Example 17 - original puzzle
Example 17-1 after basics & filling in pencil marks


This leads to Example 17-2.

Took at cells:

With this, the puzzle solves itself easily. Example 17 - Answer.

Example 18 - original puzzle
Example 18-1 after basics & filling in candidates

2. Cells 87, 88: 9 is removed.

With this, the puzzle solves itself easily. Example 18 - Answer.

Example 19 - original puzzle
Example 19-1 after basics & filling in candidates

1. Cells 58, 59: A 6 or 8 must go in 58 - so remove.
2. Cells 18, 19: 4 is removed.
3. A 6 or 8 must go in 58 - so remove.
This forces a 4 in cell 55

After this step the puzzle solves itself easily

Example 19 Answer

WARNINGS: 1. The four corners must fall in 2 boxes only (not 4 boxes) (this is not so obvious why!)
2. The puzzle may not have a unique solution

III One-sided Gordonian Rectangles

Example 20 - original puzzle

Example 20-1 after basics & filling in candidates

cells 13 17 13 a 23 has to have a 1
23 27 so cell 83 must be 7

After this step the puzzle solves itself easily.

Example 20 - Answer (be careful though)

one extra number in one corner of a polygon

IV Gordonian Polygons

Example 21 - original puzzle

Example 21-1 after basics & filling in candidates

cells 23 25 all contain only 5 & 7 except cell 32
32 35 which has no additional candidate
52 53 (you can only have 2 vertices in a house)
thus cell 32 is a 3

With this step the puzzle solves itself.

Example 21 - Answer
More than one extra number in a corner of a polygon.

Example 22: Original puzzle

Example 22-1: After basics & filling in candidates

<table>
<thead>
<tr>
<th>Cell 1</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>31</td>
</tr>
</tbody>
</table>

4 or 6 must go into cell 15 which implies a 2 in cell 31.

With this step the puzzle solves itself. Example 22 - Answer

One-sided Gordonian Polygons

(Extra) extra numbers in 2 adjacent corners of a polygon.

Example 23: Original puzzle

Example 23-1: After basics & candidates filled in

<table>
<thead>
<tr>
<th>Cell 1</th>
<th>Cell 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>42</td>
<td>45</td>
</tr>
<tr>
<td>52</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>69</td>
</tr>
</tbody>
</table>

Cells 42, 52 - have an extra 5, so one of them must be 5.

Thus cell 92 is 8.

With this step the puzzle solves itself easily. Example 23 - Answer

(There are two more examples — MORE complicated)