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1 Introduction

In this paper we consider a class of algebras called evolution algebras. The concept
of evolution algebra lies between algebras and dynamical systems. Algebraically,
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evolution algebras are non-associative Banach algebras; dynamically, they repre-
sent discrete dynamical systems. Evolution algebras have many connections with
other mathematical fields including graph theory, group theory, stochastic processes,
mathematical physics, etc. (see [4] and [5]).

In the book [5], the foundations of evolution algebra theory and applications in
non-Mendelian genetics and Markov chains are developed.

Let (E, ·) be an algebra over a field K. If it admits a basis {e1, e2, . . . } such that
ei · ej = 0 for i 6= j and ei · ei =

∑
k aikek for any i, then this algebra is called an

evolution algebra. We denote by A = (aij) the matrix of the structural constants
of the evolution algebra E.

In [2] an evolution algebra A associated to the free population is introduced, and
using this non-associative algebra, many results are obtained in an explicit form,
e.g., the explicit description of stationary quadratic operators, and the explicit
solutions of a non-linear evolutionary equation in the absence of selection, as well
as general theorems on convergence to equilibrium in the presence of a selection.

In the study of any class of algebras, it is important to describe up to isomor-
phism at least algebras of lower dimensions because such description gives examples
to establish or reject certain conjectures. In this way, in [3] and [6], the classifica-
tions of associative and nilpotent Lie algebras of low dimensions were given.

In this paper we study properties of evolution algebras. In Section 2 we establish
an equivalence between nil, right nilpotent evolution algebras and evolution algebras
defined by upper triangular matrices. In [1] it was proved that these notions are
equivalent to the nilpotency of evolution algebras, but right nilindex and nilindex do
not coincide in general. Thus, it is natural to study conditions when some power of
an evolution algebra is equal to zero. In Section 3 we consider an evolution algebra
E with an upper triangular matrix A and obtain solutions of a system of equations
(for entries of the matrix A) which give Ek = 0 for small values of k. Section 4
is devoted to the classification of 2-dimensional complex evolution algebras. In
Section 5 for an evolution algebra with a special form of the matrix A we describe
all its isomorphisms and their compositions. Finally, in Appendix, we construct an
algorithm running under Mathematica, using Gröbner bases and the star product
of two evolution matrices, which decides if two finite dimensional evolution algebras
are isomorphic.

2 Nil and Right Nilpotent Evolution Algebras

In this section we prove that notions of nil and right nilpotency are equivalent for
evolution algebras. Moreover, the matrix A of structural constants for such algebras
has upper (or lower, up to permutation of basis of the algebra) triangular form.

Definition 2.1. An element a of an evolution algebra E is called nil if there exists
n(a) ∈ N such that ((a · a) · a) · · · a︸ ︷︷ ︸

n(a)

= 0. An evolution algebra E is called nil if

every element of the algebra is nil.

Theorem 2.2. Let E be a nil evolution algebra with basis {e1, . . . , en}. Then for
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the elements of the matrix A = (aij), the following relation holds

ai1i2ai2i3 · · · aiki1 = 0 (1)

for all i1, . . . , ik ∈ {1, . . . , n} and k ∈ {1, . . . , n} with ip 6= iq for p 6= q.

Proof. Note that (ei · ei) · ei = aiie
2
i , hence aii = 0 (otherwise the element ei is not

nil). We shall prove the equality (1) for right normed terms by induction.
For 1 ≤ i, j ≤ n, by induction we can prove (ei + ej)2s = as−1

ij as−1
ji (ei + ej)2.

The nil condition for the element ei + ej leads to aijaji = 0 or e2
i + e2

j = 0. Take
in account the fact aii = ajj = 0 for any i, j and comparing the coefficients at the
basic elements, from e2

i + e2
j = 0 we obtain aij = aji = 0. Hence, the equation

aijaji = 0 for all i, j is obtained and therefore the equality (1) is true for k = 2.
Let (1) be true for k − 1. We shall prove it for k. For this purpose we consider

the element ei1 + ei2 + · · ·+ eik
. Without loss of generality, instead of this element

we can consider the element e1 +e2 + · · ·+ek. Using the hypothesis of the induction
it is not difficult to note that

( k∑
i=1

ei

)s+1

=
k∑

i1,...,is=1
ip 6=iq, p 6=q

ai1i2ai2i3 · · · ais−1is
e2
is

.

Let us take s = k + 1 in the above expression, then is−1 = ik. From induction
hypothesis the coefficient ai1i2ai2i3 · · · ais−1is is equal to zero if is ∈ {i2, . . . , is−1}.
Therefore, we need to consider the case is = i1 and the above expression will have
the form

( k∑
i=1

ei

)k+2

=
∑

φ∈Sk

aφ(1)φ(2)aφ(2)φ(3) · · · aφ(k)φ(1)e
2
φ(1)

=
k∑

i=1

( ∑
φ∈Sk:φ(1)=i

aiφ(2)aφ(2)φ(3) · · · aφ(k)i

)
e2
i ,

where Sk denotes the symmetric group of permutations of k elements.
Denote

Fi =
∑

φ∈Sk:φ(1)=i

aiφ(2)aφ(2)φ(3) · · · aφ(k)i.

We need the following lemmas:

Lemma 2.3. For any i, j = 1, . . . , k, we have Fi = Fj .

Proof. For φ ∈ Sk with φ(1) = i, we construct a unique φ̄ ∈ Sk such that φ̄(1) = j
and aiφ(2)aφ(2)φ(3) · · · aφ(k)i = ajφ̄(2)aφ̄(2)φ̄(3) · · · aφ̄(k)j . Indeed, let s be the number
such that φ(s) = j, then φ̄ is defined as

φ̄ =
(

1 2 · · · k − s + 1 k − s + 2 k − s + 3 · · · k

j φ(s + 1) · · · φ(k) i φ(2) · · · φ(s− 1)

)
.

Thus, we get Fi = Fj . ¤



334 J.M. Casas, M. Ladra, B.A. Omirov, U.A. Rozikov

Put a =
∑k

i=1 ei.

Lemma 2.4. If a2 = 0, then F1 = 0.

Proof. From a2 = 0 we obtain
k∑

i=1, i 6=j

aij = 0 for j = 1, . . . , n. Using this equality

we get

F1 =
∑

φ∈Sk:φ(1)=1

a1φ(2)aφ(2)φ(3) · · · aφ(k)1 = − ∑
φ∈Sk:φ(1)=1

k∑
i=2

i 6=φ(2)

aiφ(2)aφ(2)φ(3) · · · aφ(k)1.

Since for any i = 2, . . . , k there exists si such that φ(si) = i, by the assumption of
the induction we get

aiφ(2)aφ(2)φ(3) · · · aφ(k)1 = aiφ(2)aφ(2)φ(3) · · · aφ(si−1)iaiφ(si+1) · · · aφ(k)1 = 0. ¤

Now we continue the proof of theorem. Using Lemma 2.3, we get

( k∑
i=1

ei

)k+2

= F1a
2 = 0.

By Lemma 2.4, we obtain F1 = 0. Fix an arbitrary φ0 ∈ Sk with φ0(1) = 1 and
multiply both sides of F1 = 0 by a1φ0(2)aφ0(2)φ0(3) · · · aφ0(k)1, then (again using
the assumption of the induction) we obtain a2

1φ0(2)
a2

φ0(2)φ0(3)
· · · a2

φ0(k)1 = 0, that
is, a1φ0(2)aφ0(2)φ0(3) · · · aφ0(k)1 = 0, which completes the induction and the proof of
Theorem 2.2. ¤

For an evolution algebra E, we introduce E<1> = E and E<k+1> = E<k>E for
k ≥ 1.

Definition 2.5. An evolution algebra is called right nilpotent if there exists some
s ∈ N such that E<s> = 0.

Let E be a right nilpotent evolution algebra, then it is evident that E is a nil
algebra.

Lemma 2.6. Let the matrix A satisfy (1). Then for any j ∈ {1, . . . , n}, there is a
row πj of A with j zeros. Moreover, πj1 6= πj2 if j1 6= j2.

Proof. First we shall prove that there is a row πn with n zeros, i.e., all entries are
zeros. Assume that there is no such a row. Then for any i ∈ {1, . . . , n}, there is a
number β(i) ∈ {1, . . . , n}\{i} such that aiβ(i) 6= 0. Consider the sequence i1 = 1,
i2 = β(1), . . . , in+1 = β(in). Then by the assumption we have aimim+1 6= 0 for
all m = 1, . . . , n, hence ai1i2ai2i3 · · · ainin+1 6= 0. Since ij ∈ {1, . . . , n}, we have
ip = iq for some p 6= q ∈ {1, . . . , n + 1}. Thus, aipip+1aip+1ip+2 · · · aiq−1ip

6= 0, a
contradiction with (1). So there is a row πn which consists of zeros (n zeros). We
also call this as the πn-th row.

Now we shall prove that there is a row πn−1 6= πn of A with n−1 zeros. Consider
the Aπn -minor of A, which is obtained from A deleting the πn-th row and πn-th
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column. Aπn is an (n− 1)× (n− 1) matrix satisfying condition (1). To prove that
A has a row with n − 1 zeros, it is sufficient to prove that Aπn

has a row with all
zeros. But this problem is the same as above. Iterating this argument, we can show
that for any j, there exists a row πj with j zeros. ¤

The following theorem is the main result of this section.

Theorem 2.7. The following statements are equivalent for an n-dimensional evo-
lution algebra E:

(a) The matrix corresponding to E can be written as

Â =




0 a12 a13 . . . a1n

0 0 a23 . . . a2n

0 0 0 . . . a3n
...

...
... · · · ...

0 0 0 · · · 0




. (2)

(b) E is a right nilpotent algebra.
(c) E is a nil algebra.

Proof. (b)⇒(a) Since the equality (1) is true for right nilpotent algebra, we are
in the conditions of Lemma 2.6. Consider the permutation of the first indices
{1, . . . , n} of the matrix A as π(j) = πj , where πj is defined in the proof of Lemma
2.6. Note that Lemma 2.6 is also true for columns: for any j, there is a column
τj with j zeros. Moreover, τp 6= τq if p 6= q. Now consider the permutation of the
second indexes {1, . . . , n} of A as τ(j) = τj . Then τ(π(A)) = Â.

The implication (b)⇒(c) is evident since every right nilpotent evolution algebra
is a nil algebra.

The implication (a)⇒(b)&(c) is also true because the table of the multiplication
of the evolution algebra is defined by an upper triangular matrix A, which is right
nilpotent and nil.

The implication (c)⇒(a) follows from Theorem 2.2. ¤

3 Conditions for Ek = 0

For an evolution algebra E, we define the lower central series by E1 = E and
Ek =

∑k−1
i=1 EiEk−i for k ≥ 2, and the derived series by E(1) = E and E(k) =

E(k−1)E(k−1) for k ≥ 2. An evolution algebra E is called nilpotent if there exists
n ∈ N such that En = 0, and it is called solvable if there exists m ∈ N such that
E(m) = 0. Any nilpotent evolution algebra is solvable, and in [1], it is proved that
the notions of nilpotent and right nilpotent are equivalent.

In this section we consider an n-dimensional evolution algebra E with a triangu-
lar matrix A (as Â in Theorem 2.7), and for small values of k, we present conditions
on entries of A under which Ek = 0.

First, for n = 3 we have E2 = 0 ⇔ aij = 0 and E3 = 0 ⇔ a12a23 = 0. For n = 4
one easily finds E2 = 0 ⇔ aij = 0 and

E3 = 0 ⇐⇒ a12a23 = 0, a12a24 = 0, a13a34 = 0, a23a34 = 0.
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Now we consider an arbitrary n ∈ N and k = 3, 4, 5, we shall derive a system of
equations (for aij) whose solutions give Ek = 0 for k = 3, 4, 5.

Let E = 〈e1, . . . , en〉 be an evolution algebra with the matrix (2).
Case k = 3: We have e2

i ej = eje
2
i for all i, j and eiejek = 0 for i 6= j. Thus,

e2
i ej = 0 for j ≤ i, and e2

i ej =
∑n

s=j+1 aijajses for j ≥ i + 1. So the system of
equations is

aijajs = 0 (i = 1, . . . , n, j ≥ i + 1, s ≥ j + 1). (n; 3)

Case k = 4: Since e2
i e

2
j = e2

je
2
i , (e2

i ej)es = (eje
2
i )es = es(eje

2
i ) = es(e2

i ej),
eiejeset = 0 if i 6= j; (eiejes)et = et(eiejes), . . . , it is sufficient to consider e2

i e
2
j and

(e2
i ej)es. We have e2

i e
2
j =

∑n
t=j+2

(∑t−1
u=j+1 aiuajuaut

)
et for i ≤ j, and (e2

i ej)es =∑n
t=s+1 aijajsastet for j ≥ i + 1 and s ≥ j + 1. So the system of equations is





t−1∑
u=j+1

aiuajuaut = 0 (j = 1, . . . , n, i ≥ j, t ≥ j + 2);

aijajsast = 0 (j ≥ i + 1, s ≥ j + 1, t ≥ s + 1).
(n; 4)

Case k = 5: We should only use previous non-zero words and multiply them to
get a word of length 5:

e2
i e

2
jes =

n∑
t=s+1

( s−1∑
u=j+1

aiuajuausast

)
et (i ≤ j, s ≥ j + 2);

(e2
i ej)e2

s = aij

n∑
u=s+2

( u−1∑
t=s+1

ajtastatu

)
eu (j ≤ i + 1, s ≥ j);

e2
i ejesev =

n∑
u=v+1

(
aijajsasvavu

)
eu (j ≥ i + 1, s ≥ j + 1, v ≥ s + 1).

Thus, we get the following system of equations




s−1∑
u=j+1

aiuajuausast = 0 (j ≤ i, s ≥ j + 2, t ≥ s + 1);

aij

u−1∑
t=s+1

ajtastatu = 0 (j ≥ i + 1, s ≥ j, u ≥ s + 2);

aijajsasvavu = 0.

(n; 5)

Therefore, we have proved the following:

Proposition 3.1. Let E be an evolution algebra with the matrix (2). Then Ek = 0
if the elements of the matrix (2) satisfy the equations (n; k), where k = 3, 4, 5.

4 Classification of Complex 2-Dimensional Evolution Algebras

Let E and E′ be evolution algebras and {ei} a natural basis of E. A linear map
ϕ : E → E′ is called a homomorphism of evolution algebras if ϕ(xy) = ϕ(x)ϕ(y)
and the set {ϕ(ei)} is a subset of a natural basis of E′. Moreover, if ϕ is bijective,
then it is called an isomorphism.

Let E be a 2-dimensional complex evolution algebra and {e1, e2} be a basis of
the algebra E. It is evident that if dimE2 = 0, then E is an abelian algebra, i.e.,
an algebra with all products equal to zero.
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Theorem 4.1. Any 2-dimensional complex evolution algebra E is isomorphic to
one of the following pairwise non-isomorphic algebras:

(i) dimE2 = 1 :
• E1 : e1e1 = e1, e2e2 = 0;
• E2 : e1e1 = e1, e2e2 = e1;
• E3 : e1e1 = e1 + e2, e2e2 = −e1 − e2;
• E4 : e1e1 = e2, e2e2 = 0.
(ii) dimE2 = 2 :
• E5 : e1e1 = e1 + a2e2, e2e2 = a3e1 + e2, 1 − a2a3 6= 0, where E5(a2, a3) ∼=

E′
5(a3, a2);

• E6 : e1e1 = e2, e2e2 = e1 + a4e2, where for a4 6= 0, E6(a4) ∼= E6(a′4) if and

only if
a′4
a4

= cos 2πk
3 + i sin 2πk

3 for some k = 0, 1, 2.

Proof. We have e1e1 = a1e1 + a2e2, e2e2 = a3e1 + a4e2 and e1e2 = e2e1 = 0.

(i) Since dimE2 = 1, we have e1e1 = c1(a1e1 + a2e2), e2e2 = c2(a1e1 + a2e2)
and e1e2 = e2e1 = 0. Evidently, (c1, c2) 6= (0, 0), because otherwise our algebra will
be abelian. Since e1 and e2 are symmetric, we can suppose c1 6= 0, and by a simple
change of basis we can suppose c1 = 1.

Case 1. a1 6= 0. We take an appropriate change of basis e′1 = a1e1 + a2e2,
e′2 = Ae1 + Be2, where a1B − a2A 6= 0. Consider the product

0 = e′1e
′
2 = (a1e1 + a2e2)(Ae1 + Be2)

= a1A(a1e1 + a2e2) + a2Bc2(a1e1 + a2e2) = (a1A + a2Bc2)(a1e1 + a2e2).

Therefore, a1A + a2Bc = 0, i.e., A = −a2Bc2
a1

and a1B − a2A = a1B + a2
2Bc2
a1

6= 0.
It means that in the case when a2

1 + a2
2c2 6= 0 we can take the above change.

Consider the products

e′1e
′
1 = (a1e1 + a2e2)(a1e1 + a2e2) = a2

1(a1e1 + a2e2) + a2
2c2(a1e1 + a2e2)

= (a2
1 + a2

2c2)(a1e1 + a2e2) = (a2
1 + a2

2c2)e′1,
e′2e

′
2 = (Ae1 + Be2)(Ae1 + Be2) = A2(a1e1 + a2e2) + B2c2(a1e1 + a2e2)

= (A2 + B2c2)(a1e1 + a2e2) =
(a2

2B2c2
2

a2
1

+ B2c2

)
e′1 = B2c2(a

2
1+a2

2c2)

a2
1

e′1.

Case 1.1. c2 = 0. Then e1e1 = a2
1e1 and e2e2 = e1e2 = e2e1 = 0. Taking

e′1 = e1
a2
1

, we obtain the algebra E1.

Case 1.2. c2 6= 0. Then taking B =
√

a2
1

c2
, we obtain e1e1 = (a2

1 + a2
2c2)e1 and

e2e2 = (a2
1 + a2

2c2)e1.
If a2

1 +a2
2c2 6= 0, the change of basis e′1 = e1

a2
1+a2

2c2
, e′2 = e2

a2
1+a2

2c2
brings us to the

algebra with multiplication e1e1 = e1 and e2e2 = e1.

If a2
1 + a2

2c2 = 0, then c2 = −a2
1

a2
2

and we have e1e1 = a1e1 + a2e2 and e2e2 =

−a3
1

a2
2
e1 − a2

1
a2

e2. The change of basis e′1 = e1
a1

, e′2 = a2
a2
1
e2 gives the algebra E3.

Case 2. a1 = 0. Then we have e1e1 = a2e2 and e2e2 = c2a2e2, where a2 6= 0.
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If c2 = 0, then by the change e′1 = e1√
a2

we get the algebra E4.
If c2 6= 0, then by e′1 = e1√

c2a2
2

and e′2 = e2
c2a2

, we get the algebra e1e1 = e2,

e2e2 = e2, which is isomorphic to the algebra E2.
(ii) Now we consider algebras with dimE2 = 2. Let us write e1e1 = a1e1 + a2e2

and e2e2 = a3e1 + a4e2, where a1a4 − a2a3 6= 0.
Case 1. a1 6= 0 and a4 6= 0. Then the change of basis f1 = a−1

1 e1, f2 = a−1
4 e2

makes possible to suppose a1 = a4 = 1. Therefore, we have the two-parametric
family E5(a2, a3): e1e1 = e1 + a2e2, e2e2 = a3e1 + e2, 1− a2a3 6= 0.

Let us take the general change of basis e′1 = A1e1 + A2e2, e′2 = B1e1 + B2e2,
where A1B2 −A2B1 6= 0. Consider the product

0 = e′1e
′
2 = (A1e1 + A2e2)(B1e1 + B2e2) = A1B1(e1 + a2e2) + A2B2(a3e1 + e2)

= (A1B1 + A2B2a3)e1 + (A1B1a2 + A2B2)e2.

Since in this new basis the algebra should be also an evolution algebra, we have
A1B1+A2B2a3 = 0 and A1B1a2+A2B2 = 0. From this we have A2B2(1−a2a3) = 0
and A1B1(1− a2a3) = 0. Since 1− a2a3 6= 0, we have A1B1 = A2B2 = 0.

Case 1.1. A2 = 0. Then B1 = 0. Consider the products

e′1e
′
1 = A2

1(e1 + a2e2) = e′1 + a′2e
′
2 = A1e1 + a′2B2e2

=⇒ A2
1 = A1, A2

1a2 = a′2B2 =⇒ A1 = 1,

e′2e
′
2 = B2

2(a3e1 + e2) = a′3e
′
1 + e′2 = a′3A1e1 + B2e2

=⇒ B2
2a3 = a′3A1, B2

2 = B2 =⇒ B2 = 1.

Case 1.2. A1 = 0. Then B2 = 0, and from the family of algebras E5(a2, a3) we
get the family E5(a3, a2).

Case 2. a1 = 0 or a4 = 0. Since e1 and e2 are symmetric, without loss of
generality we can suppose a1 = 0, i.e., e1e1 = a2e2 and e2e2 = a3e1 + a4e2, where
a2a3 6= 0.

Taking the change of basis e′1 = 3

√
1

a2
2a3

e1, e′2 = 3

√
1

a2a2
3

e2, we obtain the one-

parametric family of algebras E6(a4): e1e1 = e2, e2e2 = e1 + a4e2.
Let us take the general change of basis e′1 = A1e1 + A2e2, e′2 = B1e1 + B2e2,

where A1B2 −A2B1 6= 0. Consider the product

0 = e′1e
′
2 = (A1e1 + A2e2)(B1e1 + B2e2) = A1B1e2 + A2B2(e1 + a4e2).

Therefore, A1B1 + A2B2a4 = 0 and A2B2 = 0, implying A1B1 = 0 and A2B2 = 0.
Without loss of generality we can assume A2 = 0. Then B1 = 0.

Consider the products

e′1e
′
1 = A2

1e2 = e′2 = B2e2 =⇒ A2
1 = B2,

e′2e
′
2 = B2

2(e1 + a4e2) = e′1 + a′4e
′
2 = A1e1 + a′4B2e2

=⇒ B2
2 = A1, B2

2a4 = B2a
′
4.
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From these equalities we have B3
2 = 1 and B2a4 = a′4.

If a′4
a4

= cos 2πk
3 + i sin 2πk

3 for some k = 0, 1, 2, putting B2 = cos 2πk
3 + i sin 2πk

3
we obtain the isomorphism between the algebras E6(a4) and E6(a′4).

The obtained algebras are pairwise non-isomorphic, which may be checked by
comparison of the algebraic properties listed in the following table:

dim E2 Right Nilpotency dim(Center) Nil Elements Solvability

E1 1 No 1 Yes No

E2 1 No 0 Yes No

E3 1 No 0 Yes Yes

E4 1 Yes 1 Yes Yes

E5 2 No 0 No No

E6 2 No 0 Yes No

This completes the proof of the theorem. ¤

5 Isomorphisms of Evolution Algebras

Since the study of isomorphisms for any class of algebras is a crucial task and taking
into account the great difficulties of their description, in this section we consider a
particular case of evolution algebras.

Let E be an evolution algebra which has a matrix A in the following form

A =
(

a1 b1

c1 d1

)
⊕

(
a2 b2

c2 d2

)
⊕ · · · ⊕

(
an bn

cn dn

)
.

The multiplication in the basis {e1, . . . , e2n} of this evolution algebra is eiej = 0 for
i 6= j, e2

2k−1 = ake2k−1 + bke2k and e2
2k = cke2k−1 + dke2k for k = 1, 2, . . . , n.

Let ϕ be an isomorphism of the evolution algebra E onto E with matrix A′.
Write ϕ = (αij)2n×2n with det(ϕ) 6= 0. For i = 1, 2, . . . , 2n, we have

(e′i)
2 = (ϕ(ei))2 = (α2

i1a1 + α2
i2c1)e1 + (α2

i1b1 + α2
i2d1)e2 + · · ·

+(α2
i,2n−1an + α2

i,2ncn)e2n−1 + (α2
i,2n−1bn + α2

i,2ndn)e2n.

For i 6= j we get

e′ie
′
j = (αi1αj1a1 + αi2αj2c1) e1 + (αi1αj1b1 + αi2αj2d1) e2 + · · ·

+(αi,2n−1αj,2n−1an + αi,2nαj,2ncn)e2n−1

+(αi,2n−1αj,2n−1bn + αi,2nαj,2ndn) e2n = 0.

From this we obtain 



αi1αj1a1 + αi2αj2c1 = 0,
αi1αj1b1 + αi2αj2d1 = 0,

. . .
αi,2n−1αj,2n−1an + αi,2nαj,2ncn = 0,
αi,2n−1αj,2n−1bn + αi,2nαj,2ndn = 0.

(3)

Let S2n be the group of permutations of {1, 2, . . . , 2n}.
Theorem 5.1. Assume det(A) 6= 0.
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(i) For any isomorphism ϕ : E → E, there exists a unique π = π(ϕ) ∈ S2n

such that ϕ ∈ Φπ =
{
(αij)2n×2n : αiπ(i) 6= 0 (1 ≤ i ≤ 2n), other αij = 0

}
.

Moreover, Φ =
⋃

π∈S2n
Φπ is the set of all possible isomorphisms.

(ii) For any π, τ ∈ S2n we have ΦπΦτ = {ϕψ : ϕ ∈ Φπ, ψ ∈ Φτ} = Φτπ. The set
G = {Φπ : π ∈ S2n} is a multiplicative group.

Proof. (i) Since det(A) 6= 0, we have aidi − bici 6= 0 for any i = 1, 2, . . . , n. Thus,
from (3) we have

αikαjk = 0 (i 6= j). (4)

By (4) it is easy to see that each row and each column of the matrix ϕ must contain
exactly one non-zero element. It is not difficult to see that every such matrix ϕ
corresponds to a permutation π. The set of all possible solutions of (4) give all the
possible isomorphisms, i.e., we get the set Φ.

(ii) Take ϕ = (αij) ∈ Φπ and ψ = (βij) ∈ Φτ . Denote ϕ ◦ ψ = (γij). It is easy
to see that γij = 0 if j 6= τ(π(i)), and γij = αiπ(i)βπ(i)τ(π(i)) if j = τ(π(i)). This
gives ΦπΦτ = Φτπ and then one can easily check that G is a group. ¤

Now for a fixed ϕ (i.e., π) we shall find the matrix A′. Consider π ∈ S2n and the
corresponding ϕπ = (αij), where αij = 0 if j 6= π(i), and αij = αiπ(i) if j = π(i).
We have

e′i = αiπ(i)eπ(i) (i = 1, . . . , 2n). (5)

Using this equality we get

(e′i)
2 = α2

iπ(i)e
2
π(i) =

{
α2

i(2k−1)(ake2k−1 + bke2k) if π(i) = 2k − 1,

α2
i(2k)(cke2k−1 + dke2k) if π(i) = 2k.

By (5), from the last equality we get

(e′i)
2 =





(αi(2k−1)ak)e′i +
(α2

i(2k−1)

αi(2k)
bk

)
e′π−1(2k) if π(i) = 2k − 1,

( α2
i(2k)

αi(2k−1)
ck

)
e′π−1(2k−1) + (αi(2k)dk)e′i if π(i) = 2k.

Thus, A′ = (a′ij) is a matrix with

a′ij =





αi(2k−1)ak if π(i) = 2k − 1, j = i,
α2

i(2k−1)

αi(2k)
bk if π(i) = 2k − 1, π(j) = 2k,

α2
i(2k)

αi(2k−1)
ck if π(i) = 2k, π(j) = 2k − 1,

αi(2k)dk if π(i) = 2k, j = i,

0 otherwise.

(6)

Theorem 5.2. Assume det(A) 6= 0. Let ϕ : E → E (A → A′) be an isomorphism.
Then A′ has the same form as A if and only if ϕ belongs to Φπ, where π ∈ Sb

2n =
{π = (π(1), . . . , π(2n)) ∈ S2n : π(i) ∈ {π(i− 1)± 1}, i = 1, 2, . . . , 2n}.
Proof. Using the above formula (6) for A′ and the condition det(A) 6= 0, one can
see that A′ has form as A if and only if π(i) ∈ {π(i− 1)± 1} for all i. ¤
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Properties of the matrix A can be uniquely defined by properties of its non-
zero blocks. So if we consider n = 1, then for det(A) 6= 0 we have two classes of
isomorphisms:

Φ12 =
{(

α 0
0 δ

)
: αδ 6= 0

}
with A′ =

(
aα bα2

δ

c δ2

α dδ

)
;

Φ21 =
{( 0 β

γ 0

)
: βγ 6= 0

}
with A′ =

(
dβ cβ2

γ

bγ2

β aγ

)
.

It is easy to check Φ12Φ21 ⊂ Φ21, Φ21Φ12 ⊂ Φ21, Φ21Φ21 ⊂ Φ12, and Φ12 is a group.
Assuming that the matrices A and A′ are symmetric, we get the following classes

of isomorphisms:

Φs
12 =

{( α 0
0 δ

)
: αδ 6= 0, ad− b2 6= 0, bα3 = bδ3

}
,

Φs
21 =

{( 0 β
γ 0

)
: βγ 6= 0, ad− b2 6= 0, bβ3 = bγ3

}
.

Appendix. The following program written in Mathematica allows to check the
existence (or non-existence) of an isomorphism between two evolution algebras of
dimension n. It is based on the star product A ∗ B of two evolution matrices (see
[4, page 31]) and the computation of Gröbner bases. In particular, one can check
that the algebras Ei (i = 1, . . . , 6) are pairwise non-isomorphic.

StarProduct[A_List, B_List] := Module[{icont, jcont, kcont, AEB,
ndim, Indices}, ndim = Dimensions[A][[1]];
Indices = {};
Do[Indices = Join[Indices, {{icont, jcont}}];
,{icont, 1, ndim}, {jcont, icont + 1, ndim}];
AEB = Table[Table[aux[icont, jcont], {icont, 1, ndim}],

{jcont,1, (ndim^2 - ndim)/2}];
Do[AEB[[icont, kcont]] =
A[[Indices[[icont]][[1]], kcont]]*
B[[Indices[[icont]][[2]], kcont]];
,{icont, 1, Length[Indices]}, {kcont, 1, ndim}];

Return[AEB];]
SystemEquations[P_List, Q_List] :=Module[{FirstEquation,
SecondEquation, ThirdEquation, A, ndim, Result},
ndim = Dimensions[P][[1]];
A = Table[Table[aux[icont, jcont], {jcont, 1, ndim}],
{icont, 1, ndim}];
FirstEquation = (A*A).Q - P.A;
SecondEquation = StarProduct[Transpose[A], Transpose[A]].Q;
ThirdEquation = {Det[A]*Y - 1};
Result = Join[Flatten[FirstEquation],
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Flatten[SecondEquation], ThirdEquation]; Return[Result];]
IsoEvolAlgebrasQ[A1_, A2_] := Module[{Equations, BGrobner},
Equations = SystemEquations[A1, A2];
BGrobner = GroebnerBasis[Equations, Variables[Equations]];
(* Print temporal *)
Print[BGrobner];
If[BGrobner == {1},
Print["Evolution algebras are NOT isomorphic"];
Print["Evolution algebras are isomorphic"]; ];]

Example 5.3. We check that the evolution algebras E5 and E6 are not isomorphic.

IsoEvolAlgebrasQ[{{1, a2}, {a3, 1}}, {{0, 1}, {1, a4}}]
{1}
Evolution algebras are NOT isomorphic
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