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ALGEBRAIC STRUCTURE OF GENETIC INHERITANCE

MARY LYNN REED

Abstract. In this paper we will explore the nonassociative algebraic struc-
ture that naturally occurs as genetic information gets passed down through the
generations. While modern understanding of genetic inheritance initiated with
the theories of Charles Darwin, it was the Augustinian monk Gregor Mendel
who began to uncover the mathematical nature of the subject. In fact, the
symbolism Mendel used to describe his first results (e.g., see his 1866 pa-
per Experiments in Plant-Hybridization [30]) is quite algebraically suggestive.
Seventy four years later, I.M.H. Etherington introduced the formal language
of abstract algebra to the study of genetics in his series of seminal papers
[9], [10], [11]. In this paper we will discuss the concepts of genetics that
suggest the underlying algebraic structure of inheritance, and we will give a
brief overview of the algebras which arise in genetics and some of their basic
properties and relationships. With the popularity of biologically motivated
mathematics continuing to rise, we offer this survey article as another example
of the breadth of mathematics that has biological significance. The most com-
prehensive reference for the mathematical research done in this area (through
1980) is Wörz-Busekros [36].

1. Genetic motivation

Before we discuss the mathematics of genetics, we need to acquaint ourselves
with the necessary language from biology. A vague, but nevertheless informative,
definition of a gene is simply a unit of hereditary information. The genetic code of
an organism is carried on chromosomes. Each gene on a chromosome has different
forms that it can take. These forms are called alleles. E.g., the gene which
determines blood type in humans has three different alleles, A, B, and O. Since
humans are diploid organisms (meaning we carry a double set of chromosomes
– one from each parent), blood types are determined by two alleles. Haploid
cells (or organisms) carry a single set of chromosomes. When diploid organisms
reproduce, a process called meiosis produces gametes (sex cells) which carry a
single set of chromosomes. When these gamete cells fuse (e.g., when sperm fertilizes
egg), the result is a zygote, which is again a diploid cell, meaning it carries its
hereditary information in a double set of chromosomes. When gametes fuse (or
reproduce) to form zygotes a natural “multiplication” operation occurs.

1.1. Simple Mendelian Inheritance. As a natural first example, we consider
simple Mendelian inheritance for a single gene with two alleles A and a. In this case,
two gametes fusing (or reproducing) to form a zygote gives the multiplication table
shown in Table 1, which in freshman biology class might be called a Punnett square.
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A a

A AA Aa
a aA aa

Table 1. Alleles passing from gametes to zygotes

A a

A A 1
2 (A+ a)

a 1
2 (a +A) a

Table 2. Multiplication table of the gametic algebra for simple
Mendelian inheritance

The zygotes AA and aa are called homozygous, since they carry two copies of the
same allele. In this case, simple Mendelian inheritance means that there is no chance
involved as to what genetic information will be inherited in the next generation;
i.e., AA will pass on the allele A and aa will pass on a. However, the zygotes Aa
and aA (which are equivalent) each carry two different alleles. These zygotes are
called heterozygous. The rules of simple Mendelian inheritance indicate that
the next generation will inherit either A or a with equal frequency. So, when two
gametes reproduce, a multiplication is induced which indicates how the hereditary
information will be passed down to the next generation. This multiplication is given
by the following rules:

A×A = A,(1)

A× a =
1

2
A+

1

2
a,(2)

a×A =
1

2
a+

1

2
A,(3)

a× a = a.(4)

Rules (1) and (4) are expressions of the fact that if both gametes carry the same
allele, then the offspring will inherit it. Rules (2) and (3) indicate that when
gametes carrying A and a reproduce, half of the time the offspring will inherit
A and the other half of the time it will inherit a. These rules are an algebraic
representation of the rules of simple Mendelian inheritance. This multiplication
table is shown in Table 2. We should point out that we are only concerning ourselves
with genotypes (gene composition) and not phenotypes (gene expression).
Hence we have made no mention of the dominant or recessive properties of our
alleles.

Now that we’ve defined a multiplication on the symbols A and a we can math-
ematically define the two dimensional algebra over R with basis {A, a} and multi-
plication table as in Table 2. This algebra is called the gametic algebra for simple
Mendelian inheritance with two alleles.

But gametic multiplication is just the beginning! In order for actual diploid cells
(or organisms) to reproduce, they must first go through a reduction division process
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AA Aa aa

AA AA 1
2 (AA+Aa) Aa

Aa 1
2 (AA +Aa) 1

4AA+ 1
2Aa + 1

4aa
1
2 (Aa + aa)

aa Aa 1
2 (Aa + aa) aa

Table 3. Multiplication table of the zygotic algebra for simple
Mendelian inheritance

so that only one set of alleles is passed on. For humans this occurs when males
produce sperm and females produce eggs. When reproduction occurs, the hered-
itary information is then passed on via the gametic multiplication we’ve already
defined. Therefore, when two zygotes reproduce another multiplication operation
is formed taking into consideration both the reduction division process and gametic
multiplication. In our example of simple Mendelian inheritance for one gene with
the two alleles A and a, zygotes have three possible genotypes: AA, aa, and Aa.
Let’s consider the case of two zygotes both with genotype Aa reproducing. The re-
duction division process splits the zygote and passes on one allele for reproduction.
In the case of simple Mendelian inheritance the assumption is that both alleles will
be passed on with equal frequency. Thus, half the time A gets passed on and half
the time a does. We represent this with the “frequency distribution” 1

2A + 1
2a.

Therefore, symbolically Aa×Aa becomes

(
1

2
A+

1

2
a)× (

1

2
A+

1

2
a).

Formally multiplying these two expressions together results in

1

4
AA+

1

2
Aa +

1

4
aa,

using the notion that aA = Aa. In this way, zygotic reproduction produces the
multiplication table shown in Table 3. So we can define the three dimensional
algebra over R with basis {AA,Aa, aa} and multiplication table as in Table 3.
It is called the zygotic algebra for simple Mendelian inheritance with two alleles.
The process of constructing a zygotic algebra from the original gametic algebra is
called commutative duplication of algebras. We will discuss this process from a
mathematical perspective later.

Now that we’ve seen how the gametic and zygotic algebras are formed in the most
basic example, we shall begin to consider the mathematical (and indeed, algebraic)
structure of such algebras.

1.2. The Nonassociativity of Inheritance. Depending on the “population” you
are concerned with, a general element αA+βa of the gametic algebra which satisfies
α, β ∈ R with 0 ≤ α, β ≤ 1 and α + β = 1 can represent a population, a single
individual of a population, or a single gamete. In each case, the coefficients α and
β signify the percentage of frequency of the associated allele. I.e., if the element
represents a population, then α is the percentage of the population which carries
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the allele A on the gene under consideration. Likewise, β is the percentage of the
population which has the allele a.

For those elements of the gametic and zygotic algebras which represent pop-
ulations, multiplication of two such elements represents random mating between
the two populations. It seems logical that the order in which populations mate is
significant. I.e., if population P mates with population Q and then the resulting
population mates with R, the resulting population is not the same as the popula-
tion resulting from P mating with the population obtained from mating Q and R
originally. Symbolically, (P ×Q)×R is not equal to P × (Q×R). So, we see that
from a purely biological perspective, we should expect that the algebras which arise
in genetics will not satisfy the associative property.

Now, if we study the multiplication tables of both the gametic and zygotic alge-
bras for simple Mendelian inheritance, we will notice immediately that the algebras
are commutative. From a biological perspective, if populations P and Q are mating,
it makes no difference whether you say P mates with Q or Q mates with P ! How-
ever, as we should expect, these algebras do not satisfy the associative property.
E.g., in the gametic algebra apply the rules of multiplication and the distributive
property to see that A×(A×a) = 3

4A+ 1
4a. However, (A×A)×a = A×a = 1

2A+ 1
2a.

Hence, the associative property does not hold for the gametic algebra. The same
is true for the zygotic algebra. In general, the algebras which arise in genetics are
commutative but non-associative.

2. Gametic and zygotic algebras

So far, we’ve only considered the case of simple Mendelian inheritance; i.e., all
alleles occur with equal frequency. In many genetic situations, this law does not
hold. E.g., gene mutation or recombination both result in different inheritance rules.
The gametic and zygotic algebras we discussed in the previous section corresponded
to the very specific example of simple Mendelian inheritance for a single gene with
two alleles. We now give more general definitions for gametic and zygotic algebras.
Suppose now we have a random mating population with n distinct gametes. Call
them a1, . . . , an. These gametes could differ at one or more genetic loci. Then
consider these n gametes as basis elements of an n-dimensional real vector space.
Multiplication is defined by

aiaj =

n∑
k=1

γijkak,

such that
(1) 0 ≤ γijk ≤ 1, i, j, k = 1, . . . , n.

(2)

n∑
k=1

γijk = 1, i, j = 1, . . . , n.

(3) γijk = γjik i, j, k = 1, . . . , n.

The resulting algebra G is called an n-dimensional gametic algebra.
For the zygotic algebra we consider pairs of the n gametes, aij = aiaj with the

understanding that aij = aji, so without loss we only consider aij with i ≤ j.
Then random mating of zygotes aij and apq will yield zygotes aks with a certain
probability; call it γij,pq,ks. This defines zygotic multiplication,

aijapq =
∑
k≤s

γij,pq,ksaks,
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such that
(1) 0 ≤ γij,pq,ks ≤ 1,

(2)

n∑
k,s=1

γij,pq,ks = 1,

(3) γij,pq,ks = γpq,ij,ks,

where in each case i ≤ j, p ≤ q, and k ≤ s. The resulting algebra Z is the
zygotic algebra. We note that the zygotic algebra can be constructed from the
gametic algebra through a process called commutative duplication [10], which was
originally introduced by Etherington in the general setting of a (not necessarily
commutative nor associative) linear algebra. Using this process, one can calculate
the zygotic multiplication constants from the gametic multiplication constants in
the following way:

γij,pq,ks =

{
γijkγpqs + γijsγpqk, for k < s,

γijkγpqs, for k = s.

In modern terms, commutative duplication can be realized using tensor products.
For any commutative algebra A, tensor it with itself (in the sense of vector spaces)
to form A ⊗ A. Then, commutative duplication can be achieved via the quotient
(A⊗A)/I, where I is the subspace generated by elements of the form x⊗y−y⊗x.
This quotient space is, in fact, a commutative algebra, where multiplication is
defined by (a, b)(c, d) = (ab, cd). H. Gonshor [14] first gave this as a basis-free
definition of commutative duplication of an algebra.

In addition, beginning with a zygotic algebra Z, commutative duplication pro-
duces another algebra C with genetic relevance, which is generally referred to as the
copular algebra. The genetic significance of this algebra is that its elements, which
are unordered pairs of zygotes, represent the mating types of a population.

3. Structure and properties of algebras in genetics

Mathematically, the algebras that arise in genetics (via gametic, zygotic, or cop-
ular algebras) are very interesting structures. They are generally commutative but
nonassociative, yet they are not necessarily Lie, Jordan, or alternative algebras. In
addition, many of the algebraic properties of these structures have genetic signifi-
cance. Indeed, it is the interplay between the purely mathematical structure and
the corresponding genetic properties that makes this subject so fascinating. We
turn our attention now from the motivating genetics to the more formal mathemat-
ical study of the underlying algebraic structure. Again, we draw attention to the
comprehensive reference Wörz-Busekros [36].

The most general definition of an algebra which could have genetic significance
is that of an algebra with genetic realization. An algebra with genetic realization
is an algebra A over the real numbers R which has a basis {a1, . . . , an} and a
multiplication table

aiaj =

n∑
k=1

γijkak,

such that 0 ≤ γijk ≤ 1 for all i, j, k and

n∑
k=1

γijk = 1,
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for i, j = 1, . . . , n. Such a basis is called the natural basis for A.
It is easy to see that our earlier examples of gametic and zygotic algebras for

simple Mendelian inheritance, as well as the general gametic and zygotic algebras,
are all algebras with genetic realization. In a general algebra A with genetic real-
ization, an element x in A represents a population, or a gene pool for a population,
if its expression as a linear combination of the basis elements a1, . . . , an,

x = ξ1a1 + ξ2a2 + · · ·+ ξnan,

satisfies 0 ≤ ξi ≤ 1 for all i = 1, . . . , n and
∑n

i=1 ξi = 1. Then ξi is the percentage
of the population x which carries the allele ai.

The class of all algebras with genetic realization is too large to say much about.
However, since all gametic algebras (and their commutative duplicates) satisfy the
definition, it provides a solid framework for what constitutes an algebra with genetic
significance.

3.1. Baric Algebras. For strictly mathematical purposes, it is unnecessary to
restrict the field our algebras are defined over to be the real numbers. Hence, we
will work over an arbitrary field k when appropriate. As we have seen, algebras with
genetic realization are not necessarily associative algebras. However, they do belong
to a rather special class of nonassociative algebras. A general nonassociative algebra
need not possess a matrix representation. Yet, algebras with genetic realization
do. In fact, they possess the simplest possible matrix representation – a scalar
representation.

An algebra A over a field k is called a baric algebra if it admits a non-trivial
algebra homomorphism ω : A → k. In other words, a baric algebra is an algebra
with a one-dimensional representation. The homomorphism ω is called the weight
function (or baric function).

Proposition 3.1. Let A be an n-dimensional algebra with genetic realization over
R. Then A is a baric algebra.

Proof. Let {a1, . . . , an} denote a natural basis for A. Define ω : A→ R by ω(ai) = 1
for i = 1, . . . , n and then extend linearly onto A. I.e., if x =

∑n
i=1 ξiai, then

ω(x) =
∑n

i=1 ξiω(ai). Hence, ω(x) =
∑n

i=1 ξi. Then we need only show that ω is a
homomorphism.

Let x =
∑n

i=1 ξiai and y =
∑n

j=1 βjaj . Then

xy =

n∑
i=1

ξiai

n∑
j=1

βjaj

=

n∑
i=1

ξi

 n∑
j=1

βjaiaj


=

n∑
i=1

ξi

 n∑
j=1

βj

(
n∑

k=1

γijkak

)
=

n∑
i=1

n∑
j=1

n∑
k=1

ξiβjγijkak.
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Then apply ω to get that

ω(xy) =
n∑

k=1

(
n∑
i=1

ξi

) n∑
j=1

βj

 γijk

=

(
n∑
i=1

ξi

) n∑
j=1

βj

 n∑
k=1

γijk

=

(
n∑
i=1

ξi

) n∑
j=1

βj

 ,

since
∑n

k=1 γijk = 1. But, then ω(xy) = ω(x)ω(y). Therefore, ω is a homomorphism
and A is a baric algebra.

From a strictly mathematical perspective, an interesting question to ask about
baric algebras is whether or not their weight functions are uniquely determined.
The following example (as found in [36]) shows that in general, they are not.

Example 3.1. Let A =< a1, a2, a3 >R be a commutative 3-dimensional algebra
with the multiplication table below.

a1 a2 a3

a1 a1 + a2 a2 a2

a2 a2 a2 a2

a3 a2 a2 a2 + a3

Then define ω1 : A → R via ω1(a1) = 1 and ω1(a2) = ω1(a3) = 0. And define
ω2 : A → R via ω2(a3) = 1, while ω2(a1) = ω2(a2) = 0. It is easy to see that
ω1 6= ω2, and it is a simple verification that they both define homomorphisms.

Even though the above example shows that not all baric algebras have a unique
weight function, many of them do. In order to exhibit at least a sufficient condition
for a baric algebra to have a unique weight function, we must first discuss the issue
of powers in a nonassociative algebra.

3.2. Principal and Plenary Powers. In a commutative, nonassociative algebra,
there are several ways to define and interpret the powers of an element. There are
two main types of powers which have genetic significance. Let x be an element of
a commutative nonassociative algebra A. The principal powers are defined to be
x, x2, x3, ..., where xi = xi−1x. If A is an algebra with genetic realization and an
element P represents a population, then each element P i of the sequence of principal
powers represents a population which resulted from the previous population P i−1

mating back with the original population P . On the other hand, the plenary powers
x, x[2], x[3], ... are defined as x[i] = x[i−1]x[i−1]. When P is an element representing
a population, the sequence of plenary powers contains the successive generations
resulting from random mating within the population, beginning with P . I.e., P [2]

is the result of the population P mating within itself, and P [3] is the result of the
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population P [2] mating within itself. Both the principal and plenary powers are of
biological as well as mathematical interest.

The following proposition provides a sufficient condition for a baric algebra to
have a unique weight function. Our proof follows [36].

Proposition 3.2. Let A be a baric algebra over a field k with weight function ω.
If N = Kerω is nil (i.e., all elements of N are nilpotent), then ω is uniquely
determined.

Proof. Let ϕ : A → k be any non-trivial homomorphism. Then our hypothesis is
that every x ∈ N is nilpotent, meaning there exists a positive integer r such that
the principal power xr = 0. Then ϕ(xr) = ϕ(0) = 0. So, ϕ(x)r = 0, and since
ϕ(x) ∈ k, this implies ϕ(x) = 0.

Then let y ∈ A \ N . So ω(y) 6= 0. Then consider the element y2

ω(y) − y. Since

ω is a homomorphism, it is easy to see that y2

ω(y) − y ∈ N . But by our above

argument, ϕ( y2

ω(y) − y) = 0. And this leads to ϕ(y)
(
ϕ(y)
ω(y) − 1

)
= 0. Thus, either

ϕ(y) = 0 or ϕ(y) = ω(y). If ϕ(y) = 0, then we’ve shown ϕ = 0, which contradicts
the assumption that ϕ is non-trivial.

Hence, ϕ(y) = ω(y) for every y ∈ A\N and ϕ(x) = 0 for every x ∈ N . Therefore,
ϕ = ω and the baric function is unique.

3.3. Idempotents. A non-zero element e in an algebra which satisfies the relation-
ship e2 = e is called an idempotent. In addition to their mathematical importance,
idempotents also have genetic significance. If a population P satisfies the equation
P 2 = P , this means that genetic equilibrium has been achieved after one generation
of random mating within the population P . I.e., the population P 2 has the same
genetic pool as the initial population P .

Mathematically, the existence of an idempotent in an algebra provides a direct
sum decomposition of the algebra. Hence, idempotents play a crucial role in de-
scribing the general structure of an algebra. Let A be a baric algebra over a field k.
The existence of an idempotent in A is not guaranteed. However, if A does contain
an idempotent e, then ω(e) = ω(e2) = ω(e)ω(e), so either ω(e) = 0 or ω(e) = 1.

Proposition 3.3. Let A be a baric algebra over a field k with weight function ω.
Suppose A contains an idempotent e such that ω(e) = 1. Then,

A = ke⊕Ker ω.

Proof. Let N = Ker ω = {x ∈ A | ω(x) = 0}. By the first homomorphism theorem,
A/N ∼= k. N is a two sided ideal with codimension one in A. Since ω(e) = 1,
ke ∩N = 0.

Let x be an arbitrary element of A. Then x−ω(x)e is in N , since ω(e) = 1. And

x = ω(x)e + (x− ω(x)e).

Hence, A = ke⊕N .

3.4. Train Algebras. For any element x in an associative algebra, there is a
normalized polynomial mx which annihilates x and has minimal degree. This is
called the minimal polynomial of x. For a nonassociative algebra A, a little care
must be taken to define polynomials in terms of principal powers (see [36]), but for
every element x there still exists a minimal polynomial mx.
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Let A denote a finite dimensional, commutative nonassociative algebra over a
field k. Let {a1, . . . , an} be a basis of A. It turns out that not only do minimal
polynomials of single elements exist, but there also exists a polynomial in principal
powers that annihilates all elements of A. The polynomial of minimal degree which
does this is called the rank polynomial of A. Denote it

f(x) = xr + θ1x
r−1 + θ2x

r−2 + · · ·+ θr−1x,(5)

where θp is a homogeneous polynomial of degree p in the coordinates ξi of the
generic element x =

∑n
i=1 ξiai.

For many of the algebras which arise in genetics, the polynomials θp depend only
on the baric weight function values of the ξi and not on the coefficients ξi themselves.
The algebras that satisfy this property are known as train algebras. While we have
defined the rank polynomial from a purely mathematical point of view, it does
have genetic relevance. Since the rank polynomial annihilates all elements of the
algebra, by setting the polynomial equal to zero we obtain an equation (called the
rank equation) which gives a recurrence relation among the principal powers. If
the rank polynomial is of degree r, then this recurrence relation indicates how the
genetic pool of the r-th generation (in the sequence of principal powers) is related
to the genetic pools of previous generations.

Definition 3.1. Let A be a baric algebra with weight function ω and rank poly-
nomial (5). A is called a train algebra of rank r if the coefficients θp of the rank
polynomial of A are functions of ω(x).

Let A be a train algebra and suppose L is an extension of k which contains the
splitting field of the rank polynomial f . Then in L, f splits into linear factors

f(x) = x(x− λ0ω(x))(x − λ1ω(x)) · · · (x− λr−2ω(x)).

The elements λ0, λ1, . . . , λr−2 of L are called the principal train roots of A. It is
easy to see that one of the principal train roots of A must be 1. (Apply the rank
polynomial to an element of weight 1 and then apply ω to the resulting polynomial
equation.)

The following are easy observations in the light of these definitions.

Proposition 3.4. Let A be a train algebra of rank r with weight function ω : A→
k. Then every element in N = Ker ω is nilpotent of an index not greater than r.

Proof. Since the θp of (5) are homogeneous polynomials of degree p and they are
functions of ω(x), then θp = βpω

p(x), where βp ∈ k. Hence, the rank polynomial
of A can be written

f(x) = xr + β1ω(x)xr−1 + β2ω
2(x)xr−2 + · · ·+ βr−1ω

r−1(x)x.

And we know this polynomial annihilates every element x of A. Hence if x ∈ N ,
then ω(x) = 0, so the rank equation f(x) = 0 becomes xr = 0. Therefore, x is
nilpotent of index less than or equal to r.

Corollary 3.1. A train algebra has a uniquely determined weight function.

Proof. Let A be a train algebra with weight function ω. By Proposition 3.4, N =
Kerω is nil. Then Proposition 3.2 implies ω is unique.

In Proposition 3.4, we proved that the subalgebra N = Ker ω of a train algebra
A is always nil, meaning all of its elements are nilpotent. A subalgebra B is said
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to be nilpotent if there exists a power of the subalgebra Bm which is zero. This is
a stronger condition than having all elements in the subalgebra be nilpotent. For
a general train algebra, the subalgebra N is not always nilpotent. Mathematically,
this stronger condition motivates the following definition.

Definition 3.2. A baric algebra A with weight function ω is called a special train
algebra if N = Ker ω is nilpotent and all of the principal power subalgebras N i of
A defined inductively by N1 = N,N i = N i−1N for i = 2, 3, . . . , are ideals of A.

Notice that this definition implies that the sequence of descending ideals

A ⊃ N = N1 ⊃ N2 ⊃ N3 ⊃ · · ·N r ⊃ N r+1 =< 0 >,

terminates.
The special train algebra was Etherington’s first attempt to specialize the sub-

ject of “genetic algebras” down to a manageable size. The goal was to find a
definition that would be general enough to encompass most of the algebras which
arise in genetics, but specific enough to study the intricate details of the structure
mathematically. However, in [10], Etherington pointed out the fatal flaw of his own
definition. Although the fundamental gametic algebras are special train algebras,
their commutative duplicates (the zygotic algebras) may fail to be special train
algebras. Hence, a more general definition was still needed.

3.5. Genetic Algebras. R. D. Schafer [32], less than a decade after Etherington’s
first papers appeared, was the first to provide a candidate for the definition of a
genetic algebra.

Before stating the definition we should say a few words about transformation
algebras. Suppose A is any commutative, nonassociative algebra over a field k.
For x ∈ A, let Rx : A → A indicate right multiplication by x. Since A is com-
mutative, right multiplication by x is equivalent to left multiplication by x. Then
the transformation algebra T (A) of A is the algebra consisting of all polynomi-
als of right multiplication operators on A, as well as the identity operator on A.
Hence any transformation T in the transformation algebra of A can be represented
as T = αI + f(Rx1 , . . . , Rxs), where α ∈ k, I is the identity on A, and f is a
polynomial.

Definition 3.3 (Schafer [32]). Let A be a commutative baric algebra over a field
k with weight function ω. Then A is a genetic algebra if the characteristic function
|λI − T | of any transformation T = αI + f(Rx1 , . . . , Rxs), in the transformation
algebra of A, is a function of ω(x1), . . . , ω(xs).

It should be noted that, unlike Etherington, Schafer studied these algebras purely
for their mathematical interest and, in fact, specifically stated in [32] that he could
offer no insight into their genetic significance. However, by applying the above
definition to the transformation T = Rx, Schafer [32] proved that all of his genetic
algebras are also train algebras. In the same paper he also proved that every special
train algebra is a genetic algebra and that genetic algebras are closed under com-
mutative duplication. These facts alone signify that Schafer’s notion of a genetic
algebra is worthy of its name. However, two decades later, P. Holgate [24] demon-
strated that Schafer’s definition did, in fact, have relevance genetically. Using tools
from Lie algebra theory, Holgate provided some alternative characterizations of
Schafer’s genetic algebras which illuminated their genetic significance. It turns out
that the algebras which naturally occur in genetics will satisfy Schafer’s condition
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as long as there is a certain amount of symmetry in the genetic system. And as we
saw in our simple Mendelian inheritance examples, the most basic genetic systems
do contain a substantial amount of symmetry.

Although Schafer’s definition succeeded in filling the gap betweeen train algebras
and special train algebras, the impracticality of verifying the definition was still a
problem. For a given genetic situation, it is, in general, quite difficult to verify that
its gametic (or zygotic) algebra satisfies Schafer’s condition on the characteristic
function of every transformation in the transformation algebra. For this reason,
another definition was sought. In 1971, twenty-two years after Schafer’s original pa-
per [32] appeared, H. Gonshor [14] gave a definition which is equivalent to Schafer’s,
but has the benefit of utility.

Definition 3.4 (Gonshor [14]). Let A be a commutative finite dimensional alge-
bra. Then A is a genetic algebra if there exists a basis {a0, a1, . . . , an} with multi-
plication table

aiaj =

n∑
k=0

λijkak,

such that the multiplication constants satisfy the following:

λ000 = 1,

λ0jk = 0, for k < j,

λijk = 0, for i, j > 0 and k ≤ max(i, j).

Such a basis is called a canonical basis of A.

In Section 5 we will encounter a few of the genetic applications that benefit from
the verifiability of Gonshor’s definition.

Up to this point, our definitions all fall nicely into a linear implication diagram
(see Figure 1). Yet there are other classes of algebras with genetic relevance which
do not fit in between any of our previous definitions. Those are the Bernstein and
k-th order Bernstein algebras which we’ll consider in the next section.

Algebras with genetic realization

⇑
Baric algebras

⇑
Train algebras

⇑
Genetic algebras

(Schafer = Gonshor)

⇑
Special train algebras

Figure 1. Implication diagram for nonassociative algebras with
genetic significance
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4. Bernstein and k-th order Bernstein algebras

Etherington’s [9] definition of a train algebra specifies a condition on the sequence
of principal powers of a baric algebra. From a mathematical point of view, the
principal powers are much more tractable than their cousins, the plenary powers.
However, from a geneticist’s point of view, the sequence of plenary powers is of
greater interest since the plenary powers more accurately model the way most
populations reproduce. This is the viewpoint that motivates the classes of Bernstein
and k-th order Bernstein algebras. In the early 1920’s, S. Bernstein [2], [3], [4]
studied a quadratic evolutionary operator Ψ, which mapped the simplex of genetic
frequency distributions

∆n = { (x0, . . . , xn) | xi > 0,
∑

xi = 1 }
into itself and represented the passage of one generation to the next. Bernstein
set out to classify all such operators which satisfied the condition Ψ2 = Ψ. This
condition later came to be known as Bernstein’s stationarity principle. The condi-
tion Ψ2 = Ψ indicates that the population is in equilibrium after one generation.
Evolutionary operators satisfying this condition are idempotent evolutionary oper-
ators. After Bernstein’s initial results (which included a complete classification for
n = 2), the problem was later studied by Lyubich [27] and then, in 1975, by Philip
Holgate [25].

Holgate’s approach began by extending the quadratic evolutionary operator Ψ
linearly to an entire real vector space V with basis {a0, . . . , an}. Then by defining
a multiplication on V via

xy =
1

2
{Ψ(x+ y)−Ψ(x)−Ψ(y)},

V becomes a commutative algebra over R. Then we define a map ω : V → R by
setting ω(ai) = 1 for all 0 ≤ i ≤ n and extending this definition linearly onto the
vector space V . Recalling that Bernstein’s evolutionary operator is quadratic, it
follows that ω(Ψ(x)) = ω2(x) for all x ∈ V . From this property and the linearity
of ω, one can directly calculate that ω is a homomorphism. I.e.,

ω(xy) = ω(
1

2
{Ψ(x+ y)−Ψ(x)−Ψ(y)}),

=
1

2
{ω(Ψ(x+ y))− ω(Ψ(x)) − ω(Ψ(y))},

=
1

2
{ω2(x+ y)− ω2(x) − ω2(y)},

=
1

2
{(ω(x) + ω(y))2 − ω2(x) − ω2(y)},

= ω(x)ω(y).

And hence V is a baric algebra with weight function ω.
On the entire vector space V , Bernstein’s principle becomes Ψ2(x) = ω2(x)Ψ(x).

And recalling that the operator Ψ(x) represents the genetic evolution of a popula-
tion x to the next generation, i.e., the first plenary power x[2], we obtain Holgate’s
definition of a Bernstein algebra.

Definition 4.1. Let A be a finite-dimensional, commutative baric algebra over a
field k (with characteristic of k not equal to 2), and let ω denote the weight function.
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Then A is called a Bernstein algebra if the plenary powers of any element x ∈ A
satisfy

x[3] = ω2(x)x[2].

We note that Holgate’s original definition was for a baric algebra over the com-
plex numbers, but today, the general definition above (using a field k of character-
istic not 2) is more commonly given.

Since a Bernstein algebra is a baric algebra with a condition on the plenary
powers, whereas a train algebra required a condition on the principal powers, this
new class of algebras does not fit nicely between any of our previous definitions.
However, as Holgate proved in his seminal paper [25], certain Bernstein algebras
do contain subalgebras which are special train algebras. In addition, it would
seem that the class of Bernstein algebras, perhaps more so than any of the other
classes discussed so far, provides a fertile meeting ground between the mathematics
and the genetics. From Bernstein’s original problem and Holgate’s development of
the definition of a Bernstein algebra, the genetic relevance is quite clear. Those
elements of a Bernstein algebra with baric weight 1 satisfy the equation x[3] =
x[2]; i.e., they reach genetic equilibrium after one generation of random mating
within the population. Therefore, complete knowledge of the structure of these
abstract nonassociative algebras would provide a great deal of genetically significant
information. On the other hand, mathematically speaking, the challenge to classify
these algebras is a rich open problem. Here is a small sample of what is known
about the structure of a general Bernstein algebra.

If A is a Bernstein algebra, then it must contain at least one idempotent element.
Just let x be some element of A with baric weight 1 (i.e., ω(x) = 1) and take e = x2.
Then the definition of a Bernstein algebra implies that e2 = e. Now, let Z = Ker ω.
Then Holgate [25] showed that Z2 is an ideal of A, and so the following proposition
holds.

Proposition 4.1 (Holgate [25]). Let A be a Bernstein algebra with weight function
ω and Z = Kerω. If Z3 = 0, then A is a special train algebra.

Mathematically, one of the most useful facts about the structure of a Bernstein
algebra is the direct sum decomposition it possesses. Without proof, we offer the
result below.

Proposition 4.2 (Holgate [25]). Let A be a Bernstein algebra with weight function
ω. Let e denote an idempotent of A. Let Z = Kerω. Let U = {x ∈ Z | ex = 1

2x}
and V = {x ∈ Z | ex = 0}. Then

A = ke⊕ U ⊕ V.

Another remarkable (and extremely useful) fact about a Bernstein algebra is the
classification of all of its idempotents.

Proposition 4.3 (Holgate [25]). Let A be a Bernstein algebra and let e denote one
idempotent in A. Then all idempotents of A have the form e+u+u2, where u ∈ U
and U = {x ∈ Z | ex = 1

2x}.
There is much more known about the structure of Bernstein algebras, and we

hope this brief sampling has enticed the reader to learn more.
A very natural generalization of a Bernstein algebra arises when we alter the

condition on the plenary powers to reflect not equilibrium after one generation of
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mating, but instead after k generations of mating. The resulting class of algebras
is called the k-th order Bernstein algebras. The definition of a k-th order Bernstein
algebra was initially given by Abraham [1], and a good reference for the basic
properties they possess is Hentzel, Peresi, and Holgate [21]. We will just state the
definition here.

Definition 4.2. Let A be a finite-dimensional, commutative baric algebra over a
field K (with characteristic of K not equal to 2), and let ω denote the weight
function. Then A is called a k-th order Bernstein algebra if the plenary powers of
any element x ∈ A satisfy

x[k+2] = ω(x)2
k

x[k+1].

5. Applications

Now that we have outlined the basic structure of the nonassociative algebras
which arise from the process of genetic inheritance, we turn our attention to some
actual genetic applications. How does our knowledge of the algebraic structure
apply to real genetic situations?

In [11], Etherington observed that geneticists already used some of these basic
algebraic notions without explicitly recognizing them. And so he set out to formalize
those algebraic notions that geneticists were already utilizing and to hopefully, via
abstract algebra, advance the symbolism to a point where it could simplify the
geneticists’ methods of dealing with certain problems.

The branch of genetics we are concerned with is called population genetics, i.e.,
the study of how populations evolve through the generations. For a given mating
system, the ultimate goal of population genetics is to determine the distribution
of genetic types in the n-th filial generation based on the genetic types present in
the original population as well as to determine the equilibrium distribution, if one
exists.

In the examples which follow we will discuss the two major types of application
of the genetic algebra theory to genetics: (1) using the algebra as formalization of
traditional methods and (2) using the algebra to advance the study of genetics.

5.1. Linearization in Genetic Algebras. The first application we will consider
is actually an important result in genetic algebra theory, but we consider it as
an application because it illustrates the way the algebraic theory can contribute
directly to genetics. As we mentioned in Section 4, the evolutionary operator
which represents the passage of genetic frequencies from one generation to the
next is a quadratic operator — not a linear one. Hence, matrix methods are not
immediately useful to population geneticists. However, in 1930, a geneticist named
Haldane [20] described a procedure which, in some cases, enabled this quadratic
evolutionary operator to be represented by a linear transformation (on a higher
dimensional space). Following up on this idea and implementing the mathematical
theory, Holgate [22] proved that for any mating system that forms a genetic algebra,
the quadratic evolutionary operator can be represented by a linear transformation
on a higher dimensional space. There is also a systematic procedure for calculating
the matrix associated to this linear transformation.

Suppose A is a genetic algebra with weight function ω : A→ R. Let E : A→ A,
which sends a population p to p2, be the evolution map. If the population mates
randomly within its generation, successive generations are given by the plenary
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powers p[n] = p[n−1]p[n−1]. The main application problem in population genetics is
to determine these successive generations in terms of an initial population, i.e., to
find an equation (or recurrence relation) which determines the n-th plenary power
from the initial population. After proving that this linearization process (sometimes
referred to as Haldane linearization) works for all genetic algebras, Holgate [22] used
the process to prove that if a genetic algebra contains an idempotent element, then
the plenary powers satisfy a train equation (i.e., a recurrence relation). Hence,
the linearization process is a crucial tool in the algebraic theory for extracting
genetically significant information from the algebras that model genetic inheritance
systems.

We now describe the basic scenario of the Haldane linearization process. Let H
denote the set ω−1(1) of elements in A of baric weight one. The set H contains
all the population states in the genetic algebra. Written in algebraic language, the
Haldane linearization process says that we can imbed H into a finite dimensional
vector space V such that the following diagram commutes:

H
φ−→ VyE yL

H
φ−→ V

where φ : H → V is the imbedding, E : H → H is the quadratic evolutionary map,
and L : V → V is a linear map. After Holgate [22] proved this result for genetic
algebras, McHale and Ringwood [29] found necessary and sufficient conditions for
the result to hold in a general baric algebra.

We now move on to consider three different genetic inheritance systems and some
of the algebraic theory that can be applied in each case. The three examples, self
fertilization, autopolyploidy, and sex linked inheritance, give a representative sam-
pling of how the algebraic theory is used to model and study real genetic inheritance
systems.

5.2. Self Fertilization. In [11], Etherington considered several different mating
systems, including self fertilization, and used the algebraic formalization of the
corresponding inheritance rules in each situation to compute the distribution of the
n-th filial generation and the equilibrium distribution. We will illustrate this type
of application here in the case of self fertilization.

Self fertilization occurs mainly in the plant world. The scenario we will consider
is the pure selfing of diploids at one genetic locus. I.e., we’ll start with three zygotes
AA, Aa, and aa and the zygotic distribution

P = αAA + βAa + γaa,

where α, β, and γ are the proportions of the population with zygotes AA,Aa, and
aa, respectively. Hence, α+β+γ = 1. So in terms of algebras, this population P is
an element of the zygotic algebra for simple Mendelian inheritance with two alleles.
However, we do not want to study what happens when P mates randomly with
other populations. Instead we will focus on the resulting filial generations after
repeated self fertilization, starting with P . Using the rules of the zygotic algebra
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(found in Table 3), the first filial generation F1 after self fertilization will be

F1 = α(AA ×AA) + β(Aa ×Aa) + γ(aa× aa)

= αAA + β

(
1

4
AA+

1

2
Aa +

1

4
aa

)
+ γaa

=

(
α+

1

4
β

)
AA+

1

2
βAa +

(
1

4
β + γ

)
aa.

The first question we would like to answer is: What is the n-th filial generation

Fn = αnAA+ βnAa + γnaa

through self fertilization? We’ll follow Etherington’s clever method, as found in
[11]. Let un denote the population increase from the Fn−1 generation to the n-th
filial generation Fn. So, u1 = F1 − P , u2 = F2 − F1, etc. Using the F1 distribution
we calculated above, we see that

u1 =
1

4
βAA− 1

2
βAa +

1

4
βaa

=
1

2
β

(
1

2
AA−Aa+

1

2
aa

)
.

Again using the rules of the zygotic algebra from Table 3, we calculate the second
filial generation F2 = F1 × F1, which is

F2 =

(
α+

3

8
β

)
AA+

1

4
βAa +

(
3

8
β + γ

)
aa.

Then,

u2 =
1

8
AA− 1

4
βAa +

1

8
βaa

=
1

4
β

(
1

2
AA−Aa+

1

2
aa

)
.

If we continued to calculate in this fashion, we would find that

un =
1

2n
β

(
1

2
AA−Aa +

1

2
aa

)
.

And then the total increase in n generations will be

u1 + u2 + u3 + · · ·+ un =

(
1

2
AA−Aa +

1

2
aa

)(
1

2
+

1

4
+ · · ·+ 1

2n

)
β

= β

(
1− 1

2n

)(
1

2
AA−Aa +

1

2
aa

)
.

Hence,

Fn = αAA+ βAa + γaa+ un

=

(
α+

1

2
β − 1

2n+1
β

)
AA+

1

2n
βAa +

(
1

2
β + γ − 1

2n+1
β

)
aa.

From here it is easy to identify the equilibrium distribution. Examining Fn we see
that as n increases, Fn approaches the equilibrium distribution of (α + 1

2β)AA +

(γ + 1
2β)aa. Notice that in the equilibrium distribution the heterozygote Aa does

not appear. Thus, repeated self fertilization will kill off the heterozygotes. This
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procedure for finding Fn is an example of the first type of application, i.e., using
the algebra as a formalization of traditional methods.

A more modern use of the genetic algebra theory to self fertilization can be found
in Holgate [26]. In this paper Holgate moves beyond the algebraic formalization
to try to apply some of the key ideas of genetic algebras to self fertilizing mating
systems. He studies mating systems that are capable of both self fertilization and
random mating. He defines a compatibility condition between the self fertilization
in the algebra and random mating and then proves that when this compatibility
condition is satisfied, Haldane linearization can be extended to these algebras. He
also exhibits three genetic situations whose zygotic algebras satisfy his compatibil-
ity condition: (1) a single diploid locus with multiple alleles, (2) polyploidy, with
chromosome or chromatid segregation or a mixture of the two, and (3) k indepen-
dently segregating loci with no distinction between the partitions of genes between
chromosomes.

In summary, self fertilization provides us with an example of how historically the
application of genetic algebra theory has been applied to a real genetic inheritance
system. At first the algebra is used as formalism for the traditional approach, and
as time goes by the algebraic investigation becomes more sophisticated (e.g., the
Haldane linearization process). Hopefully, the end result is to provide new insight
into real genetic problems.

5.3. Autopolyploidy. While humans and many of the higher animal species are
diploid organisms (i.e., carrying two sets of chromosomes), cells in many plant
species and some invertebrates may contain more than two sets of chromosomes.
Such cells or organisms are, in general, called polyploid. Specifically, a cell which
contained three sets of chromosomes would be called a triploid and a cell which con-
tained four sets of chromosomes would be called a tetraploid. An autopolyploid
is a polyploid that carries more than two identical haploid sets of chromosomes from
the same species. This is one area of genetic investigation where the theory of ge-
netic algebras is decidedly advantageous over traditional methods. Before algebras
were introduced to the theory of genetics, the study of autopolyploid individuals
involved rigorous computation. Haldane [20] was the first to initiate such investi-
gations on autopolyploids with an even number of chromosome sets. The genetic
algebra history of autopolyploidy again begins with Etherington [9]. He described
the simplest possible example, the gametic algebra for autotetraploid individuals
at one gene locus with two possible alleles (with pure chromosome segregation).
The gametic types are AA,Aa, and aa. The multiplication table appears in Table
4. This gametic algebra turns out to be a special train algebra with principal train
roots 0, 1, 1

6 .
After Etherington, Gonshor [12], [13], [14] continued studying autopolyploidy

taking into account populations with mutation and multiple alleles. In [13], he
proved that both the gametic and zygotic algebras for polyploidy with multiple
alleles are special train algebras. And in [14], he proved that polyploidy multiple
allelic algebras with mutation are genetic algebras. It was in this same paper that
Gonshor provided his definition of the genetic algebra and proved it was equivalent
to Schafer’s. In fact, it was the polyploid algebras that Gonshor used to demonstrate
the utility of his new definition. The following is Gonshor’s concluding paragraph
of this important paper [14].
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AA Aa aa

AA AA 1
2AA+ 1

2Aa
1
6AA+ 2

3Aa + 1
6aa

Aa 1
2AA+ 1

2Aa
1
6AA+ 2

3Aa+ 1
6aa

1
2Aa+ 1

2aa

aa 1
6AA+ 2

3Aa + 1
6aa

1
2Aa + 1

2aa aa

Table 4. Multiplication table of the gametic algebra for autotetraploids

We have emphasized throughout the use of mappings. Although an
explicit computation of the multiplication tables would be highly
involved we have seen that at least theoretically the structures
of the algebras can be visualized. If we were forced to use the
original basis elements which correspond to genotypes the table
would truly become messy. But this is essentially what happens
in classical population genetics. Thus we have seen examples how
the technique of genetic algebras can handle problems which are
difficult to handle by classical methods.

And so the study of polyploidy serves as a bridge between the superficial and
the productive applications of nonassociative algebras to real genetics.

5.4. Sex Linked Inheritance. The final application we will consider, in more
detail than the others, is sex linked genetic inheritance. Modelling sex linked inher-
itance with algebras involves overcoming the obstacle of asymmetry in the genetic
inheritance rules. Inheritance which is not sex linked is symmetrical with respect
to the sexes of the organisms, while sex linked inheritance is not. Our main focus
in this section will be to carefully examine how the basic algebraic model must be
altered in order to compensate for this lack of symmetry in the genetic inheritance
system.

Again, it was Etherington [11] who began the study of this application with the
simplest possible case. Consider a diploid population of male and female organisms.
The males will be heterogametic (carrying chromosomes X and Y) while the females
are homogametic (carrying two X chromosomes). Etherington began by considering
a single gene difference on the X chromomsome. So the gametic types for females are
A and a, while the gametic types for males on the X chromosome are A and a, and
we will indicate the gametic type on the Y chromosome with the letter Y . Assuming
simple Mendelian segregation occurs in both sexes, gametic multiplication is shown
in Table 5.

The possible female zygotes are AA, Aa, and aa, and the possible male zygotes
are AY and aY . From the table of gametic multiplication we can then obtain a
zygotic multiplication table. E.g., we calculate

AA×AY = A(
1

2
A+

1

2
Y ) =

1

2
AA+

1

2
AY.

Since only opposite sex mating will produce offspring, we have many products in the
zygotic algebra that will be set equal to zero. E.g., the following would represent a
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A a Y

A A 1
2A+ 1

2a
1
2A+ 1

2Y

a 1
2A+ 1

2a a 1
2a+ 1

2Y

Table 5. Gametic multiplication for sex linked inheritance

AA Aa aa AY aY

AA 0 0 0 1
2AA+ 1

2AY
1
2Aa+ 1

2AY

Aa 0 0 1
4AA+ 1

4Aa + 1
4AY + 1

4aY
1
4Aa + 1

4aa+ 1
4AY + 1

4aY

aa 0 1
2Aa+ 1

2aY
1
2aa+ 1

2aY

AY 0 0

aY 0

Table 6. Multiplication table for zygotic algebra for sex linked inheritance

product of two male zygotes and so they are all set equal to zero:

AY ×AY = 0,

aY × aY = 0,

AY × aY = 0.

Similarly, products of two female zygotes are zero. The zygotic multiplication table
is shown in Table 6. For the sake of space only half of the table is given, but we note
that the blanks in the table can be filled in by using commutativity. E.g., it still
makes no difference whether we write AA × AY or AY × AA, since both describe
the mating of female zygote AA and male zygote AY . The algebra with vector
space basis {AA,Aa, aa,AY, aY } and multiplication table as in Table 6 is called
the zygotic algebra for sex linked inheritance for two alleles with simple Mendelian
segregation rates.

While modelling the phenomenon of sex linked inheritance in this way seems
rather straight-forward, there are significant differences in the structure of these
algebras when compared to genetic inheritance which is symmetric with respect
to sex. The major structural difference is that this zygotic algebra is not the
commutative duplicate of a gametic algebra. E.g., AA × AA 6= AA as it would
be in the commutative duplicate. For the same reason, the zygotic algebra for sex
linked inheritance is not a baric algebra. To overcome this apparent complication,
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Etherington [11] introduced the idea of treating the male and female components of
a population separately. Subsequently, Holgate [23] formalized this concept with the
introduction of his sex differentiation algebra and a generalization of baric algebras
called dibaric algebras. Following the modern notation of Wörz-Busekros [36], we
introduce Holgate’s definitions below.

Definition 5.1. Let S =< w,m >R denote a two dimensional commutative alge-
bra over R with multiplication table

w2 = m2 = 0,

wm =
1

2
(w +m).

Then S is called the sex differentiation algebra.

It is clear that S2 =< w + m >R is an ideal of S which, in fact, is isomorphic
with the field R. And so the algebra S2 is a baric algebra. From this we can define
Holgate’s generalization of a baric algebra.

Definition 5.2. An algebra will be called dibaric if it admits a homomorphism
onto the sex differentiation algebra S.

The purpose of this definition is the following quick result of Holgate’s [23].

Proposition 5.1. If an algebra A is dibaric, then A2 is baric.

Proof. Since A is dibaric, there exists an onto homomorphism φ : A → S. Thus,
φ(A) = S, which by the homomorphism property implies φ(A2) = S2. However,
we’ve already noted that S2 is isomorphic with R. Therefore, A2 is a baric algebra
since φ : A2 → R is an onto homomorphism.

With these notions in place we now introduce the general definition of a zy-
gotic algebra for sex linked inheritance with more than two gametic types. Let
a0, a1, . . . , an be the different gametic types on the X chromosome. There are
(n + 1)2 female genotypes aiaj , which we denote by aij for all i, j = 0, . . . , n. In-
herent in this notation aiaj is that the ai is of maternal origin and aj is of paternal
origin. Male genotypes are given by aiY for i = 0, . . . , n. We assume that the
female genotype aij produces the gamete ak with probability γijk, while the male
genotype aiY produces ak with probability γik. In the absence of selection and if
male genotypes produce X and Y gametes with the same frequency, then

n∑
k=0

γijk = 1,

n∑
k=0

γik =
1

2
.

Let Z be the real vector space with basis

{ aij , aiY | i, j = 0, . . . , n }
of dimension (n+ 1)2 + n+ 1 = n2 + 3n+ 2. Give Z the multiplication

aij · alY = alY · aij =

n∑
k,r=0

γijkγlralr +
1

2

n∑
k=0

γijkakY,

aij · alp = alY · apY = 0,
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for i, j, l, p = 0, . . . , n. Then Z is the zygotic algebra for asymmetric sex linked
inheritance with gametic types a0, . . . , an. Z is a commutative and nonassociative
algebra. Z is not a baric algebra since certain basis elements are nilpotent of index
two. However, the zygotic algebra Z is dibaric via the homomorphism φ : Z → S
where φ(aij) = w and φ(aiY ) = m for i, j = 0, . . . , n. Then by Proposition 5.1, Z2

is a baric algebra.
From here one approach is to apply the development of baric algebras to Z2

in order to determine structural information about Z. This is the line of thought
that was pursued by Holgate [23]. However, the dimension of Z2 depends on the
segregation rates of the multiplication in Z (i.e., the numbers γijk and γik). A
fruitful alternative is to follow Gonshor [12], [13], [15] and Wörz-Busekros [34], [35],
[36], who utilize a baric ideal of Z for the same purpose. The following proposition
can be found in Wörz-Busekros [36] with a proof appearing in [34].

Proposition 5.2. The set

L = {
n∑

i,j=0

αijaij +
n∑
i=0

αiaiY |
n∑

i,j=0

αij =
n∑
i=0

αi }

is an ideal of Z which contains Z2. Furthermore, L is a baric algebra with weight
homomorphism ϕ : L → R given by

ϕ

 n∑
i,j=0

αijaij +

n∑
i=0

αiaiY

 =

n∑
i=0

αi.

Genetically, concentrating on the subalgebra L will give us all of the actual
populations in the zygotic algebra Z. I.e., L contains all the elements of Z which
correspond to actual populations, whereas Z2 only contained those populations
resulting from one generation of random mating. We notice also that the dimension
of L is n2 + 3n+ 1, regardless of the segregation rates in Z.

Next we turn our attention to Gonshor [15], who introduced the concept of sex
linked duplication. This concept followed Gonshor’s [14] own basis-free approach
to commutative duplication.

Let A be a baric algebra with weight homomorphism ω. We will define the
sex linked duplicate of (A,ω) to be an algebra C with underlying vector space
A×A⊕A. We note that Gonshor uses the notation A×A to represent the vector
spaceA⊗A/I, where I is the subspace generated by elements of the form a⊗b−b⊗a.
The multiplication defined on A×A⊕A is given by

(a× b⊕ c)(d× e⊕ f) =
1

2
(ab× f ⊕ ω(f)ab) +

1

2
(de × c⊕ ω(c)de) ,

where ab denotes the product of a and b in A. Gonshor [15] showed that this
operation is well defined. Now, identifying a × b with a × b ⊕ 0 and c with 0 ⊕ c,
we see that

(a× b)(c× d) = 0,

ab = 0,

(a× b)c = c(a× b) =
1

2
(ab× c+ ω(c)ab) ,

for all a, b, c, d ∈ A. By examining these equalities we begin to see the sex linked
algebraic structure of Z appear. In addition, the algebra C that we have defined
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on A × A ⊕ A is not baric, while C2 is. We note that every x ∈ C can be written
uniquely as x1 + x2 where x1 ∈ A×A and x2 ∈ A. In C we now define two linear
functions ω′ and ω′′. If x = a × b + c, define ω′(x) = ω(c) and ω′′(x) = ω(a)ω(b),
then extend by linearity to all of C. Then let D be the subset of C consisting of
all x ∈ C such that ω′(x) = ω′′(x). It turns out that C2 ⊂ D, D is a subalgebra
of C, and D is a baric algebra. Therefore, C2 is baric as well. Gonshor [15] goes
on to show that if A is a genetic algebra, then D is also a genetic algebra by again
utilizing his definition of a genetic algebra. Finally, we state the equivalence of this
construction to our original sex linked zygotic algebra Z.

Proposition 5.3. The zygotic algebra Z for sex linked inheritance and the sex
linked duplicate A×A⊕A of (A,ω) are isomorphic.

This basis-free approach to sex linked inheritance has proven to be a worthy
path to travel. In addition to Gonshor, Wörz-Busekros [35] also followed this line
of inquiry and obtained results concerning the genetically significant sequence of
plenary powers. If x ∈ L with ϕ(x) = 1, we let

x[t] =

n∑
i,j=0

α
[t]
ij aij +

n∑
i=0

α
[t]
i aiY

be the representation of the t-th plenary power of x. Wörz-Busekros found that
the coordinates of x[t] satisfy the recurrence relations

α
[t+1]
kr = (

n∑
i,j=0

α
[t]
ij γijk)(

n∑
l=0

α
[t]
l 2γlr),

α
[t+1]
k =

n∑
i,j=0

α
[t]
ij γijk,

where k, r = 0, . . . , n. These recurrence relations also lead to conditions for an
element of L to be an idempotent, which, as we discussed earlier, also has genetic
significance.

The application of the genetic algebra theory to the genetics of sex linked inheri-
tance provides us with a good example of how versatile the algebraic theory can be.
As we saw, even the asymmetric nature of sex linked inheritance can be modelled
effectively with algebras.

Conclusion

As we began to see in the last section on applications, describing different vari-
ations of genetic inheritance systems and studying the population genetics of each
seem to be a never ending exercise. The examples we considered in this paper
indicate that utilizing the theory of genetic algebras is usually a worthwhile en-
deavor. Some genetic systems clearly benefit more than others from the algebraic
theory. But even those systems that are just as easily considered via traditional
methods can be “cleaned up” with the formal language of abstract algebra. And so
we conclude that this area of research activity is full of possibilities for the future,
not only for mathematicians, but also for geneticists seeking a more systematic and
powerful way to model real genetics.

Non-associative algebra, in general, is currently a very active field of mathemat-
ical research. However, in comparison with the body of literature of other classes
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of nonassociative algebras (e.g, Lie algebras or Jordan algebras), the study of the
algebras associated with the problems of genetic inheritance is still in its infancy.
With that said, I should add that there is current research taking place on most of
the algebras introduced in this survey article. A random sampling of current refer-
ences might include Wörz-Busekros [37]; Walcher [33]; Guzzo [18], [19]; Costa and
Guzzo [7], [8]; Hentzel, Peresi, and Holgate [21]; Peresi [31]; Cortés [6]; Martinez
[28]; Burgueño, Neuberg, and Suazo [5]; González and Martinez [16]; and González,
Martinez, and Vicente [17]. This list is by no means complete, but it does provide
a starting point for some of the current work being done in the field. It is inter-
esting to note there are very few American authors among this list. For whatever
reason, these “genetic algebras” are not widely discussed or studied presently by
American mathematicians. Hopefully, this article will open an avenue for future
discussion and research into this fascinating class of nonassociative algebras and
their relationship to the science of genetic inheritance.
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