i0 > 1 we
conclude that

ϕil = 0, l + 1 < i (5.14)
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On the other hand, rewriting (5.9) for l = i+ 1 and keeping in mind (5.14) one
gets

ai,i+1ϕi+1,i+1 = ai,i+1ϕ
2
ii, i ≤ n− 2.

Due to ai,i+1 6= 0, the last equality yields ϕi+1,i+1 = ϕ2
ii for every i ≤ n − 2. This

together with (5.8) implies

ϕii = ϕ2i−1

11 6= 0, i ≤ n. (5.15)

Hence, from (5.14) and (5.15) it follows (5.11).
Plugging (5.14) into (5.6) we have

ϕij = 0, i < j < n. (5.16)

Let us consider (5.9) for l > i+ 1. Then for every i ≤ n− 2 we obtain

ailϕll = ailϕ
2
ii, i+ 1 < l < n (5.17)

n
∑

j=i+1

aijϕjn = ainϕ
2
ii, l = n. (5.18)

From (5.18) with (5.15) we get a recurrence formula for ϕi,n as follows:

ϕn−1,n = an−2,n(ϕ
2n−2

11 − ϕ2n−1

11 ),

ϕn−i,n = an−i−1,n(ϕ
2n−i−1

11 − ϕ2n−1

11 )−
i−1
∑

k=1

an−i−1,n−kϕn−k,n, 1 < i < n− 1.

(5.19)
Hence, we infer that ϕ is an automorphism of evolution algebra (2.2) if and only

if the followings hold:

ϕij = 0, i 6= j, j < n

ϕii = ϕ2i−1

11 , i ≤ n

ailϕll = ailϕ
2
ii, i+ 1 < l < n

ϕn−1,n = an−2,n(ϕ
2n−2

11 − ϕ2n−1

11 ),

ϕn−i,n = an−i−1,n(ϕ
2n−i−1

11 − ϕ2n−1

11 )−
i−1
∑

k=1

an−i−1,n−kϕn−k,n, 1 < i < n− 1.

(5.20)
Now let us consider two cases w.r.t.IA.
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Case IA = ∅. For the sake of convenience, we denote ϕ11 = α 6= 0. Then from
(5.20) one gets

ϕij = ϕji = 0, i 6= j, j < n

ϕii = α2i−1

, i ≤ n

ϕ1n = β,

ϕin = ai−1,n(α
2i−1

− α2n−1

), 1 < i < n

where β ∈ K, which yields the assertion.
Case IA 6= ∅. Then for the automorphism ϕ we have

ϕij = ϕji = 0, i 6= j, j < n

ϕii = α2i−1

, 1 ≤ i ≤ n

α2l−1−2i = 1, (i, l) ∈ IA

ϕ1n = β,

ϕn−1,n = an−2,n(α
2n−2

− α2n−1

),

ϕn−i,n = an−i−1,n(ϕ
2n−i−1

11 − ϕ2n−1

11 )−
i−1
∑

k=1

an−i−1,n−kϕn−k,n, 1 < i < n− 1.

where α, β ∈ K and αη = 1, which implies the assertion.
The proof is complete. �

Corollary 5.2. Let IA 6= ∅ and η = 2. Then ϕ is an automorphism of the evolution
algebra (2.2) iff it has the following form:

ϕ =



















α 0 0
... 0 β

0 1 0
... 0 0

...
...

...
. . . 0 0

0 0 0
... 1 0

0 0 0
... 0 1



















(5.21)

where β ∈ K and α2 = 1.

Example 1. Now we show the existence of two nilpotent evolution algebras with
dim(E2) = n − 1 such that they are not isomorphic to each other, and they have
the same group of automorphisms and the Lie algebra of derivations.
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Let n ≥ 5 and consider the evolution algebras E1 and E2 given by

E2
1 :







e21 = e2 + e3 + e4,

e2i = ei+1, 1 < i < n,

e2n = 0

E2
2 :







f21 = f2 + f3,

f2i = fi+1, 1 < i < n,

f2n = 0

By A1 and A2 we denote the matrices of structural constants of these algebras, re-
spectively. Then, it is easy to see that IA1

= {(1, 3), (1, 4)} and IA2
= {(1, 3)}. Due

to Corollary 5.2 we have Aut(E1) = Aut(E2). Moreover, according to Theorem
3.2 (i) one can find Der(E1) = Der(E2).
Let us establish that they are not isomorphic. Assume that E1

∼= E2 and ξ =
(ξij)

n
i,j≥1 be an isomorphism. Then it is easy to check that

fi = ξiiei + ξinen, i ≥ 2

Due to f1fi = 0 for any i ≥ 2 one has f1 = ξ11e1+ ξ1nen. From f21 = f2+ f3 we find

ξ211 = ξ22
ξ211 = ξ33
ξ211 = 0
ξ2n = −ξ3n

This contradicts to det(ξ) 6= 0. So, we infer that E1 6∼= E2.

5.3. Local automorphisms of Evolution algebras. In previous section we
have been able to find the set of all automorphisms of evolution algebra (2.2).
Now we will show that every local automorphism is automorphism if evolution
algebra is defined by (2.2) with n > 2. Recall that a linear mapping ψ from E to
E is called local automorphism if for every u ∈ E there exists an automorphism
ϕu ∈ Aut(E) such that ψ(u) = ϕu(u).

Theorem 5.4. Let E be an n-dimensional nilpotent evolution algebra with maximal
index of nilpotency. Then the following statements hold:

(i) If n = 2, then the set of all local automorphisms has the following form:
{(

α β

0 γ2

)

: α, β, γ ∈ K, αγ 6= 0

}

(5.22)

(ii) If n > 2 then every local automorphism of E is an automorphism.
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Proof. (i) Let n = 2. Then due to Lemma 2.4 we may assume that an evolution
algebra E is given by e21 = e2 and e22 = 0. Take an arbitrary linear map ψ on E,
i.e.,

ψ(u) = (ψ11u1 + ψ21u2)e1 + (ψ12u1 + ψ22u2)e2, ∀u = u1e1 + u2e2.

If ψ is local automorphism then for any u there exist αu and βu such that

ψ11u1 + ψ21u2 = αuu1
ψ12u1 + ψ22u2 = βuu1 + α2

u
u2

From the first equation we get ψ21 = 0. If we take u such that u1 = 0 then from
the second equation we immediately find ψ22 = α2

u
. It yields that if ψ is local

automorphism it has the following form
(

α β

0 γ2

)

(5.23)

where αγ 6= 0.
Let us show that (5.23) is indeed local automorphism of (2.2). In fact, for any

u ∈ E we may take an automorphism ϕu of (2.2) as follows:

ϕu =















(

α β + (γ2−α2)u2

u1

0 α2

)

, if u1 6= 0
(

γ 0
0 γ2

)

, if u1 = 0

From this, one can check that ψ(u) = ϕu(u).
(ii) Let n > 2. Let ψ be a local automorphism for (2.2). By definition of local

automorphism, for every u ∈ E we have ψ(u) = ϕu(u), where ϕu is automorphism.
Then Theorem 5.1 implies ψij = 0 for every i 6= j, j < n. On the other hand,
taking u = ei, i ≤ n, we conclude that the local automorphism ψ has the following
form:

ψ =



















αe1
0 0

... 0 βe1

0 α2
e2

0
... 0 ϕ

(e2)
2n

...
...

...
. . .

...
...

0 0 0
... α2n−2

en−1
ϕ
(en−1)
n−1,n

0 0 0
... 0 α2n−1

en



















Now we take arbitrary v =
∑n

i=1 viei. Then from ψ(v) = ϕv(v) one gets

α2i−1

ei
vi = α2i−1

v
vi, i < n (5.24)

βe1v1 + α2n−1

en
vn +

n−1
∑

k=2

ϕ
(ek)
kn vk = βvv1 + α2n−1

v
vn +

n−1
∑

k=2

ϕ
(v)
kn vk (5.25)
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From (5.24) we find

α2i−1

ei
= α2i−1

e1
, i < n (5.26)

Consequently, ϕ
(ek)
kn = ϕ

(e1)
kn for any k < n. Keeping in mind this fact, from (5.25)

one gets

βe1v1 + α2n−1

en
vn = βvv1 + α2n−1

v
vn (5.27)

Finally, taking v′ = e2 + en, form (5.26),(5.27) we obtain

α2
e1

= α2
v′

α2n−1

en
= α2n−1

v′

which yields α2n−1

en
= α2n−1

e1
. Putting the last one into (5.27) we get βe1 = βv for

any v ∈ E.
So, we conclude that local automorphism ψ = (ϕij) has the following form:

ϕij =























α2i−1

e1
, i = j

βe1 , i = 1, j = n

ϕ
(e1)
in , i > 1, j = n

0, otherwise

Hence, Theorem 5.1 implies that the local automorphism ψ is an automorphism.
This completes the proof. �
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