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Abstract. The structural constants of an evolution algebra are given by a quadratic
matrix. In this work we establish an equivalence between nil, right nilpotent evolution
algebras and evolution algebras defined by upper triangular matrices. The classification
of 2-dimensional complex evolution algebras is obtained. For an evolution algebra with a
special form of the matrix, we describe all its isomorphisms and their compositions. We
construct an algorithm running under Mathematica which decides if two finite dimensional
evolution algebras are isomorphic.
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1 Introduction

In this paper we consider a class of algebras called evolution algebras. The concept
of evolution algebra lies between algebras and dynamical systems. Algebraically,
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evolution algebras are non-associative Banach algebras; dynamically, they repre-
sent discrete dynamical systems. Evolution algebras have many connections with
other mathematical fields including graph theory, group theory, stochastic processes,
mathematical physics, etc. (see [4] and [5]).

In the book [5], the foundations of evolution algebra theory and applications in
non-Mendelian genetics and Markov chains are developed.

Let (E, ) be an algebra over a field K. If it admits a basis {ej, es, ... } such that
e;-e; =0fori#jande; - e =), aper for any i, then this algebra is called an
evolution algebra. We denote by A = (a;;) the matrix of the structural constants
of the evolution algebra E.

In [2] an evolution algebra A associated to the free population is introduced, and
using this non-associative algebra, many results are obtained in an explicit form,
e.g., the explicit description of stationary quadratic operators, and the explicit
solutions of a non-linear evolutionary equation in the absence of selection, as well
as general theorems on convergence to equilibrium in the presence of a selection.

In the study of any class of algebras, it is important to describe up to isomor-
phism at least algebras of lower dimensions because such description gives examples
to establish or reject certain conjectures. In this way, in [3] and [6], the classifica-
tions of associative and nilpotent Lie algebras of low dimensions were given.

In this paper we study properties of evolution algebras. In Section 2 we establish
an equivalence between nil, right nilpotent evolution algebras and evolution algebras
defined by upper triangular matrices. In [1] it was proved that these notions are
equivalent to the nilpotency of evolution algebras, but right nilindex and nilindex do
not coincide in general. Thus, it is natural to study conditions when some power of
an evolution algebra is equal to zero. In Section 3 we consider an evolution algebra
E with an upper triangular matrix A and obtain solutions of a system of equations
(for entries of the matrix A) which give E¥ = 0 for small values of k. Section 4
is devoted to the classification of 2-dimensional complex evolution algebras. In
Section 5 for an evolution algebra with a special form of the matrix A we describe
all its isomorphisms and their compositions. Finally, in Appendix, we construct an
algorithm running under Mathematica, using Grobner bases and the star product
of two evolution matrices, which decides if two finite dimensional evolution algebras
are isomorphic.

2 Nil and Right Nilpotent Evolution Algebras

In this section we prove that notions of nil and right nilpotency are equivalent for
evolution algebras. Moreover, the matrix A of structural constants for such algebras
has upper (or lower, up to permutation of basis of the algebra) triangular form.

Definition 2.1. An element a of an evolution algebra F is called nil if there exists
n(a) € N such that ((a¢-a)-a)---a = 0. An evolution algebra E is called nil if
—_———

n(a)
every element of the algebra is nil.

Theorem 2.2. Let E be a nil evolution algebra with basis {e1,...,e,}. Then for
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the elements of the matrix A = (a;;), the following relation holds
Qiyip Qigig * " Qigiy = 0 (1)

for all iy,...,ix € {1,...,n} and k € {1,...,n} with i, # i, for p # q.

Proof. Note that (e; - €;) - e; = a;ie?, hence a;; = 0 (otherwise the element e; is not
nil). We shall prove the equality (1) for right normed terms by induction.

For 1 < 4,57 < n, by induction we can prove (e; + €;)* = afj_laji_l(ei +€5)%
The nil condition for the element e; + e; leads to a;ja;; = 0 or ef 4 €5 = 0. Take
in account the fact a;; = a;; = 0 for any ¢,j and comparing the coefficients at the
basic elements, from e? + e? = 0 we obtain a;; = a;; = 0. Hence, the equation
a;ja;; = 0 for all 4, j is obtained and therefore the equality (1) is true for k = 2.

Let (1) be true for k — 1. We shall prove it for k. For this purpose we consider
the element e;, +e;, + -+ ¢e;,. Without loss of generality, instead of this element
we can consider the element e; 4+ e+ - - +¢eg. Using the hypothesis of the induction
it is not difficult to note that

k

k s+1 9
( Zei) = X Giyis®igiy Gy 10, C, -
=1

i1, s=1

ipFiq, PFAQ

Let us take s = k 4+ 1 in the above expression, then i,_1 = i;. From induction
hypothesis the coefficient a;,;, @iy, -+ - @i, _,4. 1S equal to zero if 45 € {ig, ..., 051}
Therefore, we need to consider the case i; = i; and the above expression will have
the form

k k42 )
(Zei) = 2 A6(1)0(2)6(2)6(3) " Lo(k)6(1) (1)
i=1 PESk

k
22( S aiomeme - asm: )€

PESK:p(1)=1
where Si denotes the symmetric group of permutations of k elements.
Denote
Fi= X Gig2)89(2)6(3) " dok)i
$ESK:H(1)=1

We need the following lemmas:
Lemma 2.3. Foranyi,j =1,...,k, we have F; = F;.

Proof. For ¢ € S), with ¢(1) =4, we construct a unique ¢ € Sy such that ¢(1) = j
and a;¢(2)0¢(2)¢(3) " (k)i = A55(2)06(2)5(3) " Cd(k);j- Indeed, let s be the number

such that ¢(s) = 7, then ¢ is defined as

-(1 2 v k—s+1k—s+2k—5+3--- k )
C\Jos+1) o o(k) i P(2) - P(s—1))°

Thus, we get F; = Fj. O
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Put a = Zle €;.
Lemma 2.4. Ifa? =0, then F, = 0.

k
Proof. From a? = 0 we obtain Y. a;; =0 for j =1,...,n. Using this equality
i=1, ij
we get
k

Fi= 2 a150)0p2)63) Aokt =~ 2 X Gig(2)A6(2)9(3) " Aok

HESK:p(1)=1 PESK:p(1)=1 =2

i7#(2)

Since for any i = 2,...,k there exists s; such that ¢(s;) = i, by the assumption of

the induction we get

Wig(2)Bp(2)p(3) ** Qg(k)1 = Fig(2)B(2)4(3) " Up(si—1)iigp(s;+1) **~ Ug(ky1 = 0. [

Now we continue the proof of theorem. Using Lemma 2.3, we get
k k+2
(Z€Z> :}"1(12:0.
i=1

By Lemma 2.4, we obtain F; = 0. Fix an arbitrary ¢y € S with ¢o(1) = 1 and
multiply both sides of 71 = 0 by a14,(2)0g,(2)60(3)  * * Ggo(k)1, then (again using
.the assumption of the induction) we f)btain a%%@)aio(z)%@) .aio(k)l = 0, that
18, A1¢0(2) 00 (2)d0(3) ** " Ggo(k)1 = 0, which completes the induction and the proof of
Theorem 2.2. ]

For an evolution algebra E, we introduce E<'> = E and E<F+1> = E<k>F for
k> 1.

Definition 2.5. An evolution algebra is called right nilpotent if there exists some
s € N such that E<*> = 0.

Let E be a right nilpotent evolution algebra, then it is evident that F is a nil
algebra.

Lemma 2.6. Let the matrix A satisfy (1). Then for any j € {1,...,n}, there is a
row m; of A with j zeros. Moreover, 7j, # m;, if j1 # ja.

Proof. First we shall prove that there is a row 7, with n zeros, i.e., all entries are
zeros. Assume that there is no such a row. Then for any ¢ € {1,...,n}, there is a
number 3(i) € {1,...,n}\{i} such that a;;) # 0. Consider the sequence i; = 1,
i = B(1), ..., iny1 = B(in). Then by the assumption we have a; ;. , 7# 0 for
all m = 1,...,n, hence a;,i,aiyi, - Gi,i,,, 7 0. Since i; € {1,...,n}, we have
ip = iq for some p # q € {1,...,n+ 1}. Thus, a,i,,, @i, 1ip,o " Ciy_1i, 7 0, &
contradiction with (1). So there is a row 7, which consists of zeros (n zeros). We
also call this as the m,,-th row.

Now we shall prove that there is a row m,,_1 # 7, of A with n—1 zeros. Consider
the A, -minor of A, which is obtained from A deleting the m,-th row and m,-th



On Evolution Algebras 335

column. A, isan (n—1) x (n— 1) matrix satisfying condition (1). To prove that
A has a row with n — 1 zeros, it is sufficient to prove that A, has a row with all
zeros. But this problem is the same as above. Iterating this argument, we can show
that for any j, there exists a row 7; with j zeros. O

The following theorem is the main result of this section.

Theorem 2.7. The following statements are equivalent for an n-dimensional evo-
lution algebra E:
(a) The matrix corresponding to E can be written as

00,12 ais ... QAin
0 0 az3 ... Qa2n

A=100 0 ... a3, |. (2)
o0 0 --- 0

(b) E is a right nilpotent algebra.

(¢) E is a nil algebra.

Proof. (b)=-(a) Since the equality (1) is true for right nilpotent algebra, we are
in the conditions of Lemma 2.6. Consider the permutation of the first indices
{1,...,n} of the matrix A as 7(j) = m;, where 7; is defined in the proof of Lemma
2.6. Note that Lemma 2.6 is also true for columns: for any j, there is a column
7; with j zeros. Moreover, 7, # 7, if p # ¢. Now consider the permutation of the
second indexes {1,...,n} of A as 7(j) = 7;. Then 7(n(4)) = A

The implication (b)=-(c) is evident since every right nilpotent evolution algebra
is a nil algebra.

The implication (a)=-(b)&(c) is also true because the table of the multiplication
of the evolution algebra is defined by an upper triangular matrix A, which is right
nilpotent and nil.

The implication (¢)=-(a) follows from Theorem 2.2. O

3 Conditions for E¥ =0

For an evolution algebra FE, we define the lower central series by E' = E and
EF = Zk 11 E'EF=% for k > 2, and the derived series by E() = E and E®) =
E(k= 1)E(k D for k> 2. An evolutlon algebra F is called nilpotent if there exists
n € N such that E™ = 0, and it is called solvable if there exists m € N such that
E(™) = 0. Any nilpotent evolution algebra is solvable, and in [1], it is proved that
the notions of nilpotent and right nilpotent are equivalent.

In this section we consider an n-dimensional evolution algebra £ with a triangu-
lar matrix A (as A in Theorem 2.7), and for small values of k, we present conditions
on entries of A under which E* = 0.

First, for n = 3 we have E? =0 < a;; =0 and E3=0< ajsae =0. Forn=14
one easily finds £ =0 < a;; = 0 and

3
E” =0 <= aj2a23 =0, ai2a24 =0, ajzazq =0, aszazy = 0.
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Now we consider an arbitrary n € N and k = 3,4, 5, we shall derive a system of
equations (for a;;) whose solutions give E¥ = 0 for k = 3,4, 5.

Let E = (e1,...,e,) be an evolution algebra with the matrix (2).

Case k = 3: We have e Ze; = e;e? for all i,j and e;ejep, = 0 for i # j. Thus,
e?e; = 0 for j < i, and ele; = > 1 —j+1 @ijAjsEs for j > i+ 1. So the system of
equations is

aijajs =0 (i=1,...,n, j>i+1, s>j+1). (n;3)
Case k = 4: Since efe = e3e?, (efej)es = (ejef)es = es(ejel) = es(efe;),
eiejeser = 0if i # j; (ezejes)et = ei(eiejes), ..., it is sufficient to consider efe? and

t—1 L
(e?ej)es. We have 6262 S —it2 ( w—j i1 amajuaut)et for i < j, and (e?ej)es =
Z?:SH ;50 5051C for j>i4+1and s> j+ 1. So the system of equations is

t—1

iud =0 (J=1,... >4, t> 74 2);
u:%:+1azuajuaut (.] ) 1, 127, —.]+ )7 (’I’L,4)
aijajsa'st:() (]Zl+1a 82]+17t28+1)

Case k = 5: We should only use previous non-zero words and multiply them to
get a word of length 5:

n s—1
6126?69 = Z ( Z aiuajuausast>et (7' S]v S Z]+2)7
t=s+1 Nu=j+1

n u—1
(eZej)e? =ai; Y ( > ajtastatu)eu (G <i+1, s>j);

u=s+2 “Mt=s+1
n
elejese, = Y (aijajsasvaw)eu (j=i+1l, s>j+1, v>s+1).
u=v+1

Thus, we get the following system of equations

s—1
Z Qi Gy, Ay s Ast = 0 (] S ia S 2.7+27 t Z s+ l)a
u=j+1
k= o , (n;5)
> Gjtasian, =0 (j=i+1, s>j, u>s+2);
t=s+1

AjjQjsQsyUyy = 0.
Therefore, we have proved the following;:

Proposition 3.1. Let E be an evolution algebra with the matrix (2). Then E* =0
if the elements of the matrix (2) satisfy the equations (n; k), where k = 3,4, 5.

4 Classification of Complex 2-Dimensional Evolution Algebras

Let E and E’ be evolution algebras and {e;} a natural basis of E. A linear map
p: E — F’ is called a homomorphism of evolution algebras if ¢(xy) = p(z)e(y)
and the set {((e;)} is a subset of a natural basis of E’. Moreover, if ¢ is bijective,
then it is called an isomorphism.

Let E be a 2-dimensional complex evolution algebra and {ej,es} be a basis of
the algebra E. It is evident that if dim E? = 0, then E is an abelian algebra, i.e.,
an algebra with all products equal to zero.
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Theorem 4.1. Any 2-dimensional complex evolution algebra E is isomorphic to
one of the following pairwise non-isomorphic algebras:
(i) dim E? =1:
o [ :e1e1 =eq, e =0
L] E2 1 €1€1 = €1, €€y = €1,
e [5:e1e1 =e1 + ea, €260 = —€1 — €9;
o F,:e1e1 =eg, e0e0 = 0.
(i) dim E? =2 :
o E5 :ere; = e1 + agea, eses = agey + ea, 1 — asasz # 0, where Es(aq,a3)
Eé(a& a2)5
o [ : eier = ez, €262 = €1 + ageq, where for ag # 0, Eg(ay) = Eg(aly) if and
only if a‘* = cos 225 + jsin 2Z* for some k = 0,1, 2.

~

Proof. We have e1e1 = aije1 + ases, eses = azeq + ages and ejes = ege; = 0.

(i) Since dim E? = 1, we have eje; = c1(a1e1 + ages), esea = ca(are; + ages)
and ejes = eze; = 0. Evidently, (¢1,¢2) # (0,0), because otherwise our algebra will
be abelian. Since e; and ey are symmetric, we can suppose ¢; # 0, and by a simple
change of basis we can suppose ¢; = 1.

Case 1. a; # 0. We take an appropriate change of basis €} = aje; + agzeq,
el, = Aey + Begy, where a1 B — agA # 0. Consider the product

0 = e, = (are1 + azez)(Aey + Bes)
= (11A(CL1€1 + a262) + agBCQ(alel + 0,262) (alA + agBCQ)(alel + ageg).

2
Therefore, a1 A + axBc =0, i.e., A= —‘IZTBIC? and a1 B — asA = a1 B + %TBlcz # 0.
It means that in the case when a? + a%cy # 0 we can take the above change.
Consider the products

ehel = (are1 + azes)(arer + azes) = a?(are; + ases) + adca(arer + ases)
= (a2 + a3co)(are; + azes) = (a3 + a3ca)el],
ehel, = (Aey + Beg)(Aey + Bey) = A%(ajer + azes) + B2?ca(arer + azes)
2p2 2 2 2 2
= (A% + B2cy)(arer + azez) = (%f% @ 4 Bloy)e) = Tealiptace) o

ay

Case 1.1. c¢3 = 0. Then eje; = ale; and egez = ejea = ege; = 0. Taking

/ (31

e} = %, we obtain the algebra Fj.

Case 1.2. ¢ # 0. Then taking B = 3—37 we obtain eje; = (a? + a3co)e; and

eses = (a3 + adea)er.
If a? + a%ca # 0, the change of basis €] =

e1 6/ . €2
a3+aZcs ' "2 7 al+aics
algebra with multiplication e;e; = 61 and eseqg = €.

brings us to the
If a1 + a202 = 0, then ¢y = ,Z% and we have eje; = ajeq + ases and esey =
2

_?%el — éeg. The change of basis €] = a—l ey = Z—%eg gives the algebra FEs.

Case 2. a3 = 0. Then we have e;e; = ases and eses = coases, where ag # 0.
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€1

If ¢co = 0, then by the change e} = Jaz We get the algebra Fj.

If co # 0, then by €] = ﬁ and e}, = o2, we get the algebra ejeq = e,
€269 = eo, which is isomorphic to the algebra Fs.

(i) Now we consider algebras with dim E? = 2. Let us write eje1 = aje; + azez
and eges = agey + ageo, where ajay — agaz # 0.

Case 1. a1 # 0 and a4 # 0. Then the change of basis f; = al_lel, fo= aZleg
makes possible to suppose a; = a4 = 1. Therefore, we have the two-parametric
family Fs(ag,a3): e1e1 = e1 + ases, eses = azey + ea, 1 — agsaz # 0.

Let us take the general change of basis €] = Aje; + Ages, €, = Biej; + Baea,
where A1 By — A3 By # 0. Consider the product

0 =elel, = (Are; + Ases)(Bie + Baes) = A1 Bi(eg + azes) + A Bo(azer + e2)
= (AlBl + Angag)el + (A1B1a2 + AQBQ)@Q.

Since in this new basis the algebra should be also an evolution algebra, we have
A1B1+AsByas = 0and A1 Bias+AsBy; = 0. From this we have A2B2(1—a2a3) =0
and A1B1(1 — azaz) = 0. Since 1 — asas # 0, we have A1 B; = A3Bs = 0.

Case 1.1. A5 = 0. Then By = 0. Consider the products

eheh = A2(eq + ages) = € + ahel = Are; + ahBaes
— A% = A4, A%ag = (1/232 — A =1,
ehey = B3(aze; + ex) = aye) + ey = ayAre; + Baeo
— B%G{; = CléAl, B% =By, — By =1.
Case 1.2. A} =0. Then By = 0, and from the family of algebras E5(as,as) we
get the family Fs(as,as).
Case 2. a3 = 0 or agy = 0. Since e; and ey are symmetric, without loss of
generality we can suppose a; = 0, i.e., eje; = ases and eges = agey + ageq, where
as0as3 7é 0.

Taking the change of basis e} = ;Wﬁ e1, eh = ,3/112# es, we obtain the one-
2 3

parametric family of algebras Eg(a4): e1e1 = e, eses = €1 + ages.
Let us take the general change of basis €] = Aje; + Ages, €5 = Bie; + Baea,
where A1 By — A3 By # 0. Consider the product

0 = 6/16/2 = (A1€1 + AQGQ)(Blel + 3262) = A13162 + AQBQ(el + a4€2).

Therefore, Ay By + AsBsay = 0 and A3 By = 0, implying A1 By = 0 and A;B; = 0.
Without loss of generality we can assume Ay = 0. Then B; = 0.
Consider the products

6/16/1 = A%€2 = 6/2 = 3262 — A% — BQ,
N 2 / /N /
€9€y = B2 (61 + CL4€2) =€ + Ay €y = Alel + CL4B2€2

- B% = 1417 B§a4 = Bgail.
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From these equalities we have B3 = 1 and Baay = a).
2k 2rk 27k 27k

If % = cos =5~ +isin =57 for some k = 0, 1,2, putting By = cos <5~ + isin =5~

we obtain the isomorphism between the algebras Fg(ays) and Fg(ay)).
The obtained algebras are pairwise non-isomorphic, which may be checked by

comparison of the algebraic properties listed in the following table:

dim E? | Right Nilpotency | dim(Center) | Nil Elements | Solvability
Eq 1 No 1 Yes No
FEs 1 No 0 Yes No
Es 1 No 0 Yes Yes
E4 1 Yes 1 Yes Yes
FE;5 2 No 0 No No
FEg 2 No 0 Yes No
This completes the proof of the theorem. |

5 Isomorphisms of Evolution Algebras

Since the study of isomorphisms for any class of algebras is a crucial task and taking
into account the great difficulties of their description, in this section we consider a
particular case of evolution algebras.

Let E be an evolution algebra which has a matrix A in the following form

A bl) <a2 b2> (an bn)
A_(cldl @ co do G0 Cn dn )’
The multiplication in the basis {e1, ..., ea,} of this evolution algebra is e;e; = 0 for
1%, e%k_l = agesr_1 + bresr and €%k = cpeop_1 +dpesy for k=1,2,...,n.
Let ¢ be an isomorphism of the evolution algebra E onto F with matrix A’.
Write ¢ = (aj)anx2n with det(p) # 0. For i =1,2,...,2n, we have
(€1)? = (p(e:)® = (afya1 + afyer)er + (o by + afydi)en + -+
+ (azz,2n—1an + Oézz,2ncn)e2n*1 + (azz,Qn—lbn + a§72ndn)egn.
For i #£ j we get

/BN,
e;e; = (o 101 + aipagact) er + (10101 + aipajodi) ea + - - -

J
+ (0 2n—10,2n—10n + QG 200 20 Cr ) €201
+ (. 2n-10 2n—1bp, + Q4 200 20 dy) €25, = 0.
From this we obtain
a;1a1a1 + apagecy = 0,
ai1a;1b1 + ajpagedy =0,
0 2n—104, 20— 10m + Q4 20 2nCp, = 0,
0 2n—10,2n—10n 4+ Q4 2naj ond, = 0.

Let Sz, be the group of permutations of {1,2,...,2n}.

Theorem 5.1. Assume det(A) # 0.
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(i) For any isomorphjsm p: E — E, there exists a unique m = w(p) € Sap
such that ¢ € &, = { Qij)anxan @ Qiri) 7 0 (1 <0 < 2n), other a;; = O}.
Moreover, ® =, . s,, P Is the set of all possible isomorphisms.

(ii) For any 7,7 € Sa, we have &, P, = {p¢p : p € O, € .} = D The set
G ={®, : 7 € Sy,} is a multiplicative group.

Proof. (i) Since det(A) # 0, we have a;d; — b;c; # 0 for any i = 1,2,...,n. Thus,
from (3) we have
aipor =0 (i #£ ). (4)
By (4) it is easy to see that each row and each column of the matrix ¢ must contain
exactly one non-zero element. It is not difficult to see that every such matrix ¢
corresponds to a permutation 7. The set of all possible solutions of (4) give all the
possible isomorphisms, i.e., we get the set ®.
(ii) Take ¢ = (a;5) € @ and ¥ = (6;;) € ®,. Denote p 0y = (v;;). It is easy
to see that v;; = 0 if j # 7(7w(i)), and vij = Qin(i)Br(i)r (=) if 7 = 7(m(4)). This
gives &, P, = &, and then one can easily check that G is a group. ([l

Now for a fixed ¢ (i.e., 7) we shall find the matrix A’. Consider 7 € Sy, and the
corresponding ¢ = (ayj;), where a;; = 0 if j # (i), and oy = quq() if § = 7(i).
We have

62 = Qir(i)€n(i) (i=1,...,2n). (5)

Using this equality we get

(62)2 = Offn(i)efr(i) = {

By (5), from the last equality we get

o1y (anezn—1 + breay) if m(i) =2k — 1,
a?(zk)(ckequ + dyear,) if (i) = 2k.

(ctiar—1yar)e; + (M br)eh 1(ay i m(i) =2k —1,

o i(2k)
(7%(;(52) ck)e;_l(%il) (cviamydr)e; if (i) = 2k.

Thus, A" = (a;;) is a matrix with

ai(gk,l)ak if 7T(Z) =2k — 1 ] — Z
a2, .
“agan b i) =2k — 1, m(j) = 2,
! o
Ajj = —iCM_ o f 71'(2) =92k ( ) =2k—1, (6)

Xj(2k—1)

ai(Zk)dk lf 7T(Z) = 2]67 ] = i,

0 otherwise.

Theorem 5.2. Assume det(A) #0. Let p: E — E (A — A’) be an isomorphism.
Then A’ has the same form as A if and only if ¢ belongs to ®,., where ™ € S5, =
{m=(r(1),...,m(2n)) € Sop : (i) € {m(¢ — 1) £ 1}, i =1,2,...,2n}.

Proof. Using the above formula (6) for A" and the condition det( ) # 0, one can
see that A’ has form as A if and only if 7(:) € {n(i — 1) &£ 1} for all 3. O
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Properties of the matrix A can be uniquely defined by properties of its non-
zero blocks. So if we consider n = 1, then for det(A) # 0 we have two classes of

isomorphisms:
a0y . ;[ ax ba% )
@12_{(0 5).0«57&0} with A’ = (052 . )

[0 8y, e dﬁcﬂz>
@21—{<70>.ﬂ'y;é0} WlthA—(b,g a:; .

It is easy to check P15Py C (I)Ql, Py P15 C ‘1)21, Py Py C (1)12, and P isa group.
Assuming that the matrices A and A’ are symmetric, we get the following classes
of isomorphisms:

s a0
122{(0 5):a57é0, ad — b2 40, ba3:b63},

Sl{(%):ﬁwéo, ad — b #0, 663673}-

Appendix. The following program written in Mathematica allows to check the
existence (or non-existence) of an isomorphism between two evolution algebras of
dimension n. It is based on the star product A * B of two evolution matrices (see
[4, page 31]) and the computation of Grobner bases. In particular, one can check

that the algebras E; (i = 1,...,6) are pairwise non-isomorphic.
StarProduct [A_List, B_List] := Module[{icont, jcont, kcont, AEB,
ndim, Indices}, ndim = Dimensions[A][[1]];

Indices = {};

Do[Indices = Join[Indices, {{icont, jcontl}}];
,{icont, 1, ndim}, {jcont, icont + 1, ndim}];
AEB = Table[Table[aux[icont, jcont], {icont, 1, ndim}],
{jcont,1, (ndim"2 - ndim)/23}];
Do[AEB[[icont, kcont]] =
Al[Indices[[icont]] [[1]1], kcont]]=*
B[[Indices[[icont]][[2]], kcontl];
,{icont, 1, Length[Indices]}, {kcont, 1, ndim}];
Return[AEB] ;]
SystemEquations[P_List, Q_List] :=Module[{FirstEquation,
SecondEquation, ThirdEquation, A, ndim, Resultl},
ndim = Dimensions[P][[1]];
A = Table[Table[aux[icont, jcont], {jcont, 1, ndim}],
{icont, 1, ndim}];
FirstEquation = (A*A).Q - P.A;
SecondEquation = StarProduct[Transpose[A], Transpose[A]].Q;
ThirdEquation = {Det[A]*Y - 1};
Result = Join[Flatten[FirstEquation],
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Flatten[SecondEquation], ThirdEquation]; Return[Result];]

IsoEvolAlgebrasQ[A1_, A2_] := Module[{Equations, BGrobner},

Equations = SystemEquations[Al, A2];

BGrobner = GroebnerBasis[Equations, Variables[Equations]];

(* Print temporal *)

Print [BGrobner] ;

If [BGrobner == {1},

Print["Evolution algebras are NOT isomorphic"];
Print["Evolution algebras are isomorphic"]; J;]

Example 5.3. We check that the evolution algebras E5 and Eg are not isomorphic.

IsoEvolAlgebrasQ[{{1, a2}, {a3, 1}}, {{0, 1}, {1, a4}}]

{13}

Evolution algebras are NOT isomorphic
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