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 SIGNED DIGRAPHS AND THE ENERGY CRISIS

 FRED S. ROBERTS AND THOMAS A. BROWN

 1. Introduction. Recently, the seriousness of the "energy crisis" has been
 increasingly revealed. Attempts to understand the patterns of energy use and the

 effects of various energy conservation strategies require the understanding of an
 extremely complex system. Such a system involves many variables interacting with
 each other, reacting to changes in each other, and so on. In attempting to model
 such a complex system, one faces a tradeoff between the accuracy of the model's
 predictions and the ability to obtain the detailed information needed to build the
 model. In this paper, we describe one way to model complex systems, such as those
 underlying the energy crisis, which is based on a minimal amount of information
 about the system.

 It is useful to divide methodologies for analyzing complex systems into two types,
 the arithmetic and the geometric. (Cf. Kane [3], Kane, Vertinsky, and Thompson [5],

 and Coady, Johnson and Johnson [1].) Arithmetic methodologies tend-to be numer-
 ical and precise, and usually aim at the optimization of a few parameters. They tend
 to be present-oriented and relatively sensitive to change or modification of the basic
 parameters. Geometric methodologies tend to be rather non-numerical, and take
 account of variables which are not readily quantifiable. Their aim is an analysis
 of structure and shape, and especially of changing patterns of structure which may

 have different ramifications for the future. The models we shall discuss are geo-
 metric in nature and make use of signed and weighted directed graphs.

 In Sections 2 4nd 3 we describe the models in general terms. Section 4 introduces
 a specific rule for change of value of the variables. Sections 5 and 6 give criteria
 for a system to be stable under external pressures. Finally, the results are applied
 to specific energy questions in Section 7.

 2. Signed digraphs. We begin by recalling some elementary definitions of graph
 theory. A directed graph or digraph D consists of a set V called the vertices and a

 subset A of V x V called the set of arcs. Our digraphs may have loops, that is, arcs
 of the form (x, x). A signed digraph consists of a digraph together with an assign-
 ment of a sign + or - to each arc. Following Harary, Norman, and Cartwright [2]
 we say that a sequence in a digraph D is a sequence of vertices x1, x2, .., xt so that
 for all i, (xi, xi+ ,) is an arc. The sign of a sequence is the product of the signs of its
 arcs, and the length of a sequence is the number of arcs in it. Finally, a cycle is a
 sequence xl, x2, **, xt_1, Xtwith xl,x2, *., xt_1 distinct and xt = x].

 The idea of studying energy demand and other environmental problems by
 means of signed digraphs was introduced in Roberts [9]. In such applications, the
 vertices of a digraph are taken to be variables relevant to the problem being studied
 (e.g., population, energy capacity in a given region, energy price, etc.). There is
 an arc from vertex x to vertex y if a change in x has a significant effect on y. This
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 578 F. S. ROBERTS AND T. A. BROWN [June-July

 arc is assigned a + sign if the effect is augmenting, i.e., if, all other things being equal,

 an increase (decrease) in x leads to an increase (decrease) in y; and a - sign if the effect

 is inhibiting, i.e., if, all other things being equal, an increase (decrease) in x leads

 to a decrease (increase) in y.

 R ~~~~~Q
 Energy Qiality of
 Price Envrone \

 %~~~~~+<~~~

 FI. 1. Signed digraph for energy demand in electrical power.
 From Roberts [9].

 Fig. 1 shows a sample signed digraph for energy demand in electrical power

 usage in a given area, constructed for talking purposes. (As is conventional, the

 vertices are represented by ovals, and we draw an arrow from vertex x to vertex y
 if and only if (x, y) is an arc.) For example, there is an arc from population P to

 energy use U with a + sign because as population goes up, energy use goes up.

 There is a negative arc from energy use U to quality of (physical) environment Q
 because as energy use goes up, the quality of the (physical) environment goes down,
 as the result of increased smog, thermal pollution, etc.

 The change of sign of an arc has an interesting interpretation. Consider for ex-

 ample the arc from energy use U to energy price R. According to the present system,
 this arc is-, because according to the present rate structure, the more you use, the
 less you pay (per kilowatt hour). It has been suggested that the rate structure should

 be inverted, and that large users should pay more rather than less. This strategy,

 known as inverting the rate structure, corresponds to changing the sign of arc

 (U, R) from - to +. In the same way, other changes in the signed digraph, in par-
 ticular other changes of sign, might correspond to potential strategies for modi-

 fying the energy use system. We shall be interested in evaluating these strategies.
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 1975] SIGNED DIGRAPHS AND THE ENERGY CRISIS 579

 Often, a signed digraph is the most detailed mathematical model of a complex
 system attainable. This is true in particular if some of the variables cannot be meas-

 ured, as for example the variable "environmental quality" in the signed digraph
 of Fig. 1. Difficulty of measurement is a property of many of the variables arising
 in societal problems. Even with an oversimplified model such as a signed digraph,
 there are still some precise conclusions which can be reached. For example, if Fig. 1
 is an accurate model of the signs of effects in an energy demand system, then one
 can pinpoint certain augmenting subsystems. The cycle C, F, U, C corresponds
 to such a system. An increase in energy capacity C leads, through this subsystem,

 to an increase in the number of factories F, which in turn leads to more energy use U,
 which finally leads to a further increase in energy capacity C. An augmenting or pos-
 itive feedback subsystem often contributes to instability, especially if there are many
 such subsystems present. (Sometimes inhibiting or negative feedback subsystems can
 create instability of another type, by contributing increasing oscillations.) The
 directed cycle C, R, U, C is another augmenting subsystem. For an increase in energy
 capacity leads, via this subsystem, to a decrease in price, which leads to an increase
 in use and hence to a further increase in capacity. It is easy to see that, in this figure,
 all subsystems containing the energy capacity vertex C and corresponding to (simple)
 cycles such as C, F, U, C are augmenting or unstable. This observation already
 makes precise, from a structural point of view, why the energy capacity system is
 so unstable. The signed digraph model is especially good for making such structural
 observations, for digraph theory has concerned itself over the years with just such
 notions of structure. (Indeed, one book about digraph theory, Harary, Norman,
 and Cartwright [2], is called Structural Models.)

 3. Weighted digraphs. The signed digraph model has in it many oversimplifi-
 cations. For example, some effects of variables on others are stronger than other
 effects. Thus, in Fig. 1, it seems clear that the effect of an increase in population P on

 energy use U is very strong compared to the effect of a decrease in quality of the
 environment Q on population P. The signed digraph model, however, assumes that all
 effects are equally strong, by placing unit ( + 1 or - 1) weights on each arc. It
 might be more reasonable to place a different weight w(x, y) on each arc (x, y) of a
 given digraph, thus yielding a weighted digraph. The weight is interpreted as the
 relative strength of the effect, and can be positive or negative. If each weight is an
 integer, we shall call the weighted digraph integer-weighted. Even more realistic
 than assigning a weight to each arc is to assume that the strength of an effect corre-
 sponding to the arc (x, y) changes depending on the levels of the variables x and y.
 But even weights are hard to estimate in practice, especially if the variables themselves
 are hard to measure or define.

 Another omission in the signed digraph model is the time lag involved before
 a change in x has an effect on y. For example, an increase in population P will lead
 almost immediately to an increase in energy use U, while there is a time lag after an
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 580 F. S. ROBERTS AND T. A. BROWN [June-July

 increase in the number of jobs J before that attracts more population P to an area.

 The signed digraph model assumes that all effects take place in one unit time. Thus,

 a more realistic model would introduce a time lag corresponding to each effect. As

 with weights, time lags are hard to estimate, and there is a tradeoff between the

 generality of the model and the possibility of estimating its parameters (weights,

 time lags) in a realistic way. Also, there is a mathematical problem with the intro-

 duction of time lags. Specifically, analysis of the dynamic models - which we shall
 introduce later - becomes quite difficult with the introduction of time lags. For

 this reason, we shall discuss weighted digraphs, but we shall disregard time lags.

 Nulmber of

 Cars

 Price of

 | cielt Trip

 Consumption/

 Average , f

 Del Passenger (PopuJatio Eco Cost o

 Delay ~ ~ Pasilger

 Size Car

 FIG. 2. Weighted digraph for energy use and air pollution produced by the transportation system

 of San Diego. Short term effects shown only. From Roberts [10].

 Fig. 2 shows an example of a weighted digraph, which we shall use to discuss

 energy use in transportation. This digraph was constructed by a panel of experts
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 1975] SIGNED DIGRAPHS AND THE ENERGY CRISIS 581

 to represent the variables relating to energy use and air pollution resulting from the

 transportation system of San Diego County, California. Only short-term effects

 are shown. The experts who built this model had been studying San Diego, under an

 Environmental Protection Agency contract, to assess strategies for meeting require-

 ments of the Clean Air Act, and used their knowledge to construct the weighted

 digraph. (We shall discuss below the precise meaning of the weights.) In San Diego,

 97% of all trips are made by automobile. In recent years, San Diego has exhibited

 steadily increasing levels of fuel consumption and air pollution. We shall return to

 these observations later, and see if they are reflected in the properties of the digraph.

 (For details on how this and related digraphs were constructed, see Roberts [10].)

 4. A dynamic model. Some rather interesting conclusions can be reached if we

 introduce a simple dynamic model for the propagation of changes through the ver-

 tices of a signed or weighted digraph. Let us begin with a signed digraph, and list

 its vertices as xI, x2, , xn. We suppose that each vertex xi attains a value vi(t) at
 each discrete time t = 0, 1, 2,.... The succeeding value vi(t + 1) is determined from
 vi(t), from an outside pulse p,(t + 1) introduced at vertex xi at time t + 1, and
 from information about whether other vertices xj adjacent to xi went up or

 down at the last time period. Specifically, we assume that if there is an arc from xj
 to xi and xj goes up by a units at time t, then as a result xi goes up at time t + 1
 by an amount equal to a times the sign of arc (xj, xi). Moreover, xi must in-
 crease by an amount equal to any external change p?(t + 1) introduced at xi at time
 t + 1. To make all this precise, we define

 (1) v1(t + 1) = vi(t) + p?(t + 1) + Ejsgn(xj,x1)pj(t),

 where

 {+1 if (xj,Xi) is +
 sgn(xj,xi)= X -1 if (xj, x) is -

 0 if there is no arc (xj, xi),
 and

 p (t) _ vj(t) - vj(t - 1) if t> 0
 (p?(O) if t = 0.

 The quantity pj(t) will be called the pulse at vertex xj at time t. A pulse process*
 on a signed digraph D is defined by the rule (1), by an initial vector of values

 V(O) = (VA(O), V2(O), Vn(?)) I

 and by vectors giving the outside pulse introduced at each vertex at each time period.

 * Pulse processes were introduced in Roberts [9].
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 582 F. S. ROBERTS AND T. A. BROWN [June-July

 We shall denote these vectors by

 P0(t) = (p(t), p2(t) ..., Pn(t)).

 We shall also use the pulse vector P(t) = (p1(t), . .., p(t)).
 In applications, one usually determines V(0) as follows. Suppose we know the

 starting value vi(start) at each vertex xi. Then vi(0) is defined by

 vi(O) = vi(start) + p?(0),,

 i.e., vi(0) is the starting value at vertex xi plus the initial pulse introduced at vertex xi.
 Thus, we usually define a pulse process by giving the vector

 V(start) = (vI(start),v2(start),, v,(start))

 rather than the vector V(0).

 FiG. 3. Signed digraph.

 To give an example of how a pulse process works, let us consider a very simple
 signed digraph, that of Fig. 3. We assume that P?(0) = (1,0,0,0), that P?(t) = 0,
 all t > 0, and that V(start) = (0, 0, 0, 0). Thus, V(0) = (1, 0, 0, 0). At time 0, vertex
 xl increased by 1 unit, so at time 1, vertices x2 and X3 change, vertex x2 going up
 by 1, vertex X3 going down by 1 . Thus, V(1) = (1, 1, -1,0) and so P(1) = (0, 1, - 1,0).
 Since at time 1, vertex x2 went up 1, this leads to an increase of 1 unit in vertex X4
 at time 2. But vertex X3 went down 1 at time 1, so this leads (since arc(x3, X4) iS -)
 to a further increase in X4 by 1 unit at time 2. We conclude that V(2) = (1, 1, - 1, 2),

 and P(2) = (0,0,0,2). The increase in X4 of 2 units at time 2 leads in turn to an
 increase in 2 units in xl at time 3. Thus, V(3) = (3,1, -1,2), and so on.

 The rule (1) for a pulse process on a signed digraph generalizes, in an obvious
 way, to a rule for a pulse process on a weighted digraph:

 (2) vj(t + 1) = vi(t) + p?(t + 1) + xjw(xj xi)pj(t).

 Eq. (2) is really a system of finite difference equations, with parameters w(xj, xi).
 For it can be rewritten as follows:

 pj(t + 1) = p?(t + 1) + zjw(xj, xj)pj(t).

 With this notion of pulse process, the weights in a weighted digraph have a specific
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 1975] SIGNED DIGRAPHS AND THE ENERGY CRISIS 583

 interpretation. For example, in Fig. 2, the weight -.45 on the arc from price of

 trip to people-trips suggests that as the price of a trip goes up by 1 unit, the annual

 number of people-trips will go down by .45 units. (Here, a unit was taken to be

 10% of a base case level.)

 If in a pulse process we have P?(t) = 0 for t > 0, the process is called auto-
 nomous. An autonomous pulse process for which P?(0) is the vector (0, 0, ***, 1,0, ..., 0)

 with a 1 in the ith place, is called a simple pulse process starting at vertex xi. In

 a simple pulse process starting at vertex xi of a signed digraph, the quantities pj(t)

 and vj(t) are related to the signed number of sequences of length t from xi to xj, i.e.,
 the difference between the number of positive sequences from xi to xj of length t
 and the number of negative sequences from xi to xj of length t. Specifically, it is
 easy to prove the following theorem:

 THEOREM 1. In a simple pulse process starting at vertex xi of a signed digraph

 D, the quantity pj(t) is given by the signed number of sequences from xi to xi of
 length equal to t and the quantity vj(t) is given by vj(start) + p?(O) + the signed
 number of sequences from xi to xj of length less than or equal to t.

 The adjacency matrix of the weighted digraph D is the matrix A = (aij) with
 agj = w(xi,xj). The following theorem is easy to prove for signed digraphs using
 Theorem 1. The proof generalizes readily to the case of weighted digraphs.

 THEOREM 2. Suppose D is a weighted digraph with adjacency matrix A. In

 a simple pulse process on D starting at vertex xi, pj(t) is given by the i,j entry of
 At, while vj(t) is given by vj(start) plus the i,j entry of I + A + A2 + ... + Atj

 It is fruitful to restate Theorem 2 in vector notation, in which case we see easily
 how to generalize it to autonomous pulse processes, obtaining

 THEoREM 3. In an autonomous pulse process on a wveighted digraph,

 P(t) = P(O)A'.

 5. Stability. The main qualitative property of a complex system which we

 shall study is stability. There are various notions of stability and we shall study only

 two of them here. We say that a vertex xj of a weighted digraph D is pulse stable
 under a pulse process if the sequence

 {I pj(t) : t = 0, 1, 2 ...}

 is bounded, and value stable if the sequence

 {Ivj(t)I: t = 0,1,2,...}
 is bounded. The weighted digraph D is pulse (value) stable under the pulse process

 if each vertex is. To give an example, in exponential growth such as vj(t) = 2t,
 variable xj is both pulse and value unstable, as pj(t) = 2'- . However, in linear
 growth such as v (t) = 2t + 5, variable x is still value unstable but it is now pulse

 stable.
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 584 F. S. ROBERTS AND T. A. BROWN [June-July

 Under any pulse process, value stability (at xj) implies pulse stability (at xj),
 since

 IP (t) = vj(-v(t- 1) Ivj(t) I + I vj(t- 1)
 On the other hand, pulse stability does not imply value stability: consider, for

 example, the signed digraph of Fig. 4. Unsurprisingly, one can relate stability to

 the eigenvalues of D, i.e., those of D's adjacency matrix A. We shall do so in this

 section. Unfortunately, theorems relating stability to the eigenvalues of D are not

 always useful because they do not relate stability to the structure of the digraph.

 FIO. 4. Under the simple pulse process starting at vertex xl, vertex x2 is pulse stable but not value
 stable.

 In the next section, we shall give a sample of a result which does relate stability to

 structure, and which can be exploited to choose stabilizing strategies. Finally, in

 Sec. 7, we shall use these results to study the examples of Figures 1 and 2. To begin

 with, we state a necessary condition for pulse stability.

 THEOREM 4. If a weighted digraph D has an eigenvalue greater than unity

 in magnitude, then D is pulse unstable under some simple pulse process.

 Proof Let A lBe an eigenvalue with I A I > 1 and let U be an eigenvector corre-
 sponding to A, such that || U || = 1.* Write U = % IcxaiEi, where Ei is the vector
 with 1 in the ith component and 0 elsewhere. Then, for any integer t > 0,

 ni 1

 |A |t = | UAt || =- || I otiEiA | < E I oai I 11 EiAt ||

 Since ||U|l = 1, each I o 1. Thus
 n

 EiAt

 It follows that for every t > 0, there is some i such that ((EiA! > 1/nlA t
 Since there are only a finite number of Ei, we conclude that for at least one of them,

 || E.A' 11| 1/n i A t for arbitrarily large t. Pick P(0) = Ei. Then for arbitrarily large

 t, It P(t) lI = || P(0)At|| is at least 1/n I A lt . Since I A I > 1 and n is fixed, we con-
 clude that with P(0) = Ei, P(t) || gets arbitrarily large as t -s oo, and hence the
 weighted digraph is pulse unstable under the simple pulse process starting at vertex

 xi. Q.E.D.

 * Throughout, if M = (mij), we use || M !| dtjm,j
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 1975] SIGNED DIGRAPHS AND THE ENERGY CRISIS 585

 COROLLARY. If an integer-weighted digraph D is pulse stable under all simple
 pulse processes, then each nonzero eigenvalue has magnitude equal to unity.

 Proof. By Theorem 4 each nonzero eigenvalue has magnitude at most unity. Let

 D=oajA' be the characteristic polynomial of A. If i is the least integer such that
 ai # 0, then the product of all the nonzero eigenvalues of D is (?) times ai. Since
 all entries of A are integers, ai is an integer. Thus, each nonzero eigenvalue must
 have magnitude unity. Q.E.D.

 Theorem 4 gives a necessary condition for pulse stability. This condition is also
 sufficient if D has no multiple eigenvalues (except possibly 0). This will follow from
 Theorem 5 below. To handle the case of multiple eigenvalues, let us consider the

 Jordan Canonical Form J corresponding to the matrix A. J can be written in the
 form

 (3) J __B2

 o Br

 where each Bi is an (ej + 1) x (ej + 1) diagonal block and Bj has the form

 A 0

 0 A 6J
 L A

 where A is an eigenvalue of A and 6i is 0 or 1, 0 if ej + 1 = 1 and 1 otherwise. (Note
 that A may appear in several of the Bj's.)

 If J has the form (3), then Jt has the form

 if1 ~~0

 .0

 | f l O~~B

 N" B, r
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 586 F. S. ROBERTS AND T. A. BROWN [June-July

 Now if 3; = 0, then Bi = (A) and

 (4) BJ =

 If 61 = 1, then it is easy to prove by induction on t that bJ,', the k, I entry of
 BJ,, is given by

 o10 if k> l

 (5) bJf' = [(t )-k
 if k <?1.

 Ik

 To state our necessary and sufficient condition for pulse stability, let us say that
 an eigenvalue A of D is linked in J if there is an off-diagonal entry of 1 in some row
 of J in which A appears as the diagonal element. Equivalently, A is linked in J if

 it appears on the diagonal of some B1 in which 6j = I .

 THEOREM 5. Suppose D is a weighted digraph and J is its Jordan Canonical
 Form. Then the following are equivalent:

 (a) D is pulse stable under all autonomous pulse processes.
 (b) D is pulse stable under all simple pulse processes.
 (c) Every eigenvalue of D has magnitude less than or equal to unity and every

 eigenvalue of D which is linked in J has magnitude less than unity.

 The proof of Theorem 5 begins with two lemmas.

 LEMMA 1. If A is an n x n matrix and J is its Jordan Canonical Form, then

 (6) {ffAtI :t=0=i,2,...}
 is bounded if and only if

 (7) {JjJtfj: t = 01,2, *}

 is bountded.

 Proof. The proof uses a topological argument. The matrices A and J are related
 by a similarity transformation. Now such a transformation is bicontinuous under the
 topology induced by the norm | I so it follows that {At} is contained in a sphere
 if and only if {Jt} is contained in a sphere. * Q.E.D.

 LEMMA 2. If a weighted digraph D is pulse stable under all simple pulse pro-
 cesses, then

 (7) {IJtIt: t=0,1,2,...}

 is bounded. If the sequence (7) is bounded, then D is pulse stable under all auto-
 nomous pulse processes.

 * Our thanks to Garrett Birkhoff for suggesting this argument.
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 1975] SIGNED DIGRAPHS AND THE ENERGY CRISIS 587

 Proof. By Theorem 3,

 P(t) = P(O)At.

 Thus, pulse stability under all simple pulse processes implies that the sequence

 (6) {fjAtjf: t = 0,1,2, .}
 is bounded and hence, by Lemma 1, we conclude that the sequence (7) is bounded
 as well. Conversely, if the sequence (7) is bounded, then by Lemma 1 the sequence
 (6) must be bounded. Hence by Theorem 3, D must be pulse stable under all auto-
 nomous pulse processes. Q.E.D.

 To prove Theorem 5, let us observe that clearly (a) implies (b). We shall prove

 (b) implies (c) and (c) implies (a). We have already shown that if D is pulse stable
 under all simple pulse processes, then every eigenvalue of D has magnitude less than
 or equal to unity. To complete the proof of (b) implies (c), let us show that every
 linked eigenvalue in J has magnitude less than unity. By Lemma 2, we know from

 pulse stability that {.jj,Jt jj} is bounded. But now suppose A is an eigenvalue of D
 which is linked in J and has magnitude greater than or equal to unity. If A appears

 on the diagonal of block Bj, then bi t = tAt ',by Eq. (5). Since I|A i 1, I bJ{t |
 gets arbitrarily large as t approaches so, and so ||Jt/| becomes arbitrarily large
 as well. This completes the proof that (b) implies (c).

 To prove that (c) implies (a), it is sufficient by Lemma 2 to show that under as-

 sumption (c), {j 1Jt I} is bounded. To prove that {jj Jt I} is bounded, it is sufficient
 to prove that for each j, {j| II} is bounded. Let A be the diagonal entry of BJ. By
 hypothesis, I A j < 1 . If bj = 0, then BJ has the form (4) and so II Bj II is bounded
 since IA It is bounded. If bj = 1, then by hypothesis, A)I < 1. We show that for
 k < 1, {j bkjfl:t| t = 0, 1, 2, ...} is bounded, where bjkt' is given by Eq. (5). Let e = ej,
 i.e., e is one less than the dimension of Bj. Observe that I-k < e. Thus, for t > 2e,
 we have

 t 8 t t(t - ) ...(t-e + )(t-e).! te
 I- k! ej e!(t-e)! e et

 and
 k At-+ki = k <

 since j i| < 1. It follows that

 Ibjitl < tll_

 Since te/A -te approaches 0 as t approaches oo, we conclude that {/b'tl/} is
 bounded. Q.E.D.

 COROLLARY. Suppose D is an integer-weighted digraph and J is its Jordan
 Canonical Form. Then the following are equivalent:
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 588 F. S. ROBERTS A ND T. A. BROWN [June-July

 (a) D is pulse stable under all autonomous pulse processes.
 (b) D is pulse stable under all simple pulse processes.
 (c) Every eigenvalue of D has magnitude less than or equal to unity and no

 nonzero eigenvalue of D is linked in J.
 (d) Every nonzero eigenvalue of D has magnitude equal to unity and no nonzero

 eigenvalue of D is linked in J.

 Proof. Obviously, (d) implies (c). By Theorem (5), (c) implies (a). Again trivially,
 (a) implies (b). To prove that (b) implies (d), note that (b) implies part (c) of Theorem
 5 and (b) implies, by the Corollary to Theorem 4, that each nonzero eigenvalue of D
 has magnitude equal to unity. Thus, (b) implies (d). Q.E.D.

 The next theorem characterizes value stability.

 THEOREM 6. Suppose D is a weighted digraph. Then thefollowing are equiv-
 alent:

 (a) D is value stable under all autonomous pulse processes.
 (b) D is value stable under all simple pulse processes.
 (c) D is pulse stable under all simple pulse processes and unity is not an eigen-

 value of D.

 Proof. The proof uses Lemmas analogous to Lemmas 1 and 2 for

 (8) (|| NAt|:N =O0l1 2, J

 and

 (9) Jt IJtK: N = 0,1,2,*

 Clearly, (a) implies (b). We shall prove (b) implies (c) and (c) implies (a).
 To prove the latter, it is sufficient to show that under assumption (c), {jj _ JtII}

 is bounded. To show that { jj =oJt|j} is bounded, it is sufficient to show that

 for each i, { t| 0Bt Ijj} is bounded. Let A be the eigenvalue appearing on the
 diagonal of B. If = 0, then N_oB is IN 0At. Since )IA < I by pulse sta-
 bility and A # 1 by hypothesis, Qt t converges. We conclude that

 {| zt o it|} = {jj ||T=Bj II} is bounded. Suppose next that bj = 1. Then by pulse
 stability, I A < 1. If k-> 1, then 't=0 bj't = 0. If k < 1, then by the proof of
 Theorem 5, if t > 2e, we have

 where e is one less than the dimension of B.. Thus, for t > 2e,

 N < N
 t=O ~ ~ = ejj~
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 Applying the ratio test to the sum on the right hand side of (10) and using the fact

 that jAI < 1, we find that the series converges. Thus, {j OEJ b,'k j} is bounded,
 and hence so is {/j ioBjI II}

 To complete the proof, we assume (b) and prove (c). Now value stability implies

 pulse stability. Finally, we shall assume that unity is an eigenvalue and reach a contra-

 diction. It is sufficient to prove that {1l It'=ojt I} is unbounded. In particular,
 suppose A = 1 and B1 is a diagonal block in which A is the diagonal entry. By pulse

 stability A is unlinked, and so ' 0OB, is z/t,),t = N + 1. Thus, {|| 'tN-OBJI| }
 is unbounded, and hence so is { t = Jt|}. This contradicts value stability.
 Q.E.D.

 6. Rosettes. Although the results of Section 5 can be used to determine stability
 properties of a signed or weighted digraph, they do not relate stability to any struc-
 tural properties of the digraph. If we could understand what it is about the structure

 which causes instabilities, we could exploit this knowledge to find stabilizing strat-
 egies, or to evaluate proposed strategies. Unfortunately, not much is known about

 the relation of structure to stability. In this section, we shall give a few sample

 theorems, which hold for a special class of digraphs called advanced rosettes. Al-

 though this class may appear very special, a surprisingly large number of systems

 which have been encountered by the authors belong to this category.

 D D, D3

 FiG. 5. Advanced rosettes with central vertex x. Digraphs D1 and D2 are rosettes, but D3 is not.

 A digraph D is a rosette if it consists of a central vertex x and nonintersecting
 cycles leading out of x. Digraphs D1 and D2 of Fig. 5 are rosettes. More generally,

 a digraph D is an advanced rosette if for every pair of vertices x and y of D, there

 is a sequence in D from x to y (we say D is strongly connected) and there is a central

 vertex x which is on all cycles of D. All the digraphs of Fig. 5 are advanced rosettes.

 If D is a signed advanced rosette, let ai denote the sum of the signs* of the cycles

 of length i and let s be the largest integer such that as # 0. If ai = 0 for all i, we 000
 take s = 0. If s = 0, it is easy to show that D is pulse and value stable under all'

 * A sign is thought of as a number +1 or -1.

 K~ ~ ~ ~~~~~ NOR~~~~~~~~~f2000
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 simple pulse processes. If s > 0 then the stability properties of D are mirrored in

 the properties of the rosette sequence (a,, a2 ***a,). The next two theorems were
 first discovered by Joel Spencer.

 THEOREM 7. Suppose D is a signed advanced rosette with s > 0 and rosette

 sequence (a,, a2 as). If D is pulse stable under all simple pulse processes, then
 (a) as= + 1 and

 (b) a i= (-a8)a8.., 1 ? i ? s-i.

 Proof. Let

 S

 R(A) = A a1Asi.
 i=1

 It is not hard to prove that the characteristic polynomial C(A) of D is given by

 C(A) = sR(A)

 Note that R(O) = a, 0 0. Thus, 0 is not a root of R(A) and so R(A) has as roots
 exactly the nonzero eigenvalues of D. By the corollary to Theorem 4, if D is pulse
 stable under all simple pulse processes, then every root of R(A) has magnitude 1.
 The product of the roots is + as. Since as is an integer, it follows that as is + 1,
 which proves (a).

 An old lemma of Kronecker's states that if f(x) is a monic polynomial with in-
 teger coefficients each of whose roots has magnitude unity, then each root of f(x)
 is a root of unity. Thus, each root of R(%) is a root of unity. We shall prove that
 R(cx) = 0 if and only if R(or-1) = 0. This result will give us (b). For, applying it,

 one proves that R(e) = R(0)AsR(AQ1). By comparing the coefficients of the terms
 )ASi, one derives (b).

 It is left to show that R(a) = 0 if and only if R(ao') = 0. Factor R(A) into

 irreducible factors Pj(A). Let fi be any root of P3. Then PJ is the unique irreducible

 polynomial with fi as a root. If ,B is a primitive ni-th root of unity, then Pj is the
 n3-th cyclotomic polynomial, the unique monic polynomial whose roots are the

 primitive nj-th roots of unity. Thus, if cx is a root of R, then OG is a root of some P,
 whence a-' is a root of Pj, whence -' is a root of R. And conversely. Q.E.D.

 THEOREM 8. Suppose D is a signed advanced rosette with s > 0 and rosette

 sequence (a,,a2,...,a,), and suppose D is pulse stable under all simple pulse
 processes. Then D is value stable under all simple pulse processes if and only if
 1 a= 1aE 0 1 .

 Proof: By Theorem 6, D is value stable under all simple pulse processes if and
 only if I is not an eigenvalue, i.e., if and only if R(1) # 0, i.e., if and only if

 1 - ai 0, i.e., if and only if D=jaj # 1. Q.E.D.

 7. Applications. In this section, we shall apply the theorems about stability
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 to the digraphs of Fig.'s 1 and 2. Let us consider first the signed digraph D of Fig. 1,

 which represents energy demand in the electrical power area. A calculation shows

 that the characteristic polynomial C(A) is A2(I_5 _2 _ 1). Now f(A)= A)-A3-
 -2_1 has a real root strictly between 1 and 2, since f() =-2 and f(2) = 19. Thus,

 Theorem 4 implies that the signed digraph is pulse unstable under some simple pulse

 process. If one believes the model, one can interpret the instability result as follows:

 the system is sensitive enough to external influences that certain external influences

 lead to arbitrarily large values at some of the variables, and indeed to increasingly

 large changes in value. These results are not too surprising after our analysis

 in Section 2 of the cycles of D, or in view of observation of exponential increases
 in such variables as energy use. However, the results are based on our oversimplified

 pulse process model and should be tested using other methods. The same will be true

 of the other conclusions in this section. In practice, one usually assumes that no

 variable in a real-life system can reach arbitrarily large levels. In particular, no

 variable can change by larger and larger amounts in successive time periods. Long

 before changes (pulses) or values reach very large levels, the structure of the system
 itself will become modified. It would be wise to try to minimize the impact of that

 modification by foreseeing it or consciously choosing one of a possible set of modi-
 fications.

 In any case, it has been suggested that one promising strategy is to invert the rate

 structure, that is, charge large users of electricity more rather than less. This corre-

 sponds to changing the sign of arc (U, R) from - to + . Dealing with the new signed
 digraph obtained from that of Fig. 1 by making this change of sign, one calculates

 that C(A) is given by )2(25 + 22 - 1)-22(,V 1)(,2 + 1)(2 + A 1). Hence,
 the eigenvalues are 0, 0, 1, ? i, - 1/2 + (1312)i. Each nonzero eigenvalue has mag-
 nitude 1. Since all the nonzero eigenvalues are distinct, none of them can be linked.
 We conclude, by Theorem 5, that the new signed digraph is pulse stable under all

 autonomous pulse processes. However, 1 is an eigenvalue, so Theorem 6 implies

 that we still have value instability. The strategy of inverting the rate structure does
 not prevent the system from being sufficiently sensitive to external changes that some

 of these changes can lead to arbitrarily large values. What inverting the rate structure
 has accomplished is to make sure that changes at any given time cannot be too large.

 The strategy of inverting the rate structure is value-stabilizing as well as pulse-
 stabilizing if we also make a second change, changing the sign of arc (C, F) from
 + to-. This corresponds to forcing factories to move out of an area every time

 a new power plant is constructed! (Whether or not this strategy corresponds to a

 feasible real-world strategy is highly doubtful.) To show that it is value-stabilizing,
 let us consider the signed digraph of Fig. 1 with both (U, R) changed from - to +
 and (C, F) changed from + to -. Now the characteristic polynomial is

 C(i) = ,322Q5 + 2? + ,2 + 1) = )22(,{ + 1)(2 + 1)(,{22-1i + 1), and we have as roots
 0, 0 -1, + i, 1/2 + (1/3/2)i. By Theorems 5 and 6, the new signed digraph is pulse
 and value stable under all autonomous pulse processes. Once again, the reader is
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 reminded that this conclusion depends on our oversimplified model, and should be
 subjected to test using other techniques.

 The theorems of Sec. 6 apply to the signed digraph D of Fig. 1, since it is an ad-

 vanced rosette with central vertex U. A simple calculation shows that the rosette

 sequence is (0, 1, 1,0, 1). Now a2 # - a5a3, so Theorem 7 implies that D is pulse
 unstable under some simple pulse process. If we change (U, R) from - to +, the

 rosette sequence turns out to be (0, -.1, 1, 0, 1). The necessary conditions of Theorem 7

 are satisfied, though this does not verify pulse stability, which must be checked by

 calculating eigenvalues. Value instability follows from Theorem 8, since

 a I + a2 + a3 + a4 + a5 = 1. Finally, if (U, R) is changed from - to + and (C, F)
 from + to -, then the rosette sequence is (0, -1, -1,0, -1). The conditions of

 Theorem 7 are again satisfied, and here a1 + a2 + a3 + a4 + a5 = -3 # 1. Thus,
 one discovers that changing (C, F) from + to - could be value-stabilizing by mod-

 ifying the rosette sequence so that the necessary conditions of Theorem 7 and the

 condition of Theorem 8 are satisfied. It is left to check this conclusion by calculating

 eigenvalues. Other value-stabilizing strategies can be discovered by using the con-

 ditions of Theorems 7 and 8 as necessary conditions. Any change of sign in the

 signed digraph of Fig. 1 will leave a1 = 0 and a4 = 0. Moreover, a2 = + 1

 a3 = ? 1 or + 3, and a5 = + 1. The necessary conditions a2 = -a5a3 and
 a1 + a2 + a3 + a4 + a5 # 1 then imply that a2 = a3 = a5 =-1. Potential value-
 stabilizing strategies are those corresponding to change of signs which set

 a2 = a3 = a5 =-1. Using this observation, one discovers that there is no single
 sign change which will value-stabilize the signed digraph. The only other value-
 stabilizing strategies which involve change of two signs are changing signs of arcs

 (R, U) and (J, P) or changing signs of arcs (R, U) and (F, J).

 Turning next to the weighted digraph of Fig. 2, we find that the characteristic

 polynomial is C(A) = a8(L4 + .19). The roots are 0 with multiplicity 8,

 -.47+(.47)i, .47+(.47)i. By Theorems 5 and 6, the digraph is pulse and value

 stable under all autonomous pulse processes. The reader will recall that Fig. 2 des-

 cribes energy use and air pollution resulting in the short-term from San Diego's
 transportation system. As we remarked earlier, in recent years San Diego has been
 exhibiting rising rates of fuel consumption by automobiles and rising levels of air
 pollution. The pulse process model suggests that any spiralling of fuel consumption
 or air pollution, at least in the short-term, would have to come from repeated ex-

 ternal impulses, rather than from the operation of feedback within the system.

 Indeed, it is fairly easy to see from the weighted digraph why this is the case. There
 is only one cycle, that from Number of People-trips Tto Vehicle Miles Vto Accidents
 A to Average Delay D to People-trips T. This is an inhibiting (negative feedback)
 cycle. Such cycles, as a general rule, produce oscillations. Here the product of the

 weights of the arcs on this cycle is small enough so that the okcillations eventually
 die out. In any case, the results suggest that to stabilize the rising levels of variables
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 in this system, we shall have to search for external influences and perhaps counter

 these influences by introducing countervailing pulses into the system.

 Although these conclusions about transportation once again depend on our spe-

 cific model, they suggest something interesting about the system of energy use in
 transportation. Namely, they suggest that the source of rising levels of energy use

 in transportation is different from the source of rising levels of usage of electrical

 power, where the operation of feedback within the system tends to lead to spiralling

 levels. Perhaps this conclusion is true only of San Diego, but even then it is inter-

 esting.

 Signed and weighted digraphs like those of Fig.'s 1 and 2 have been constructed
 for a wide variety of problems. Other signed digraphs for energy use in transporta-

 tion are studied in Roberts [7]. Kruzic [6] builds a weighted digraph for the energy

 and environmental impact of deep water ports; Coady, et al. [1] build a weighted

 digraph for assessing the use of the coastal zone for urban recreation; Kane, et al. [4]
 build a weighted digraph for analyzing the allocation of scarce resources to health

 care delivery; and the Organization for Economic Cooperation and Development

 is building signed digraphs for analyzing the impact of various governmental funding

 decisions on the scientific community. (In references [1], [4] and, [6], the analysis
 was done using the KSIM model of Julius Kane, which differs in a number of res-

 pects from the specific change of value rule we have adopted. However, the general

 spirit of the approach is the same.) These examples and others are summarized in

 Chapter 4 of the forthcoming book Roberts [8].
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 Corporation and GI-34895 to Rutgers University. The authors wish to acknowledge the many helpful
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 TOPICS IN ORTHOGONAL FUNCTIONS

 J. J. PRICE

 1. Lntroduction. The study of general orthogonal functions has been a field of

 active research since about 1920. It arose from the classical theory of Fourier series,

 Bessel functions, orthogonal polynomials, etc., that branch of analysis concerned

 with detailed investigation of orthonormal sets derived from physics. By 1900, the
 literature on these sets was already extensive and well on the way to becoming vast.

 As the new ideas of functional analysis circulated in the early part of this century,
 mathematicians began looking at orthonormal sets more abstractly, as bases of

 certain spaces. Working from this point of view, they were led to investigate general

 properties of orthonormal systems as well as special properties of particular systems.

 In this article, we discuss two types of questions in the general theory. The first

 deals with completeness of orthonormal sets, the second with rearrangements of
 orthogonal series. To convey the flavor of these topics as quickly as possible, let us

 state several typical theorems at once, leaving the necessary definitions for later.

 THEOREM (Talalyan). Suppose you delete one function from a complete ortho-
 normal set offunctions in L2[0, 1]. The remaining functions, although no longer
 complete, have the following property: For each s > 0, there is a set Se C [0, 1]

 of measure exceeding 1 - s on which they are complete.

 The same conclusion holds if any finite number of functions are deleted. Roughly

 speaking, the remaining orthonormal set is nearly complete, or is complete in some

 weaker sense. We intend to discuss several types of near completeness and relations

 among them. In particular, we shall consider possible extensions of Talalyan's

 theorem: can you delete infinitely many functions from a complete orthonormal
 set and still retain some kind of near completeness? If so, then "how many"?

 To illustrate our interest in rearrangements, we recall the celebrated theorem
 of Carleson:
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