

Elementary Analysis Math 140B—Winter 2007
Sample Final Examination; March 16, 2007

1. Which of the following functions $f(x)$ has the property that $f'(x)$ can be calculated for each x on the specified interval by differentiating the series for $f(x)$ term by term?
 - (a) $f(x) = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^n}{n} \quad 0 \leq x \leq 1.$
 - (b) $f(x) = \sum_{n=2}^{\infty} \frac{x^n}{n^2 (\log n)^2} \quad -1 \leq x \leq 1.$
 - (c) $f(x) = \sum_{n=1}^{\infty} \left(\frac{1}{x-n\pi} + \frac{1}{n\pi} \right) \quad 0 < x < \pi.$
2. Suppose $f(x)$ is defined by a power series in x with positive radius of convergence.
 - (a) Let k be the smallest positive integer such that $f^{(k)}(0) \neq 0$. (We suppose f is not a constant, so that there really is such an integer k .) If k is odd, show that f has neither a relative maximum nor a relative minimum at $x = 0$.
 - (b) If the function f is an even function ($f(-x) = f(x)$), show that all the coefficients of odd powers of x are zero.
3. Show that the series $\sum_{n=1}^{\infty} \frac{1}{n^x}$ converges uniformly on any interval of the form $[p, \infty)$ with $p > 1$.
4. Let $f_n(x) = (x/n)e^{-x/n}$ for $x \geq 0$. Prove that the sequence converges uniformly on $[0, A]$ for any $A > 0$. Is the convergence uniform on the interval $[0, \infty)$?
5. Suppose that f is defined and differentiable in an open interval containing $x = a$. Suppose that $f''(x)$ exists in an interval containing a and that f'' is continuous at a .
 - (a) Show that

$$f''(a) = \lim_{x \rightarrow a} \frac{f(x) - f(a) - (x - a)f'(a)}{\frac{(x-a)^2}{2}}.$$
 - (b) Show that if f has a relative minimum at $x = a$, then $f''(a) \geq 0$ and that if f has a relative maximum at $x = a$, then $f''(a) \leq 0$.
6. Find the following limits.
 - (a) $\lim_{x \rightarrow 0} \frac{(e^x - 1) \sin x}{\cos x - \cos^2 x}$
 - (b) $\lim_{x \rightarrow \infty} \frac{1}{x^2} \int_1^x \sin^2 t dt$
 - (c) $\lim_{x \rightarrow 0+} \left(\frac{1}{x^2} - \frac{1}{x \log x} \right)$
7. Prove that if the bounded function f is integrable on $[a, b]$ and if $f(x) \geq \delta$ for all $x \in [a, b]$ and some $\delta > 0$, then $1/f$ is integrable on $[a, b]$.
8. Show that

$$\int_x^y \tan t dt = \log \frac{\cos x}{\cos y}, \quad -\frac{\pi}{2} < x \leq y < \frac{\pi}{2}$$
9. Show by an appropriate substitution that $\int_0^{\pi/2} \sin^n x dx = \int_0^{\pi/2} \cos^n y dy$
10. Show that $\int_a^b x f''(x) dx = b f'(b) - f(b) + f(a) - a f'(a)$.