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1. Introduction and preliminaries

1.1. Introduction

To provide motivation for this paper, consider a C*-algebra A and an idempotent linear map P : A → A. 
If A is unital and P is completely positive and unital, then P (A) is a C*-algebra with the product a ·b = P (ab)
for a, b ∈ P (A), [4]. If instead P is just positive and unital, then P (A) is a Jordan C*-algebra (=JB*-algebra) 
with the product a ◦ b = P ((ab + ba)/2) for a, b ∈ P (A), [8]. Finally, if P is just a contractive projection, 
then P (A) is a JB*-triple with the triple product {abc} = P ((ab∗c + cb∗a)/2) for a, b ∈ P (A), [10]. Thus, 
by removing a hypothesis on P , one is forced to consider a larger category than the category of C*-algebras 
and completely positive maps. In fact, the category of JB*-algebras is stable under the action of a positive 
projection and the category of JB*-triples is stable under the action of a contractive projection, [6, Theorem 
3.3.1], [13, Theorem 14.4.1], [3, Theorem 5.6.59].

Now consider the notion of a C*-category, [11]. It consists of objects X, Y, . . . and morphism sets 
Hom(X, Y ) which satisfy a set of axioms relevant to C*-algebras. In particular, in a C*-category, Hom(X, X)
is a C*-algebra. A W*-category was defined to be a C*-category with the additional requirement that 
Hom(X, Y ) is the dual space of a Banach space. Sakai’s theorem for W*-algebras was extended to W*-
categories showing that Hom(X, Y ), which is not necessarily a von Neumann algebra, has a unique predual. 
In [11], the Gelfand-Naimark theorem for C*-algebras was extended to C*-categories, and it showed that 
Hom(X, Y ) is isomorphic to a ternary ring of operators (TRO). Although this fact was not explicitly men-
tioned, nevertheless, it was implicitly suggested by the following quote from [11, pp. 79–80]:

Naturally, the idea of using bounded linear mappings between different Hilbert spaces is such an obvious 
one that this paper may have many published and unpublished forerunners quite unknown to the authors. 
Indeed one of us (J. E. R.) has been toying with the idea of writing such a paper for many years but initially 
felt that the time was not yet ripe for such a development. In any case, the roots of this development 
go right back to the beginnings of the theory of operator algebras and perhaps the basic example of 
mappings between different Hilbert spaces are the intertwining operators of representation theory. The 
set of such intertwining operators forms a W*-category.

In addition, according to [11, p. 79],

There are at present many interesting directions of current research where W*-categories arise naturally: 
For example the representation theory of groupoids, the harmonic analysis of the action of non-Abelian 
groups on von Neumann algebras, the action of group duals on von Neumann algebras, and non-Abelian 
cohomology in an operator algebraic context.

It is also noteworthy that category theory is being used in physics, see for example [12]. It thus appears 
that, in order to take full advantage of the theory which has been developed for TROs and W*-TROs, it 
would be beneficial to extend these two concepts to the operator category setting. We begin that process 
in this paper, and are planning a sequel in some non-associative contexts.

We define a T*-category and a TW*-category, which are modeled on TROs and W*-TROs in much 
the same way that C*-categories and W*-categories are modeled on C*-algebras and W*-algebras. As an 
example, consider the Murray-von Neumann classification of W*-algebras into finite and infinite and types 
I, II, III. As of this writing, no such classification of W*-categories has been undertaken since the mor-
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phism sets (X, Y ) are not necessarily W*-algebras. However, there is a Murray-von Neumann classification 
of W*-TROs [20], which can be used to decompose W*-categories in the same way that W*-algebras can 
be decomposed into types I, II, III, and finite, infinite (see Proposition 4.9). Thus, by extending the no-
tion of W*-category to TW*-category, such a decomposition is possible without leaving the category (see 
Proposition 4.24).

More precisely, in this paper we give, in section 3, a purely algebraic definition of a “ternary category” 
(a concept which seems to have been overlooked in the literature) and construct its corresponding “linking 
category.” Turning to “operator categories” we define, in section 4, a T*-category and show that its linking 
category is a C*-category. We extend the Gelfand-Naimark theorem for C*-ternary rings, which characterizes 
them in terms of TROs, [22, Theorem 3.1], to T*-categories. We also define a TW*-category and show that 
its linking category is a W*-category, and we extend the Gelfand-Naimark theorem for W*-ternary rings, 
which characterizes them in terms of W*-TROs, [22, Theorem 4.1], to TW*-categories. We also show, in 
section 5, that the bidual of a C*-category is a W*-category, and the bidual of a T*-category is a TW*-
category.

1.2. Associative triple systems

The following construction is taken essentially verbatim from [17] (see also [18, pp. 28–30]) and is central 
to the paper. The complications due to taking direct sums, which were not necessary in [22], are unavoidable 
since the module actions defined in Lemma 1.2(ii) make essential use of the second component and are critical 
to the proof of the key Proposition 2.3(iv).

A vector space V with a trilinear map m : V × V × V → V with m(x, y, z), called the triple product, 
and denoted by (x, y, z) is called an associative triple system if it satisfies

(x, y, (z, u, v)) = ((x, y, z), u, v) = (x, (u, z, y), v)

for all elements x, y, z, u, v ∈ V . Many examples will appear in this paper. If the base field is the complex 
numbers, the triple product is assumed to be conjugate linear in the middle variable.

Let M be an associative triple system with triple product denoted by [hgf ]. Let

E(M) = End (M) ⊕ [End (M)]op,

where the notation V for a complex vector space means that the scalar multiplication in V is (λ, v) ∈
C × V �→ λ ◦ v = λv.

We shall often denote the products in E(M)op and in [End (M)]op by X ◦ Y = Y X. Explicitly, for 
A = (A1, A2) and A′ = (A′

1, A
′
2) belonging to E(M),

AA′ = (A1, A2)(A′
1, A

′
2) = (A1A

′
1, A2 ◦A′

2) = (A1A
′
1, A

′
2A2),

and for B = (B1, B2) and B′ = (B′
1, B

′
2) belonging to E(M)op,

B ◦B′ = (B1, B2) ◦ (B′
1, B

′
2) = (B′

1, B
′
2)(B1, B2) = (B′

1B1, B
′
2 ◦B2) = (B′

1B1, B2B
′
2).

Involutions, that is, conjugate linear anti-isomorphisms of order 2, are defined on E(M) by

A = (A1, A2) �→ A = (A1, A2) = (A2, A1),

so that AA′ = A′ A, and
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λA = (λA1, λ ◦A2) = (λA1, λA2) = (λA2, λA1) = (λA2, λ ◦A1) = λ A;

and on E(M)op by

B = (B1, B2) �→ B = (B1, B2) = (B2, B1),

so that B ◦B′ = B′ ◦B and

λB = (λB1, λ ◦B2) = (λB1, λB2) = (λB2, λB1) = (λB2, λ ◦B1) = λ B.

For g, h ∈ M , define L(g, h) = [gh·], R(g, h) = [·hg],

�(g, h) = (L(g, h), L(h, g)) = ([gh·], [hg·]) ∈ E(M)

and

r(g, h) = (R(h, g), R(g, h)) = ([·gh], [·hg]) ∈ E(M)op.

Next, define

L = L(M) = span {�(g, h) : g, h ∈ M} ⊂ E(M)

and

R = R(M) = span {r(g, h) : g, h ∈ M} ⊂ E(M)op.

The next three lemmas follow straightforwardly from the above construction so their proofs are left to 
the reader. Their statements have their origins in [17] and are reproduced in [18, pp. 28–30].

Lemma 1.1. With the above notation

(i): R(f, g)L(h, k) = L(h, k)(R(f, g)2
(ii): �(g, h)�(g′, h′) = �([ghg′], h′) = �(g, [h′g′h])
(iii): r(g, h) ◦ r(g′, h′) = r(g, [hg′h′]) = r([g′hg], h′), where, as indicated, the product on the left is taken in 

E(M)op.
(iv): L is a *-subalgebra of E(M) and R is a *-subalgebra of E(M)op.

Lemma 1.2. Let A = (A1, A2) ∈ E(M), B = (B1, B2) ∈ E(M)op, and f ∈ M . Then

(i): M is a left E(M)-module via

(A, f) �→ A · f = A1f,

a right E(M)op-module via

(f,B) �→ f ·B = B1f,

and an (L, R)-bimodule.

2 This is needed in the proof of the bimodule statements in Lemma 1.2.
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(ii): Let M denote the vector space M with the element f denoted by f and with scalar multiplication defined 
by (λ, f) �→ λ ◦ f = λf . Then

M is a left E(M)op-module via

(B, f) �→ B · f = B2f,

a right E(M)-module via

(f,A) �→ f ·A = A2f,

and an (R, L)-bimodule.

Thus we have

(AA′) · f = A · (A′ · f) and f · (B ◦B′) = (f ·B) ·B′,

f · (AA′) = (f ·A) ·A′ and (B ◦B′) · f = B · (B′ · f),

(A · f) ·B = A · (f ·B) and (B · f) ·A = B · (f ·A),

where the product B ◦B′ is taken in E(M)op.

Given an associative triple system M , let

A = A(M) = L(M) ⊕M ⊕M ⊕R(M)

and write the elements a of A as matrices

a =
[
A f
g B

]
, (A ∈ L(M), B ∈ R(M), f, g ∈ M).

Define multiplication and involution in A by

aa′ =
[
A f
g B

] [
A′ f ′

g′ B′

]
=

[
AA′ + �(f, g′) A · f ′ + f ·B′

g ·A′ + B · g′ r(g, f ′) + B ◦B′

]
(1.1)

(the product B ◦B′ taken in E(M)op) and

a� =
[
A f
g B

]#

=
[
A g
f B

]
. (1.2)

Lemma 1.3. A(M) is an associative *-algebra and for f, g, h ∈ M ,

[
0 f
0 0

] [
0 g
0 0

]# [
0 h
0 0

]
=

[
0 [fgh]
0 0

]
.

Remark 1.4. The map f �→
[
0 f
0 0

]
is a triple isomorphism of M into A(M), the latter considered as an 

associative triple system with triple product ab#c, for a, b, c ∈ A(M). We refer to A(M) as the standard 
embedding of M . If the associative triple system M is a normed space, and ‖[hgf ]‖ ≤ ‖f‖‖g‖‖h‖, then the 
normed standard embedding of M is defined in the same way but with R and L replaced by their closures 
in B(M). In this case, the modules in Lemma 1.2 are continuous modules, and Banach modules if M is a 
Banach space.
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In certain cases, the correspondence M → A(M) will be a functor from the category of associative triple 
systems and triple homomorphisms to the category of associative *-algebras and *-homomorphisms. In the 
present context, we have the following lemma, whose straightforward but tedious proof is omitted.

Lemma 1.5. Let ϕ : M1 → M2 be a surjective triple homomorphism between associative triple systems M1
and M2. There is a *-homomorphism A(ϕ) : A(M1) → A(M2) defined by

A(ϕ)
([

A f
g B

])
=

[
ϕ11(A) ϕ(f)
ϕ(g) ϕ22(B)

]
,

where if A =
∑

i([gihi·], [higi·]) ∈ L(M1),

ϕ11(A) =
∑
i

([ϕ(gi)ϕ(hi)·], [ϕ(hi)ϕ(gi)·]) ∈ L(M2),

and if B =
∑

i([·gihi], [·higi]) ∈ R(M1),

ϕ22(B) =
∑
i

([·ϕ(gi)ϕ(hi)], [·ϕ(hi)ϕ(gi)]) ∈ R(M2).

1.3. Ternary rings of operators

Let H and K be complex Hilbert spaces. Denote by B(H, K) the set of all bounded linear operators from 
H to K, and write B(H) for B(H, H). Consider B(H, K) as a Banach space with the usual operator norm and 
additional algebraic structure given by ternary product (x, y, z) �→ xy∗z, so that for every x, y, z ∈ B(H, K)
we have:

‖xy∗z‖ ≤ ‖x‖ ‖y‖ ‖z‖ and ‖xx∗x‖ = ‖x‖3
.

A Banach subspace X of B(H, K) is called a TRO (ternary ring of operators) if xy∗z ∈ X for every 
choice of x, y, z ∈ X. A TRO X ⊆ B(H, K) is called a W ∗-TRO if it is weak∗ closed (equivalently, weak 
operator closed, or strong operator closed) in B(H, K). A TRO that is dual as a Banach space is a W ∗-TRO 
[9, Theorem 2.6], and every W ∗-TRO has a unique Banach space predual, up to isometry [9, Proposition 
2.4]. TROs are studied extensively in [2, §4.4, §8.3, 8.5.18], where we can find the following on page 351:

Around 1999, interest in TROs picked up with the important paper [9]. As evidenced by the number of 
recent papers using them, it seems that TRO and C*-module methods are playing an increasingly central 
role in operator space theory at the present time.

Let X be a TRO contained in B(H, K). The left C∗-algebra of X, denoted by C is the C∗-subalgebra of 
B(K) generated by elements of the form xy∗ with x, y ∈ X. Similarly, the right C∗-algebra of X, denoted 
by D, is the C∗-subalgebra of B(H) generated by elements of the form y∗z with y, z ∈ X (C and D need 
not be unital algebras). The connection between C and D is made via the linking C∗-algebra of X, defined 
as AX =

[
C X
X∗ D

]
, where X∗ = {x∗ : x ∈ X} is the space of adjoints of elements of X. It is often convenient 

to make the identification

B(K ⊕H) =
[ B(K) B(H,K)
B(K,H) B(H)

]
and regard AX as a C∗-subalgebra of B(K ⊕H). The linking C∗-algebra AX is uniquely determined by X
and is independent of the Hilbert spaces H and K on which X is represented. Thus, for the most part, we 
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may assume that TROs X ⊆ B(H, K) act non-degenerately on H and K (XH is norm dense in K and X∗K

is norm dense in H). In this case, the C∗-algebras C and D act non-degenerately on K and H, respectively. 
It is clear that CX ⊆ X and XD ⊆ X, so X is a C-D bimodule. In fact, CX = X = XD and X can be 
regarded as a non-degenerate and faithful Hilbert C-D bimodule with inner products C〈x, y〉 = xy∗ and 
〈x, y〉D = x∗y defined on X.

Let X be a W ∗-TRO contained in B(H, K). The left von Neumann algebra of X, denoted by M , is the 
von Neumann subalgebra of B(K) generated by elements of the form xy∗ with x, y ∈ X. The right von 
Neumann algebra of X, denoted by N , is the von Neumann subalgebra of B(H) generated by elements 
of the form y∗z with y, z ∈ X. The linking von Neumann algebra of X is defined as RX =

[
M X
X∗ N

]
and 

it is viewed as a von Neumann subalgebra of B(K ⊕ H). The weak∗ closure X̄ of a TRO X is a W ∗-
TRO.

Example 1.6. If M is a TRO, then A(M) (see Remark 1.4) is a C*-algebra which is *-isomorphic to the 
linking algebra AM of M via the map

AM 

[∑

i xiy
∗
i z

w∗ ∑
j u

∗
jvj

]
�→

[∑
i([xiyi·], [yixi·]) z

w
∑

j([·ujvj ], [·vjuj ])

]
∈ A(M)

(cf. Example 4.15).

1.4. Categories

In this subsection, we record the basic definitions in category theory that we use. See, for example, [12, 
Chapter 0].

Definition 1.7. A category C = (Ob(C), Mor(C), ◦) consists of the following entities.

(1) A class Ob(C) of objects.
(2) For each X, Y in Ob(C), a class Hom(X, Y ) of morphisms (or maps) from X to Y , with f in Hom(X, Y )

written X
f→ Y or f : X → Y . The class of all morphisms is denoted Mor(C), so Hom(X, Y ) ⊆ Mor(C).

(3) For each object X, there is a morphism 1X ∈ Hom(X, X) such that 1Y ◦ f = f ◦ 1X = f for each 
f ∈ Hom(X, Y ).

(4) For each X, Y, Z in Ob(C), a function

Hom(X,Y ) × Hom(Y,Z) → Hom(X,Z)
(f, g) �→ g ◦ f = gf

called morphism composition (or just composition), which is associative in the sense that (hg)f = h(gf)
for all composable morphisms in the category.

When convenient and not confusing, we shall often, as in [11], denote Hom(X, Y ) simply by (X, Y ).

Definition 1.8. Let C and D be categories. A (covariant) functor F : C → D consists of the following 
entities.

(1) A function Ob(C) → Ob(D) that associates to each object X in C an object F (X) in D.
(2) For each X, Y in Ob(C), a function Hom(X, Y ) → Hom(F (X), F (Y )) that associates to each morphism 

X
f→ Y in C a morphism F (X) F (f)−→ F (Y ) in D such that
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F (g ◦ f) = F (g) ◦ F (f) and F (1X) = 1F (X)

for all composable morphisms f, g in C.

Definition 1.9. A subcategory of a category C is a category S whose objects are objects in C and whose 
morphisms are morphisms in C with the same identities and composition of morphisms. If X, Y are objects 
of S, then the morphism set of S from X to Y is denoted (X, Y )S , and we have (X, Y )S ⊂ (X, Y ) := (X, Y )C .

Definition 1.10. Let K be a field. A category C = (Ob(C), Mor(C), ◦) is called a K-linear category (or a 
K-algebroid) if each Hom(X, Y ) ⊆ Mor(C) has the structure of a vector space over K and composition of 
morphisms

Hom(X,Y ) × Hom(Y,Z) → Hom(X,Z)
(f, g) �→ g ◦ f

is K-bilinear.

For any object X in a K-linear category, (X, X) is a unital associative algebra. For any such associative 
algebra A, the category with A as its sole object, and A as its morphisms, is a K-linear category with 
composition being the product in A.

Definition 1.11. Let A be a K-linear category and J a subcategory. Then J is an ideal of A if for objects 
X, Y of J , (X, Y )J is a linear subspace of (X, Y ) and objects X, Y, Z

(right ideal) (Y,Z)J ◦ (X,Y ) ⊂ (X,Z)J

and

(left ideal) (Y,Z) ◦ (X,Y )J ⊂ (X,Z)J

(composition in A).
If J is a two-sided ideal in C, the quotient C/J is the category with the same objects as C and with 

morphism sets the quotient spaces (X, Y )/(X, Y )J . There is a natural quotient functor from C to C/J (see 
[19, section 4]).

Definition 1.12. Let C and D be K-linear categories. A functor F : C → D is a linear functor if the map 
F : Hom(X, Y ) → Hom(F (X), F (Y )) is linear.

2. C*-ternary rings

Recall that a C*-ternary ring was introduced in [22] as a complex Banach space (Z, ‖ · ‖) with a ternary 
operation (·, ·, ·) : Z × Z × Z → Z which is linear in the outer variables and conjugate linear in the middle 
variable, associative in the sense that

(((v, w, x), y, z) = (v, (y, x, w), z) = (v, w, (x, y, z)),

and for which ‖(x, y, z)‖ ≤ ‖x‖‖y‖‖z‖ and ‖(x, x, x)‖ = ‖x‖3. In addition, if Z is a dual Banach space, it is 
called a W*-ternary ring.

In order to prove our main results in this section (Theorems 4.11 and 4.14 below), we shall invoke the 
following Gelfand-Naimark theorem for C*-ternary rings, which uses the following terminology. A linear 
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bijection ϕ : Z1 → Z2 between two C*-ternary rings (Z1, (·, ·, ·)1) and (Z2, (·, ·, ·)2) is an isomorphism if 
ϕ((x, y, z)1) = (ϕ(x), ϕ(y), ϕ(z))2 and an anti-isomorphism if ϕ((x, y, z)1) = −(ϕ(x), ϕ(y), ϕ(z))2.

Theorem 2.1 (Theorem 3.1 in [22]). Let Z be a C*-ternary ring.

(i): Z is the direct sum of two C*-ternary subrings Z+ and Z− which are respectively isometrically iso-
morphic and isometrically anti-isomorphic to a ternary ring of operators (TRO).

(ii): The decomposition is unique: if Z1 and Z2 are C*-ternary subrings of Z with Z = Z1 ⊕ Z2, Z1
isomorphic to a TRO, and Z2 anti-isomorphic to a TRO, then Z+ = Z1 and Z− = Z2.

(iii): There exists one, and only one, operator T : Z → Z satisfying
• T 2 = I;
• T ((x, y, z)) = (Tx, y, z) = (x, Ty, z) = (x, y, Tz) for x, y, z ∈ Z;
• (Z, T ◦ (x, y, z)) is a C*-ternary ring which is isomorphic to a TRO.

Remark 2.2. Zettl shows ([22, Proposition 3.2 and p. 130]) that if a C*-ternary ring (Z, (x, y, z)) is a right 
Banach A-module for some C*-algebra A, and there is a conjugate bilinear form α : Z×Z → A with ‖α‖ ≤ 1
satisfying

(i): α(x · a, y) = α(x, y)a
(ii): α(x, y)∗ = α(y, x)
(iii): (x, y, z) = x · α(z, y)
(iv): spanα(Z, Z) is dense in A,

then Z+ = {z ∈ Z : α(z, z) ≥ 0} and Z− = {z ∈ Z : α(z, z) ≤ 0}, and that Z+ and Z− are orthogonal, so 
that ‖(α, β)‖ = max(‖α‖, ‖β‖) for (α, β) ∈ Z+ ⊕ Z−.

Let (M, [·, ·, ·]) be a C*-ternary ring. Recall that, M being a normed associative triple system, it is, 
by Remark 1.4, a left L(M)-Banach module via L(M) × M 
 (A, f) �→ A · f = A1f ∈ M and a right 
R(M)op-Banach module via M ×R(M) 
 (f, B) �→ f ·B = B1f ∈ M , and that

A = {a =
[
A f
g B

]
: A ∈ L(M), B ∈ R(M), f, g ∈ M},

is an algebra with multiplication (1.1) and involution (1.2).
We note that the C*-algebra A in Remark 2.2 is the closed span of {[·gh] : g, h ∈ V } and it is *-isomorphic 

to R(M) via the map A 
 B1 �→ σ(B1) = (B1, B∗
1) ∈ R(M). Similarly τ : B → L(V ) is the *-isomorphism 

A1 �→ (A1, A∗
1), where B is the close span of {[gh·] : g, h ∈ V }. The C*-ternary ring M is thus both a 

Banach (L, R)-bimodule and a Banach (B, A)-bimodule.
The following proposition is a key to the proof of Theorem 4.11. Because of the length of the proof of 

(iv), we defer it to section 6. Also, although the proof of (i) follows from the fact, just noted, that R(M) is 
*-isomorphic to A, we give a direct proof in the present context.

Proposition 2.3. Let M be a C*-ternary ring. With the above notation, we have

(i): R(M) is a C*-algebra with the norm from B(M).
(ii): M is a right Banach R(M)op-module.
(iii): With 〈f |g〉 = 〈f |g〉M : M ×M → R(M) defined by 〈f |g〉 = r(g, f) = ([·gf ], [·fg]), we have

〈f ·B|g〉 = 〈f |g〉 ◦B.
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(iv): If M is a right R(M)op-Hilbert module, then A can be normed to be a C*-algebra.

Proof. (i) Recall that R = R(M) is the closed span of

{r(f, g) = ([·fg], [·gf ]) : f, g ∈ M} ⊂ B(M) ⊕ [B(M)]op.

Let U =
∑

i r(fi, gi) = (
∑

i[·figi], 
∑

i[·gifi]) = (U1, U2) ∈ R, and recall that U = (U2, U1) is the involution3

on R. We shall show, by mimicking the proof of [22, Proposition 3.2 (1)], that ‖U‖2 = ‖UU‖, proving that 
R is a C*-algebra.

Let h = (h1, h2) ∈ M ⊕M . We have

[Uh,Uh, Uh] = [U1h1, U1h1, U1h1] ⊕ [U2h2, U2h2, U2h2]

= [
∑
i

[h1figi], U1h1, U1h1] ⊕ [
∑
i

[h2gifi], U2h2, U2h2]

=
∑
i

[h1, [U1h1, gi, fi], U1h1] ⊕
∑
i

[h2, [U2h2, fi, gi], U2h2]

= [h1 ⊕ h2, (
∑
i

[U1h1, gi, fi]) ⊕ (
∑
i

[U2h2, fi, gi]), U1h1 ⊕ U2h2]

= [h1 ⊕ h2, U2U1h1 ⊕ U1U2h2, U1h1 ⊕ U2h2]

= [h, UUh,Uh],

so that

‖Uh‖3 = ‖[Uh,Uh, Uh]‖ ≤ ‖h‖‖UUh‖‖Uh‖

and

‖Uh‖2 ≤ ‖h‖‖UUh‖ ≤ ‖h‖2‖UU‖ ≤ ‖U‖‖U‖‖h‖2 = ‖U‖2‖h‖2.

(ii) This is immediate from Lemma 1.2(i), as noted in Remark 1.4.
(iii) Let B = (B1, B2) = r(h, k) = ([·hk], [·kh]). Then

〈f ·B|g〉 = 〈B1f |g〉 = r(g,B1f) = r(g, [fhk]) = ([·g[fhk]], [·[fhk]g])

and

〈f |g〉 ◦B = r(g, f) ◦ (B1, B2)

= ([·gf ], [·fg]) ◦ ([·hk], [·kh])

= ([·hk], [·kh])([·gf ], [·fg])
= ([·hk][·gf ], [·fg][·kh])

= ([[·gf ]hk], [[·kh]fg]),

as required.
(iv) See section 6. �

3 U is obviously well defined. However, that fact, proved in [22], that ∑i[·figi] = 0 implies that ∑i[·gifi] = 0, requires proof 
using associativity of the ternary product. We don’t need that argument here since it is obvious that if (U1, U2) = (0, 0), then 
(U1, U2) = (U2, U1) = (0, 0).
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Lemma 2.4. If M is a C*-ternary ring with decomposition M = M+ ⊕ M−, then M+ is a right R(M)op-
Hilbert module.

Proof. In Remark 2.2, with α(f, g) = 〈f |g〉 = r(f, g), (i) holds by Proposition 2.3(iii), and (ii) and (iv) 
follow from the definition of α. To prove (iii) in Remark 2.2, it suffices to show that [hgf ] = h · 〈f |g〉. 
But h · 〈f |g〉 = h · ([·gf ], [·fg]) = [hgf ]. Thus M+ = {f ∈ M : α(f, f) ≥ 0} and is therefore a right 
R(M)op-Hilbert module. �
Lemma 2.5. A surjective homomorphism between C*-ternary rings is contractive.

Proof. Let φ : M → N be a surjective homomorphism of C*-ternary rings M = M+⊕M− and N = N+⊕N−. 
Then N = φ(M+) ⊕ φ(M−) is the sum of two orthogonal ideals. Also, φ(M+) � M+/ kerφ|M+ which 
is isomorphic to a quotient of a TRO, which, by ([9, Proposition 2.2]) is a TRO. Similarly φ(M−) �
M−/ kerφ|M− is anti-isomorphic to a TRO. So by uniqueness of the Zettl decomposition, φ(M±) = N±. 
Note that a TRO homomorphism of TROs is contractive ([9, Proposition 2.1]), and since φ restricts to a 
homomorphism of M± onto N±, φ|M± is contractive. For example, if ψ is an isomorphism of M+ onto a 
TRO V , and ξ is an isomorphism of N+ onto a TRO W , then ξ ◦ φ ◦ ψ−1 is a homomorphism from V
to W , hence contractive, and ‖φ(x+)‖ = ‖ξφ(x+)‖ = ‖(ξ ◦ φ ◦ ψ−1)(ψ(x+)‖ ≤ ‖ψ(x+)‖ = ‖x+‖. Thus, if 
x = x+ + x− ∈ M , ‖φ(x)‖ = ‖φ(x+) + φ(x−)‖ = max(‖φ(x+)‖, ‖φ(x−)‖) ≤ max(‖x+‖, ‖x−‖) = ‖x‖. �
Lemma 2.6. Let φ : M → N be a surjective homomorphism between C*-ternary rings M and N . There is a 
*-homomorphism A(φ) : A(M) → A(N) defined by

A(ϕ)
([

A f
g B

])
=

[
ϕ11(A) ϕ(f)
ϕ(g) ϕ22(B)

]
, (2.1)

where if A =
∑

i([gihi·], [higi·]) ∈ L(M),

ϕ11(A) =
∑
i

([ϕ(gi)ϕ(hi)·], [ϕ(hi)ϕ(gi)·]) ∈ L(N), (2.2)

and if B =
∑

i([·gihi], [·higi]) ∈ R(M),

ϕ22(B) =
∑
i

([·ϕ(gi)ϕ(hi)], [·ϕ(hi)ϕ(gi)]) ∈ R(N).

Proof. It is enough to show that the mapping (2.1) is well-defined, which will follow from ‖ϕ11(A)‖ ≤ ‖A‖
and ‖ϕ22(B)‖ ≤ ‖B‖. The rest of the proof involves straightforward but tedious algebra. In fact the 
contractivity of φ11 and of φ22 follow by direct calculation from Lemma 2.5 and surjectivity of φ. �
Proposition 2.7. If M is a C*-ternary ring, then A(M) is a C*-algebra.

Proof. With M = M+ ⊕M−, A(M+) is isomorphic to a C*-algebra by Lemma 2.4 and Proposition 2.3(iv). 
If M− is anti-isomorphic to a TRO V , then by Lemma 2.6, A(M−) is *-isomorphic to A(V ), which by 
Example 1.6 is *-isomorphic to the linking algebra of V . Thus A(M) = A(M+) ⊕A(M−) is a C*-algebra. �
3. Ternary categories

3.1. Ternary categories

The following definition is basic to this paper.
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Definition 3.1. A ternary category C = (Ob(C), Mor(C), ◦) consists of the following entities.

• A class Ob(C) of objects.
• For each X, Y in Ob(C), a class Hom(X, Y ) of morphisms (or maps) from X to Y , with f in Hom(X, Y )

written X
f→ Y or f : X → Y . The class of all morphisms is denoted Mor(C), so Hom(X, Y ) ⊆ Mor(C).

• For each X, Y, Z, W in Ob(C), a function

Hom(X,Y ) × Hom(Z, Y ) × Hom(Z,W ) → Hom(X,W )
(f, g, h) �→ h ◦ g∗ ◦ f = hg∗f ,

called morphism composition (or just composition), which is associative for all composable morphisms 
in the category, namely

(lk∗h)g∗f = l(gh∗k)∗f = lk∗(hg∗f) (3.1)

whenever

X
f→ Y

g← Z
h→ W

k← U
�→ V.

To be precise, because of the twist in the middle term, (3.1) is defined only if U = Y , that is, for 
f ∈ (X, Y ), k ∈ (Y, W ), h ∈ (Z, W ), g ∈ (Z, Y ), � ∈ (Y, V ).

Definition 3.1 differs from Definition 1.7 in two respects. First, there is no stipulation for the existence 
of an identity morphism for each object (however, see Remark 3.5). Second, composition of morphisms is a 
ternary operation as opposed to a binary one. By an abuse of language, we use the term ‘ternary category’ 
even though it may not be a category. In addition, by an abuse of notation, we warn that the notation g∗

is symbolic, without independent meaning (An exception occurs, for example, in Remark 4.8).
A linear ternary category is a ternary category in which Hom(X, Y ) is a linear space over a field K and 

composition is linear in the outer variables and conjugate linear in the middle variable. In a linear ternary 
category, Hom(X, Y ) is an associative triple system (see subsection 1.2).

Example 3.2. If M is an associative triple system, then the category with M as its sole object, and M as 
its morphisms, is a K-linear ternary category with composition being the triple product in M .

Example 3.3. The class of all sets (as objects) together with all binary relations between them (as mor-
phisms), with composition of relations, forms a category which we denote by R. Thus, if X, Y are sets, 
Hom(X, Y ) = P (X ×Y ) is the power set of X ×Y . If F ⊆ X ×Y is a relation then F ∗ = {(y, x) : (x, y) ∈
F} ⊆ Y ×X is its converse. We have (F ∗)∗ = F and (G ◦ F )∗ = F ∗ ◦ G∗ for all composable relations. It 
follows that R is a dagger category (i.e. category with involution). It can be viewed as a ternary category 
with the natural (ternary) composition of relations, F ◦G∗ ◦H.

Definition 3.4. Let C be a K-linear ternary category and J a subcategory. Then J is an (ternary) ideal of 
C if for objects X, Y, Z, W of J , (X, Y )J is a linear subspace of (X, Y ) and

(Z,W )J ◦ (Z, Y ) ◦ (X,Y ) ⊂ (X,W )J ,

(Z,W ) ◦ (Z, Y )J ◦ (X,Y ) ⊂ (X,W )J ,

(Z,W ) ◦ (Z, Y ) ◦ (X,Y )J ⊂ (X,W )J .
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If J is an ideal in C, the quotient C/J is the category with the same objects as C and with morphism sets 
the quotient spaces [X, Y ] := (X, Y )/(X, Y )J . There is a natural quotient functor from C to C/J , given by 
(X, Y ) 
 f �→ f = f + (X, Y )J ∈ [X, Y ]. The composition in C/J is given by

(f, g, h) �→ [hgf ],

and is easily seen to be well-defined and associative in the sense of Definition 3.1.

Remark 3.5.

• As in the case of non-unital categories (cf. [19, Definition 3.1]), there are no identity morphisms per se 
in ternary categories. However, one can call a family of morphisms {uX : X object of C} in a ternary 
category C which satisfy uY u

∗
Y f = f = fu∗

XuX a “unitary”, and more generally morphisms (uX) which 
satisfy uX = uXu∗

XuX “tripotents,” or “partial isometries”.4
• A unitary ternary category is a ternary category C containing a unitary element (uX). In this case, one 

has a (unital) category A with the same objects and the same morphisms as C, but with composition 
given by f ◦ g = fu∗

Y g for g ∈ (X, Y ), f ∈ (Y, Z).

Example 3.6. The class of all complex Hilbert spaces (as objects) together with all bounded linear operators 
between them (as morphisms), with morphism composition (f, g, h) �→ hg∗f , forms a unitary ternary 
category which we will denote by H+ (cf. Example 4.2 and Remark 4.13(iii)).

Definition 3.7. Let C and D be ternary categories. A (covariant) functor F : C → D (or ternary functor for 
emphasis) consists of the following entities.

• A function Ob(C) → Ob(D) that associates to each object X in C an object F (X) in D.
• For each X, Y in Ob(C), a function Hom(X, Y ) → Hom(F (X), F (Y )) that associates to each morphism 

X
f→ Y in C a morphism F (X) F (f)−→ F (Y ) in D such that5

F (h ◦ g∗ ◦ f) = F (h) ◦ F (g)∗ ◦ F (f)

for all composable morphisms f, g, h in C.

3.2. The linking category of a linear ternary category

Let C be a C-linear ternary category with objects X, Y, Z, . . . and morphisms (X, Y ), (Z, W ), . . .. Denote 
the composition of morphisms f ∈ (X, Y ), g ∈ (Z, Y ), h ∈ (Z, W ) by [hgf ].

For a pair of objects X, Y , (X, Y ) is an associative triple system, so all of the machinery in subsection 1.2
is available by replacing M there by (X, Y ). Thus,

E(X,Y ) := End ((X,Y )) ⊕ [End ((X,Y ))]op,

4 In this case, a maximal tripotent in a T*-category (Definition 4.6) would satisfy

[uY u
∗
Y f ] + [fu∗

XuX ] = f + [[uY u
∗
Y f ]u∗

XuX ]

for f ∈ (X, Y ). Tripotents and Peirce decompositions in T*-categories are worthy of further study.
5 The reader is reminded that g∗ and F (g)∗ are symbolic notations for the middle term of a ternary composition, so have no 

meaning if isolated.
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and for g, h ∈ (X, Y ),

�(g, h) = (L(g, h), L(h, g)) = ([gh·], [hg·]) ∈ E(X,Y ),

r(g, h) = (R(h, g), R(g, h)) = ([·gh], [·hg]) ∈ E(X,Y )op,

L = L(X,Y ) = span {�(g, h) : g, h ∈ (X,Y )} ⊂ E(X,Y ), and

R = R(X,Y ) = span {r(g, h) : g, h ∈ (X,Y )} ⊂ E(X,Y )op.

Recall that there are two reverses of multiplication in the definition of E(X, Y )op, and involutions are 
defined on E(X, Y ) and E(X, Y )op by (A1, A2) = (A2, A1 and (B1, B2) = (B2, B1).

From Lemmas 1.1 and 1.2,

• L is a *-subalgebra of E(X, Y ) and R is a *-subalgebra of E(X, Y )op.
• (X, Y ) is a left E(X, Y )-module via (A, f) �→ A · f = A1f ,

a right E(X, Y )op-module via (f, B) �→ f ·B = B1f , and an (L, R)-bimodule;
• (X,Y ) is a left E(X, Y )op-module via (B, f) �→ B · f = B2f ,

a right E(X, Y )-module via (f, A) �→ f ·A = A2f , and an (R, L)-bimodule.

Given objects X, Y in a linear ternary category C, let

A = A(X,Y ) = L(X,Y ) ⊕ (X,Y ) ⊕ (X,Y ) ⊕R(X,Y )

and write the elements a of A as matrices

a =
[
A f
g B

]
, (A ∈ L(X,Y ), B ∈ R(X,Y ), f, g ∈ (X,Y )).

Define multiplication and involution in A by
[
A f
g B

] [
A′ f ′

g′ B′

]
=

[
AA′ + �(f, g′) A · f ′ + f ·B′

g ·A′ + B · g′ r(g, f ′) + B ◦B′

]
(3.2)

and
[
A f
g B

]#

=
[
A g
f B

]
. (3.3)

From Lemma 1.3, A(X, Y ) is an associative *-algebra and for f, g, h ∈ (X, Y ),

[
0 f
0 0

] [
0 g
0 0

]# [
0 h
0 0

]
=

[
0 [fgh]
0 0

]
.

Definition 3.8. Given a linear ternary category C, the linking category AC of C is as follows. The objects of 
the category AC are the same6 as the objects of C. The morphism set Hom(X, Y ) is defined to be {0} if 
X �= Y , and Hom(X, X) = A(X, X), with composition as follows. If a ∈ Hom(X, Y ) and b ∈ Hom(Y, Z), 
then b ◦ a must be {0} unless X = Y = Z, in which case b ◦ a is defined to be the product ab in A(X, X).

In general, AC is a non unital category. By adjoining the identity operator to L and to R, one can define 
a unital linking category, but this is not needed for our purposes.

6 Or could be considered as the same as the objects of C, for example, in one to one correspondence with the objects of C.
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Remark 3.9. The category AC can be considered as a ternary category under the composition [abc] = ab#c

and, by Lemma 1.3, we obtain a linear ternary functor F from C to AC by associating the object X of 
C to the object X of AC and the morphism f ∈ (X, Y ) to 0 if X �= Y and otherwise to the morphism [
0 f
0 0

]
∈ A(X, X).

It is possible to define the morphism sets of AC as (X, Y )AC = A(X, Y ) even if X �= Y . In that case, 
we could then define b ◦ a to be 0 unless X = Y = Z and otherwise to be the product ab in A(X, X). In 
either case, the price paid is that the linear ternary functor of C into AC in Remark 3.9 is not faithful (see 
Theorem 4.11 below).

Example 3.10. If M is an associative triple system, A(M) its standard embedding (see Remark 1.4) and 
C is the category with M as its sole object and M as its morphisms with composition given by the triple 
product in M , then by [17, Satz 1] (reproduced in [18, Theorem 2, p. 30]), AC is the category with A(M)
as its only object and the elements of A(M) as morphisms with composition being multiplication in the 
associative algebra A(M).

Definition 3.11. If the linear ternary category C is normed, that is, if (X, Y ) is a normed space and ‖f ◦
g∗ ◦ h‖ ≤ ‖f‖‖g‖‖h‖, then the normed linking category of C is defined in the same way but with R and L
replaced by their closures in B((X, Y )). In this case, the modules in Lemma 1.2 are continuous modules, 
and Banach modules if (X, Y ) is a Banach space.

4. Operator categories

4.1. C*-categories

In this subsection we recall the notion of C*-category from [11] and [19].

Definition 4.1. A C*-category is a C-linear category C = (Ob(C), Mor(C), ◦) with the following additional 
properties.

(i): (X, Y ) is a complex Banach space.
(ii): Composition is bilinear.7
(iii): There is an involution, that is, a collection of maps (X, Y ) 
 f �→ f∗ ∈ (Y, X) which are conjugate 

linear, involutive, and satisfy (g ◦ f)∗ = f∗ ◦ g∗ for f ∈ (X, Y ), g ∈ (Y, Z).
(iv): ‖g ◦ f‖ ≤ ‖f‖‖g‖ for f ∈ (X, Y ), g ∈ (Y, Z).
(v): ‖h‖2 = ‖h∗h‖ for h ∈ (X, Y ).
(vi): For all h ∈ Hom(X, Y ), h∗h = g∗g for some g ∈ Hom(X, X).

A C*-functor is a linear functor between C*-categories which satisfies F (f∗) = F (f)∗.

For any object X in a C*-category, (X, X) is a C*-algebra, and as a consequence of Theorem 4.5 and 
Remark 4.8, (X, Y ) is a C*-ternary ring which is isomorphic to a TRO. For any C*-algebra A, the category 
with A as its only object, and A as it morphisms, with composition and involution being multiplication and 
involution in A, is a C*-category.

7 This is part of the definition of C-linear, but included here for easy reference.



16 R. Pluta, B. Russo / J. Math. Anal. Appl. 505 (2022) 125590
Example 4.2. The class of all complex Hilbert spaces (as objects) together with all bounded linear operators 
between them (as morphisms), with morphism composition (f, g) �→ f ◦ g, forms a C*-category which we 
denote by H.

Example 4.3. Let A be a C∗-algebra and let (H, ρ), (K, σ) be a pair of ∗-representations of A on Hilbert spaces 
H, K. An operator t ∈ B(H, K) with tρ(a) = σ(a)t, for all a ∈ A, is called an intertwiner, the collection of 
all intertwiners between ρ and σ is denoted by Hom(ρ, σ). If t ∈ Hom(ρ, σ) then t∗ ∈ Hom(σ, ρ), it follows 
that Hom(ρ, σ) is a weakly closed TRO contained in B(H, K) and Hom(ρ, ρ) is a C∗-subalgebra of B(H). 
The class of all ∗-representations of A on Hilbert spaces (as objects) together with intertwiners of these 
representations (as morphisms) is a C∗-category, denoted Rep(A), which can be viewed as a T ∗-category 
with the natural (ternary) composition of intertwiners.

Example 4.4. Let Γ be a countable discrete group and let (H, ρ), (K, σ) be a pair of unitary representations of 
Γ on Hilbert spaces H, K. The collection Hom(ρ, σ) of intertwining operators between ρ and σ, i.e. operators 
t ∈ B(H, K) with tρ(g) = σ(g)t for all g ∈ Γ, is a weakly closed TRO contained in B(H, K), and Hom(ρ, ρ)
is a von Neumann subalgebra of B(H). The class of all unitary representations of Γ on Hilbert spaces 
(as objects) together with intertwiners of these representations (as morphisms) is a C∗-category, denoted 
Rep(Γ), which can be viewed as a T ∗-category (see Definition 4.6) with the natural (ternary) composition 
of intertwiners.

It is shown in [11] that every C∗-category C can be realized as a “concrete” C∗-sub-category of H (see 
also [19], which among other things, gives the proof of Theorem 4.5 below in more detail). Theorem 4.5 can 
be viewed as a generalization of the celebrated Gelfand-Naimark representation theorem which says that 
every abstract C∗-algebra can be realized as a concrete C∗-subalgebra of some B(H), and it serves as the 
motivation for the results in this section.

Theorem 4.5 (Proposition 1.14 in [11]). For every C*-category A, there is a faithful C*-functor from A to 
H.

4.2. T*-categories

Definition 4.6. A T*-category is a ternary category C = (Ob(C), Mor(C), ◦) with the following additional 
properties.8

(i): (X, Y ) is a complex Banach space.
(ii): For each X, Y, Z, W in Ob(C), a function

Hom(X,Y ) × Hom(Z, Y ) × Hom(Z,W ) → Hom(X,W )
(f, g, h) �→ [h ◦ g∗ ◦ f ]

called morphism composition (or just composition), which is associative in the sense that [[(lk∗h)]g∗f ] =
[l[gh∗k]∗f ] = [lk∗[hg∗f ]], whenever the compositions are defined (see Definition 3.1).

(iii): Composition is linear in the outer variables and conjugate linear in the middle variable.
(iv): ‖[gh∗f ]‖ ≤ ‖h‖‖f‖‖g‖ for f ∈ (X, Y ), h ∈ (Z, Y ), g ∈ (Z, W ).
(v): ‖hh∗h‖ = ‖h‖3, for h ∈ (X, Y ).

8 Items (ii) and (iii) are parts of the definition of ternary category, but included here for easy reference.
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A T ∗-functor is a linear functor between T*-categories. A T*-category is a TW*-category if each morphism 
set is a dual space.

For any objects X, Y in a T*-category (resp. TW*-category), (X, Y ) is a C*-ternary ring (resp. W*-
ternary ring). A C∗-ternary ring X, or its concrete analogue, a ternary ring of operators (TRO), can be 
viewed as a T*-category with one object and the elements of X themselves as morphisms, with morphism 
composition given by the ternary operation in X.

As mentioned in subsection 1.1, Zhong-Jin Ruan [20] presented a classification scheme and proved various 
structure theorems for weakly closed ternary rings of operators (W∗-TROs) of particular types. A W∗-TRO 
V of type I, II, or III was defined according to the Murray-von Neumann type of its linking von Neumann 
algebra RV , defined in subsection 1.3.

A W∗-TRO V is of type I, II, or III according as RV is a von Neumann algebra of the corresponding 
type. A W∗-TRO of type II is said to be of type IIε,δ, where ε, δ ∈ {1, ∞}, if M(V ) is of type IIε and N(V )
is of type IIδ. A sample result is that a W*-TRO of type I is TRO-isomorphic to ⊕αL

∞(Ωα, B(Kα, Hα))
([20, theorem 4.1]).

Definition 4.7. A TW*-category is of type I (resp. II, III) if each morphism set (i.e. C*-ternary ring) (X, Y )
is isomorphic as a C*-ternary ring (for example isomorphic or anti-isomorphic) to a W*-TRO of type I 
(resp. II, III).

In connection with Theorem 4.5, it is also proved ([11, Proposition 2.13]) that for every W*-category 
there is a faithful normal C*-functor into H, which is obviously a W*-category. What is missing however, 
as mentioned in subsection 1.1, is a type classification of W*-categories into W*-categories of types I, II, 
and III. We remedy this in Propositions 4.9 and 4.24.

Remark 4.8. A C*-category (resp. W*-category) becomes a T*-category (resp. TW*-category) with ternary 
product [hgf ] = f ◦ g∗ ◦ h, and by Theorem 4.5 (resp. [11, Proposition 2.13]), each morphism set (X, Y ) in 
a C*-category (resp. W*-category) is isomorphic to a TRO (resp. W*-TRO).

Proposition 4.9. Each W*-category C, considered as a TW*-category, is the direct sum CI ⊕ CII ⊕ CIII , 
where Ci, i = I, II, III, is a TW*-category of type i.

Proof. By [11, Proposition 2.13], in a W*-category, each morphism space (X, Y ) is isomorphic to a W*-
TRO. By Ruan’s classification (X, Y ) = (X, Y )I ⊕ (X, Y )II ⊕ (X, Y )III and it suffices to take Ci to be the 
T*-category with morphism sets (X, Y )i. �

Let C be a T*-category. Since A(X, Y ) plays no role in what follows if X �= Y , we will focus on the 
morphism sets (X, X) and for notation’s sake, denote (X, X) by X̃, L(X, X) by L, R(X, X) by R, and 
A(X, X) by A. Recall that X̃ is a left L-module via L × X̃ 
 (A, f) �→ A · f = A1f ∈ X̃ and a right 
Rop-module via X̃ ×R 
 (f, B) �→ f ·B = B1f ∈ X̃, and that

A = {a =
[
A f
g B

]
: A ∈ L,B ∈ R, f, g ∈ X̃},

is an algebra with multiplication (3.2) and involution (3.3).

Remark 4.10. If C is a T*-category and J is a closed ideal (meaning (X, Y )J is a closed subspace of the 
Banach space (X, Y )), then C/J is a T*-category.
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Proof. Items (i)-(iii) in Definition 4.6 are clear. To prove (iv), let f ∈ [X, Y ], g ∈ [Z, Y ], h ∈ [Z, W ] and 
choose f ′ ∈ (X, Y )J , g′ ∈ (Z, Y )J , h′ ∈ (Z, W )J such that ‖f + f ′‖ ≤ ‖f‖ + ε, ‖g + g′‖ ≤ ‖g‖ + ε, 
‖h + h′‖ ≤ ‖h‖ + ε. Then

‖[hgf ]‖ = ‖[h + h′, g + g′, f + f ′]‖ = ‖[h + h′, g + g′, f + f ′]‖

≤ ‖[h + h′, g + g′, f + f ′]‖ ≤ ‖[h + h′‖‖g + g′‖‖f + f ′‖

≤ ‖h‖‖g‖‖f‖ + O(ε).

As for (v), if h ∈ [X, Y ], then

‖h‖3 = inf
k∈(X,Y )J

‖h + k‖3 = inf
k∈(X,Y )J

‖[h + k, h + k, h + k]‖

= inf
k∈(X,Y )J

‖[hhh] + an element of (X,Y )J ‖

≥ inf
k∈(X,Y )J

‖[hhh] + k‖ = ‖[hhh]‖ = ‖[h, h, h]‖. �
The following theorem is the first main result of this paper.

Theorem 4.11. If C is a T*-category then AC is a C*-category and there is an ideal K �= C of C and a faithful 
T*-functor from C/K to AC, the latter considered as a T*-category.

Proof. It is clear that AC, as defined in Definition 3.8, is a linear non-unital category which, when considered 
as a ternary category, satisfies (ii), (iii) and (vi) in Definition 4.1. Items (i), (iv), and (v) in Definition 4.1
are tantamount to the morphism sets of AC of the form A(X, X) being normed as C*-algebras. This fact is 
immediate from Proposition 2.7.

The ideal K of C defined by (X, Y )K = (X, Y )C if X �= Y and (X, X)K = 0, is the kernel of the functor 
F given by Remark 3.9, so it induces a faithful functor F̃ = F/K from C/K to AC . �

The following is the category analog of the Hamana extension of a TRO homomorphism to a *-
homomorphism of the linking C*-algebras, [2, 8.3.5].

Remark 4.12. Let ρ be a T*-functor from a T*-category C to a T*-category D. Then there is a C*-functor 
ρ̂ from AC to AD which extends ρ.

Proof. For each object X of AC, set ρ̂(X) = ρ(X), which is an object of D and hence of AD. If X �= Y , 
then (X, Y )AC = 0, so set ρ̂((X, Y )AC ) = 0. For φ = ρ|(X,X)AC

where (X, X)AC = A(X, X), let ρ̂(φ) be the 
element A(φ) ∈ (ρ(X), ρ(X))AD = A(ρ(X), ρ(X)) given by Lemma 2.6. �
Remark 4.13. Direct sums of categories were defined in [19, Definition 3.8]. The same definition can be made 
for ternary categories.

(i) If C and D are categories (resp. ternary categories) whose objects may be considered identical, then 
the direct sum C ⊕ D is defined as the category (resp. ternary category) whose objects are identified with 
the objects of C or D, and with morphism sets

Hom(X,Y )C⊕D = Hom(X,Y )C ⊕ Hom(X,Y )D,

and composition defined coordinatewise.
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(ii) If C is a T*-category, T*-subcategories C± are defined as follows. Recall that by Theorem 2.1, we 
have (X, Y ) = (X, Y )+ ⊕ (X, Y )− for each pair of objects X, Y of C. The objects of C± are the same as the 
objects of C, and for such objects X, Y ,

(X,Y )C± := (X,Y )±.

It is clear that C is isomorphic to C+ ⊕ C− and that AC is isomorphic to AC+ ⊕AC− .
(iii) The category H consisting of complex Hilbert spaces H, K, L, . . . as objects and bounded linear 

maps B(H, K) as morphisms is a C*-category with composition ST for S ∈ B(K, L) and T ∈ B(H, K) (see
Definition 4.2). It is a T*-category with composition RS∗T . We shall now denote this T*-category H by 
H+ and let H− denote H as a T*-category with composition −RS∗T .

The following may be called the Gelfand-Naimark theorem for T*-categories.

Theorem 4.14. Let C be a T*-category. Then there is an ideal K �= C in C and a faithful T*-functor from 
C/K to the T*-category H+ ⊕H−.

Proof. By Theorem 4.5, there is a faithful C*-functor G± from AC± to H. With AC± considered as a 
T*-category, we have that G± is a T*-functor from AC± to H±. By Theorem 4.11, there is a T*-functor 
F± from C± to AC± , and it suffices to consider H/K, where K is the ideal in Theorem 4.11, and H =
(G+ ◦ F+) ⊕ (G− ◦ F−). �

We close this subsection with some examples of linking C*-categories.

Example 4.15. (Cf. Example 1.6) If X is a TRO, and C is the T*-category ({X}, X) with X as its sole object 
and the elements of X as its morphisms from X to X, and with composition [zyx] = xy∗z, then AC is the 
category ({X}, A(X, X)) with X as its sole object and the elements of A(X, X) as its morphisms from X
to X, and with composition being the multiplication in A(X, X). As expected, the C*-algebra A(X, X) is 
*-isomorphic to the linking algebra AX of the TRO X under the map

AX 

[∑

i xiy
∗
i z

w∗ ∑
j u

∗
jvj

]
�→

[∑
i([xiyi·], [yixi·]) z

w
∑

j([·ujvj ], [·vjuj ])

]
∈ A(X,X).

Example 4.16. If (Z, (·, ·, ·)) is a C*-ternary ring, and C is the T*-category ({Z}, Z) with Z as its sole object 
and the elements of Z as its morphisms from Z to Z, and with composition [zyx] = (x, y, z), then AC is the 
category ({Z}, A(Z, Z)) with Z as its sole object and the elements of A(Z, Z) as its morphisms from Z to 
Z, and with composition being the multiplication in A(Z, Z).

The C*-algebra A(Z, Z) = A(Z+) ⊕ A(Z−) is *-isomorphic to AX ⊕ B where X is a TRO which is 
isomorphic to Z+, and B is a C*-algebra which is related to a TRO Y which is anti-isomorphic to Z−. 
Precisely, A(Z+) is isomorphic to AX , which is the closure of

{[∑
i xiy

∗
i z

w∗ ∑
j u

∗
jvj

]
: xi, yi, uj , vj , z, w ∈ X

}

with multiplication
[
α z
w∗ β

] [
α′ z′

w′ ∗ β′

]
=

[
αα′ + xy′ ∗ αx′ + xβ′

y∗α′ + βy′ ∗ y∗α′ + ββ′

]

and A(Z−) is isomorphic to B, which is the closure of
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{[∑
i xiy

∗
i z

w∗ ∑
j u

∗
jvj

]
: xi, yi, uj , vj , z, w ∈ Y

}

with multiplication
[
α z
w∗ β

] [
α′ z′

w′ ∗ β′

]
=

[
αα′ − xy′ ∗ −αx′ − xβ′

−y∗α′ − βy′ ∗ −y∗α′ + ββ′

]
.

Example 4.17. If C is the T*-category H+ of Hilbert spaces and bounded linear maps (see Remark 4.13(iii)), 
then AH+ is the C*-category with the same objects as H+, and for each such object (Hilbert space) H, 
(H, H)H+ = B(H) and (H, H)AH+

= A(H, H) = B(H) ⊕B(H) = M2(B(H)).

Example 4.18. If C is any C*-category, considered as a T*-category then AC is the C*-category with the same 
objects as C, and for each such object X, (X, X)AC is a C*-algebra and (X, X)AC = A(X, X) = M2((X, X)).

Example 4.19. Let A be a C∗-algebra. Then the class C of all Hilbert C∗-modules over A (as objects) 
together with all bounded A-linear and adjointable operators (as morphisms), with morphism composition 
(f, g, h) �→ hg∗f , forms a T ∗-category. In this case A(X, X) is isomorphic to the linking algebra as defined 
in [2, 8.1.17, pp. 303–304] and AC is therefore a subcategory of the C*-category of C*-Hilbert A-modules 
and bounded A-linear maps.

4.3. The linking W*-category of a TW*-category

The proofs of the main results in this section (Theorems 4.23 and 4.25 below) are based on the tools 
leading up to the following Gelfand-Naimark theorem for W*-ternary rings, which recall are C*-ternary 
rings with a predual.

Theorem 4.20 (Theorem 4.1 in [22]). A W*-ternary ring Z is the direct sum of two W*-ternary subrings Z+
and Z− which are respectively normally isometrically isomorphic and normally isometrically anti-isomorphic 
to a W*-TRO. Normally means the isomorphism and anti-isomorphic are weak*-continuous.

Let V be a C*-ternary ring with triple product denoted by [hgf ]. By Proposition 2.3, V is the off-diagonal 
corner of a C*-algebra A(V ), where

A(V ) =
[
L V
V R

]
,

and L = L(V ) and R = R(V ) are C*-algebras. Consider

Ã(V ) =
[
M(L) V
V M(R)

]
, (4.1)

where M(L) and M(R) are the multiplier algebras of L and of R.

Proposition 4.21. If the C*-ternary ring V is a dual space, then M(R(V )) and M(L(V )) are W*-algebras, 
and therefore V is the off-diagonal corner of a W*-algebra.

Proof. In order to use the results of [22, section 4], we recall that the C*-algebra A in Remark 2.2 is the closed 
span of {[·gh] : g, h ∈ V } and it is *-isomorphic to R(V ) via the map A 
 B1 �→ σ(B1) = (B1, B∗

1) ∈ R(V ). 
Similarly τ : B → L(V ) is the *-isomorphism A1 �→ (A1, A∗

1), where B is the close span of {[gh·] : g, h ∈ V }. 
The C*-ternary ring V is thus both a Banach (L, R)-bimodule and a Banach (B, A)-bimodule.
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Using only the assumption that V is a right Hilbert A-module, it is proved in [22, section 4], that M(A)
is a W*-algebra. It follows that, provided V is a right Hilbert Rop-module, M(R) is a W*-algebra, and by a 
parallel argument, that M(L) is also a W*-algebra. The reduction to V being a Hilbert module is obtained 
by considering V with a triple product modified by the operator T in Theorem 2.1(iii). It follows that

Ã(V ) = M(L) ⊕ V ⊕ V ⊕M(R)

is the dual of

Ã(V )∗ = M(L)∗ ⊕ V∗ ⊕ V ∗ ⊕M(R)∗,

where V∗ is the predual of V , so Ã(V ) is a W*-algebra. �
Recall that a TW*-category is a T*-category in which each morphism set is a dual space. A W*-ternary 

ring was introduced in [22] as a C*-ternary ring which is a dual space. For any objects X, Y in a TW*-
category, (X, Y ) is a W*-ternary ring. A W ∗-ternary ring X, or its concrete analogue, a weakly closed 
ternary ring of operators (W*-TRO), can be viewed as a TW*-category with one object X and the elements 
of X themselves as morphisms, with morphism composition given by the ternary operation in X.

Definition 4.22. Given a TW*-category C, the linking W*-category ÃC of C is as follows. The objects of 
the category AC are the same as the objects of C. The morphism set Hom(X, Y ) is defined to be {0} if 
X �= Y , and Hom(X, X) = Ã(X, X), as in (4.1) with V = (X, X), and with composition as follows. If 
a ∈ Hom(X, Y ) and b ∈ Hom(Y, Z), then b ◦ a must be {0} unless X = Y = Z, in which case b ◦ a is defined 
to be the product ab in Ã(X, X).

The following is the W*-version of Theorem 4.11.

Theorem 4.23. If C is a TW*-category then ÃC is a W*-category and there is an ideal K �= C of C and a 
faithful TW*-functor from C/K to ÃC, the latter considered as a TW*-category.

Proof. It is clear that ÃC , as defined in Definition 4.22, is a linear non-unital category which, when considered 
as a ternary category, satisfies (ii), (iii) and (vi) in Definition 4.1. Items (i), (iv), and (v) in Definition 4.1
are tantamount to the morphism sets of ÃC of the form Ã(X, X) being W*-algebras. This fact is immediate 
from Proposition 4.21.

The ideal K of C defined by (X, Y )K = (X, Y )C if X �= Y and (X, X)K = 0, is the kernel of the functor 
F given by Remark 3.9, so it induces a faithful functor F̃ = F/K from C/K to ÃC . �

The following is the appropriate version of Proposition 4.9.

Proposition 4.24. Each TW*-category C is the direct sum CI ⊕ CII ⊕ CIII , where Ci, i = I, II, III, is a 
TW*-category of type i.

Proof. In a TW*-category, each morphism space (X, Y ) is isomorphic as a W*-ternary ring to a W*-TRO. 
By Ruan’s classification

(X,Y )± = ((X,Y )±)I ⊕ ((X,Y±))II ⊕ ((X,Y )±)III

and it suffices to take Ci to be the T*-category with morphism sets

(X,Y )i = ((X,Y )+)i ⊕ ((X,Y )−)i. �
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The following is the W*-version of Theorem 4.14.

Theorem 4.25. Let C be a TW*-category. Then there is an ideal K �= C in C and a faithful TW*-functor H
from C/K to the TW*-category H+ ⊕H−.

Proof. By [11, Proposition 2.13], there is a faithful W*-functor G± from ÃC± to H. With ÃC± considered 
as a TW*-category, we have that G± is a TW*-functor from ÃC± to H±. By Theorem 4.23, there is a 
TW*-functor F± from C± to ÃC± , and it suffices to consider H/K, where K is the ideal in Theorem 4.23, 
and H = (G+ ◦ F+) ⊕ (G− ◦ F−). �
5. Bidual categories

5.1. The bidual of a C*-category

We begin by reviewing the well-known and celebrated Arens multiplications. If A is an algebra with 
algebraic dual A′ and bidual A′′, the following two multiplications on A′′ were defined in [1], and are 
referred to as the first and second Arens products, denoted by FG and F · G respectively for F, G ∈ A′′. 
Each product extends the product in A when A is identified with its canonical image in A′′.

Domain First Arens product FG Second Arens product F ·G
A×A (a, b) �→ ba ∈ A (product in A) (a, b) �→ ab ∈ A (product in A)
A′ ×A (f, b) �→ bf ∈ A′ 〈bf, a〉 = 〈f, ba〉 (f, b) �→ fb ∈ A′ 〈fb, a〉 = 〈f, ab〉
A′′ ×A′ (F, f) �→ fF ∈ A′ 〈fF, b〉 = 〈F, bf〉 (F, f) �→ Ff ∈ A′ 〈Ff, b〉 = 〈F, fb〉
A′′ ×A′′ (F,G) �→ FG ∈ A′′ 〈FG, f〉 = 〈F, fG〉 (F,G) �→ F ·G ∈ A′′ 〈F ·G, f〉 = 〈G,Ff〉

If ϕ : A → B is an algebra homomorphism, then ϕ′′ : A′′ → B′′ is an algebra homomorphism in 
either product extending ϕ. When the two products coincide, the algebra A is called Arens regular. If A
is a *-algebra, its involution extends to a mapping on A′′ via 〈F ∗, f〉 = 〈F, f∗〉 and 〈f∗, a〉 = 〈f, a∗〉 for 
f ∈ A′, a ∈ A. However, since (FG)∗ = G∗ · F ∗, F �→ F ∗ is not an involution unless A is Arens regular.

In the following analog of the Arens construction for categories, there is essentially only one Arens 
multiplication. This simplification is due to the fact that in the morphism spaces (X, Y ), a ◦ b and b ◦ a

are simultaneously defined only if X = Y . We shall therefore only use the first Arens product, with the 
understanding that morphism spaces (X, X) might not be Arens regular. Also, because the composition in 
categories is more akin to composition of functions, we shall use the notation G ◦ F for the analog of FG. 
For all other products, including composition, for notation’s sake, we shall just use juxtaposition.

Definition 5.1. Let C be a linear category with objects X, Y, Z, . . ., morphism spaces (X, Y ) = {a, b, c, . . . }, 
dual spaces (X, Y )′ = {f, g, h, . . .}, and bidual spaces (X, Y )′′ = {F, G, H, . . .}. For objects X, Y, Z a 
composition defined on (X, Y )′′ × (Y, Z)′′ → (X, Z)′′ and given by the Arens construction is as follows.

(X,Y ) × (Y,Z) 
 (a, b) �→ ba := b ◦ a ∈ (X,Z) (composition in C)
(X,Z)′ × (Y,Z) 
 (f, b) �→ bf ∈ (X,Y )′ 〈bf, a〉 = 〈f, ba〉, a ∈ (X,Y )
(X,Y )′′ × (X,Z)′ 
 (F, f) �→ fF ∈ (Y,Z)′ 〈fF, b〉 = 〈F, bf〉, b ∈ (Y,Z)
(X,Y )′′ × (Y,Z)′′ 
 (F,G) �→ G ◦ F ∈ (X,Z)′′ 〈G ◦ F, f〉 = 〈G, fF 〉, f ∈ (X,Z)′

The composition

G ◦ F : (X,Y )′′ × (Y,Z)′′ → (X,Z)′′
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is an extension of the composition

b ◦ a : (X,Y ) × (Y,Z) → (X,Z)

in C. That is, if a �→ â denotes the canonical inclusion of (X, Y ) into (X, Y )′′, then for (a, b) ∈ (X, Y ) ×(Y, Z),

b̂ ◦ â = b̂a.

The following lemma is a straightforward consequence of Definition 5.1 and justifies Definition 5.3. We 
include the proof for completeness.

Lemma 5.2. For F ∈ (X, Y )′′, G ∈ (Y, Z)′′, H ∈ (Z, W )′′, we have G ◦ F ∈ (X, Z)′′, H ◦G ∈ (Y, W )′′, and 
(H ◦G) ◦ F = H ◦ (G ◦ F ).

Proof. For f ∈ (X, Z)′,

〈H ◦ (G ◦ F ), f〉 = 〈H, f(G ◦ F )〉,

and

〈(H ◦G) ◦ F, f〉 = 〈H ◦G, fF 〉 = 〈H, (fF )G〉.

Thus it suffices to prove

f(G ◦ F ) = (fF )G.

For a ∈ (Z, W ),

〈f(G ◦ F ), a〉 = 〈G ◦ F, af〉 = 〈G, (af)F 〉,

and

〈(fF )G, a〉 = 〈G, a(fF )〉,

so it suffices to prove

a(fF ) = (af)F.

For b ∈ (Y, Z),

〈a(fF ), b〉 = 〈fF, ab〉 = 〈F, (ab)f〉,

and

〈(af)F, b〉 = 〈F, b(af)〉,

so it suffices to prove

(ab)f = b(af).

For c ∈ (X, Y ),
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〈(ab)f, c〉 = 〈f, (ab)c〉,

and

〈b(af), c〉 = 〈af, bc〉 = 〈f, a(bc)〉,

completing the proof. �
The composition G ◦ F is weak*-continuous in its first variable G, for if Gα → G, then for f ∈ (Y, Z)′, 

〈Gα, f〉 → 〈G, f〉 and so if g ∈ (X, Z)′, 〈Gα ◦ F, g〉 = 〈Gα, gF 〉 → 〈G, gF 〉 = 〈G ◦ F, g〉.

Definition 5.3. The Arens bidual of a linear category C, denoted by C′′, or by (C′′, Arens), is the linear 
category having the same objects as C, morphism sets Hom(X, Y ) = (X, Y )′′ and composition given by the 
Arens construction in Definition 5.1. The category C is said to be Arens regular if the composition G ◦F is 
separately weak*-continuous, that is, it is also weak*-continuous in the second variable.

Lemma 5.4. If C is an Arens regular *-linear category with involutions (X, Y ) 
 a �→ a∗ ∈ (Y, X), then the 
linear involution defined as

(X,Y )′′ 
 F �→ F ∗ ∈ (Y,X)′′ with 〈F ∗, f〉 = 〈F, f∗〉, f ∈ (Y,X)′,
(Y,X)′ 
 f �→ f∗ ∈ (X,Y )′ with 〈f∗, a〉 = 〈f, a∗〉, a ∈ (X,Y ),

is an algebra involution. Hence, the Arens bidual (C′′, Arens) is a *-linear category.

Proof. Let F ∈ (X, Y )′′, G ∈ (Y, Z)′′, and by Arens regularity, we may assume that F = â, G = b̂ for 
a ∈ (X, Y ), b ∈ (Y, Z). Then

〈(G ◦ F )∗, f〉 = 〈G ◦ F, f∗〉 = 〈G, f∗F 〉 = 〈f∗F, b〉 = 〈F, bf∗〉
= 〈bf∗, a〉 = 〈f∗, ba〉 = 〈f, (ba)∗〉 = 〈f, a∗b∗〉

and

〈F ∗ ◦G∗, f〉 = 〈F ∗, fG∗〉 = 〈F, (fG∗)∗〉 = 〈(fG∗)∗, a〉
= 〈fG∗, a∗〉 = 〈G∗, a∗f〉 = 〈G, (a∗f)∗〉
= 〈(a∗f)∗, b〉 = 〈a∗f, b∗〉 = 〈f, a∗b∗〉. �

Lemma 5.5. A C*-category is Arens regular.

Proof. 9 Let ρ be a faithful C*-functor from a C*-category C to H, and for objects X and Y of C, consider 
the following commutative diagram:

A

↑⊂
(X,Y ) ρ−→ R π−→ π(R)
↓ κ ↓ κ ↓⊂

(X,Y )′′ ρ′′

−→ R′′ π′′
−→ S ⊂ B(Hπ),

9 After giving this proof, we discovered that this Lemma follows as in the proof of Proposition 5.13. We are including this proof 
since, besides its intrinsic interest, it is needed in the definition of the Sherman-Takeda bidual of a C*-category (Definition 5.7).
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where by Remark 4.8, ρ = ρX,Y is, in particular, a C*-ternary ring isomorphism onto a TRO R =
R(X, Y ) = ρ((X, Y )), π = πX,Y is the restriction to R of the universal representation of the C*-algebra 
A generated by R on the Hilbert space Hπ, S = S(X, Y ) is the weak operator closure of the TRO 
π(R), and κ denotes the canonical inclusion of a Banach space into its bidual. By [16, Lemma], the 
bi-adjoint π′′ of π is, as well as a TRO-isomorphism of R′′ onto S, a homeomorphism of R′′ with its 
weak*-topology and S with its the weak operator topology from B(Hπ) (which coincides with its weak*-
topology). It follows that composition at the level of the R(X, Y )′′ spaces is separately weak*-continuous, 
and since each ρ′′X,Y is a weak*-weak* homeomorphism, the same holds for composition at the level of the 
(X, Y )′′. �
Proposition 5.6. If C is a C*-category, then it’s Arens bidual (C′′, Arens) is a C*-category.

Proof. Items (i), (ii), and (iv) in Definition 4.1 are immediate. Item (iii) holds by Lemmas 5.4 and 5.5. By 
Remark 4.8, (X, Y ) is a C*-ternary ring which is isomorphic to a TRO M . The bidual M ′′ of M is also 
isomorphic to a TRO, by [16, Lemma], from which items (v) and (vi) in Definition 4.1 follow. Indeed, for 
(v), since the faithful C*-functor ρ from C to H satisfies ρ(c ◦ b∗ ◦ a) = ρ(c)ρ(b)∗ρ(a), we have (by a familiar 
argument)

‖H‖3 = ‖ρ′′(H)‖3 = ‖ρ′′(H)ρ′′(H)∗ρ′′(H)‖ ≤ ‖ρ′′(H)‖‖ρ′′(H)∗ρ′′(H)‖

= ‖H‖‖ρ′′(H∗ ◦H)‖ = ‖H‖‖H∗ ◦H‖ ≤ ‖H3‖,

so ‖H‖2 = ‖H∗ ◦H‖. As for (vi), if H ∈ (X, Y )′′, observe that ρ′′(H)∗ρ′′(H) is a positive operator in the 
C*-algebra ρ′′(X, X) on the Hilbert space ρ(X). �

Let us now consider a different approach to the definition of the bidual of a C*-category which is based 
on the Sherman-Takeda proof that the bidual of a C*-algebra is a C*-algebra [21, III.2.4], [14, 10.1.12], [7, 
12.1.3].

In the proof of Lemma 5.5, set σ := π ◦ ρ, which is also a faithful C*-functor mapping (X, Y ) onto 
π(R), and set τ = τX,Y := σ′′ = π′′ ◦ ρ′′, which is a homeomorphism of (X, Y )′′ with the weak*-topology 
onto S with the weak operator topology. Then, for F ∈ (X, Y )′′ and G ∈ (Y, Z)′′, note that τ(G) ∈
S(Y, Z), τ(F ) ∈ S(X, Y ), so that for G =w*-limβ b̂β , bβ ∈ (Y, Z) and F =w*-limα âα, aα ∈ (X, Y ), we 
have

τ(G)τ(F ) = τ(w*- lim
β

b̂β)τ(w*- lim
α

âα)

= (W- lim
β

σ(bβ))(W- lim
α

σ(aα))

= W- lim
α

(W- lim
β

σ(bβ))σ(aα)

= W- lim
α

W- lim
β

σ(bβaα) ∈ S(X,Z).

Thus we can define G • F ∈ (X, Z)′′, by

G • F = τ−1(τ(G)τ(F )), (5.1)

more precisely,

G • F = τ−1
X,Z(τY,Z(G)τX,Y (F )),
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and we have, for F ∈ (X, Y )′′, G ∈ (Y, Z)′′, H ∈ (Z, W )′′,

H • (G • F ) = τ−1(τ(H)τ(G • F )) = τ−1(τ(H)τ(G)τ(F ))

= τ−1(τ(H •G)(τ(F )) = (H •G) • F.

Moreover, since τ(G • F ) = τ(G)τ(F ), and π′′ is a *-isomorphism, in the sense that

π′′
X,Z(ρ′′Y,Z(G)ρ′′X,Y (F )) = π′′

Y,Z(ρ′′Y,Z(G))π′′
X,Y (ρ′′X,Y (F )),

we have

ρ′′(G • F ) = ρ′′(G)ρ′′(F ),

that is,

ρ′′X,Z(G • F ) = ρ′′Y,Z(G)ρ′′X,Y (F ).

Also, for a ∈ (X, Y ), b ∈ (Y, Z),

b̂ • â = τ−1(τ(b̂)τ(â)) = (ρ′′)−1(ρ′′(b̂)ρ′′(â))

so that

ρ′′(b̂ • â) = ρ′′(b̂)ρ′′(â) = ρ̂(b)ρ̂(a).

Definition 5.7. The Sherman-Takeda bidual of a C*-category C, denoted by C′′, or (C′′, S-T), is the linear 
category having the same objects as C, morphism sets Hom(X, Y ) = (X, Y )′′ and composition defined on 
(X, Y )′′ × (Y, Z)′′ → (X, Z)′′ given by (5.1).

Proposition 5.8. If C is a C*-category, then it’s Sherman-Takeda bidual (C′′, S-T) is a C*-category.

Proof. Items (i)-(iii) in Definition 4.1 are immediate. As for (iv) and (v), for F ∈ (X, Y )′′ and G ∈
(Y, Z)′′,

‖G • F‖ = ‖τ(G)τ(F )‖ ≤ ‖τ(G)‖‖τ(F )‖ = ‖G‖‖F‖

and since τX,X is a *-isomorphism,

‖F ∗ • F‖ = ‖τ(F ∗)τ(F )‖ = ‖τ(F )∗τ(F )‖ = ‖τ(F )‖2 = ‖F‖2.

Finally, since τ(F )∗τ(F ) is a positive operator in S(X, X), it equals A∗A for some A ∈ S(X, X), and 
A = τ(G) for some G ∈ (X, X)′′, so that F ∗ • F = τ−1(τ(G)∗τ(G)) = τ−1(τ(G∗)τ(G)) = G∗ • G, proving 
(vi) in Definition 4.1. �
Proposition 5.9. If C is a C*-category, then G ◦ F = G • F , that is, the Arens bidual coincides with the 
Sherman-Takeda bidual.
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Proof. For f ∈ (X, Z)′, 〈G ◦ F, f〉 = 〈G, fF 〉 and10

〈G • F, f〉 = 〈τ−1(τ(G)τ(F )), f〉
= 〈(ρ′′)−1 ◦ (π′′)−1(τ(G)τ(F )), f〉
= 〈(ρ′′)−1(ρ′′(G)ρ′′(F )), f〉
= 〈ρ′′(G)ρ′′(F ), (ρ′)−1f〉
= 〈ρ′′(G), R′

ρ′′(F ) ◦ (ρ′)−1f〉
= 〈G, ρ′ ◦R′

ρ′′(F ) ◦ (ρ′)−1f〉.

Hence 〈G ◦ F, f〉 = 〈G • F, f〉 if and only if

fF = ρ′ ◦R′
ρ′′(F ) ◦ (ρ′)−1f. (5.2)

For b ∈ (Y, Z), 〈fF, b〉 = 〈F, bf〉 and

〈ρ′ ◦R′
ρ′′(F ) ◦ (ρ′)−1f, b〉 = 〈R′

ρ′′(F ) ◦ (ρ′)−1f, ρ(b)〉

= 〈ρ̂(b), R′
ρ′′(F ) ◦ (ρ′)−1f〉

= 〈ρ′′(F ), L′
ρ̂(b)

◦ (ρ′)−1f〉

= 〈F, ρ′ ◦ L′
ρ̂(b)

◦ (ρ′)−1f〉,

so (5.2) is equivalent to

bf = ρ′ ◦ L′
ρ̂(b)

◦ (ρ′)−1f. (5.3)

For a ∈ (X, Y ), 〈bf, a〉 = 〈f, ba〉 = 〈b̂a, f〉 and

〈ρ′ ◦ L′
ρ̂(b)

◦ (ρ′)−1f, a〉 = 〈L′
ρ̂(b)

◦ (ρ′)−1f, ρ(a)〉

= 〈ρ̂(a), L′
ρ̂(b)

◦ (ρ′)−1f〉

= 〈ρ̂(b)ρ̂(a), (ρ′)−1f〉
= 〈(ρ′′)−1(ρ̂(b)ρ̂(a)), f〉,

so (5.3) is equivalent to

ρ′′(b̂a) = ρ̂(b)ρ̂(a), (5.4)

which is equivalent to

ρ(ba) = ρ(b)ρ(a), (5.5)

which holds since ρ is a C*-functor.

10 The elements Rρ′′(F ) : R(Y, Z)′′ → R(X, Z)′′ and L
ρ̂(b) : R(X, Y )′′ → R(Y, Z)′′ which appear below are the operators of right 

multiplication and left multiplication respectively and are each weak*-continuous.



28 R. Pluta, B. Russo / J. Math. Anal. Appl. 505 (2022) 125590
For completeness, we give details of the last stated equivalence. First note that (5.4) is the same as

̂ρ(ba) = ρ̂(b)ρ̂(a). (5.6)

By (5.6) we have

〈f, ρ(ba)〉 = 〈L′
ρ̂(b)

f, ρ(a)〉 = 〈L′
ρ(b)f, ρ(a)〉 = 〈f, ρ(b)ρ(a)〉.

Hence (5.6) implies (5.5). Conversely, by (5.5),

〈̂ρ(ba), f〉 = 〈f, ρ(ba)〉 = 〈f, ρ(b)ρ(a)〉
= 〈L′

ρ(b)f, ρ(a)〉 = 〈ρ̂(a), L′
ρ(b)f〉

= 〈ρ̂(a), L′
ρ̂(b)

f〉 = 〈ρ̂(b)ρ̂(a), f〉.

Hence (5.5) implies (5.6). �
5.2. The bidual of a T*-category

Definition 5.10. Let C be a linear ternary category with objects X, Y, Z, . . ., morphism spaces (X, Y ) =
{a, b, c, . . . }, dual spaces (X, Y )′ = {f, g, h, . . .}, and bidual spaces (X, Y )′′ = {F, G, H, . . .}. For objects 
X, Y, Z, W a composition defined on (X, Y )′′ × (Z, Y )′′ × (Z, W )′′ → (X, W )′′, denoted by

(X,Y )′′ × (Z, Y )′′ × (Z,W )′′ 
 (F,G,H) �→ [HGF ] ∈ (X,W )′′

and given by the Arens construction is as follows.

(1) (X, Y ) × (Y, Z) × (Z, W ) 
 (a, b, c) �→ [cba] ∈ (X, W )
(composition in C)

(2) (X, W )′ × (X, Y ) × (Z, Y ) 
 (f, a, b) �→ μ0(f, a, b) ∈ (Z, W )′
〈μ0(f, a, b), c〉 = 〈f, [cba]〉, c ∈ (Z, W )

(3) (Z, W )′′ × (X, W )′ × (X, Y ) 
 (F, f, a) �→ μ1(F, f, a) ∈ (Z, Y )′
〈μ1(F, f, a), b〉 = 〈F, μ0(f, a, b)〉, b ∈ (Z, Y )

(4) (Z, Y )′′ × (Z, W )′′ × (X, W )′ 
 (F, G, f) �→ μ2(F, G, f) ∈ (X, Y )′
〈μ2(F, G, f), a〉 = 〈F, μ1(G, f, a)〉, a ∈ (X, Y )

(5) (X, Y )′′ × (Z, Y )′′ × (Z, W )′′ 
 (F, G, H) �→ [HGF ] ∈ (X, W )′′
〈[HGF ], f〉 = 〈F, μ2(G, H, f)〉, f ∈ (X, W )′

We note that [HGF ] is linear in the outer variables and conjugate linear in the middle variable, and in 
the case of normed ternary categories, is weak*-continuous in the right variable F .

The following lemma is a straightforward consequence of Definition 5.10. Again, for completeness, we 
include the proof.

Lemma 5.11. Let C be a linear normed ternary category. Then for F ∈ (X, Y )′′, G ∈ (Z, Y )′′, H ∈
(Z, W )′′, K ∈ (U, W )′′ and L ∈ (U, V )′′, we have
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(i): [LK[HGF ]] = [[LKH]GF ].
(ii): Assume that the triple product [HGF ] is separately weak*-continuous, that is, is also weak*-continuous 

in the left variable H and the middle variable G. Then

[LK[HGF ]] = [L[GHK]F ] = [[LKH]GF ].

Proof. (i) For f ∈ (X, V )′,

〈[LK[HGF ]], f〉 = 〈[HGF ], μ2(K,L, f)〉 = 〈F, μ2(G,H, μ2(K,L, f))〉,

and

〈[[LKH]GF, f〉 = 〈F, μ2(G, [LKH], f)〉, (5.7)

so it suffices to prove

μ2(G,H, μ2(K,L, f)) = μ2(G, [LKH], f).

For a ∈ (X, Y ),

〈μ2(G,H, μ2(K,L, f)), a〉 = 〈G,μ1(H,μ2(K,L, f), a)〉,

and

〈μ2(G, [LKH], f), a〉 = 〈G,μ1([LKH], f, a)〉, (5.8)

so it suffices to prove

μ1(H,μ2(K,L, f), a) = μ1([LKH], f, a).

For b ∈ (Z, Y ),

〈μ1(H,μ2(K,L, f), a), b〉 = 〈H,μ0(μ2(K,L, f), a, b)〉,

and

〈μ1([LKH], f, a), b〉 = 〈[LKH], μ0(f, a, b)〉 = 〈H,μ2(K,L, μ0(f, a, b)〉, (5.9)

so it suffices to prove

μ0(μ2(K,L, f), a, b) = μ2(K,L, μ0(f, a, b)).

For c ∈ (Z, W ),

〈μ0(μ2(K,L, f), a, b), c〉 = 〈μ2(K,L, f), [cba]〉 = 〈K,μ1(L, f, [cba])〉,

and

〈μ2(K,L, μ0(f, a, b), c〉 = 〈K,μ1(L, μ0(f, a, b), c)〉, (5.10)
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so it suffices to prove

μ1(L, f, [cba]) = μ1(L, μ0(f, a, b), c).

For d ∈ (U, W ),

〈μ1(L, f, [cba]), d〉 = 〈L, μ0(f, [cba], d)〉,

and

〈μ1(L, μ0(f, a, b), c), d〉 = 〈L, μ0(μ0(f, a, b), c, d)〉, (5.11)

so it suffices to prove

μ0(f, [cba], d) = μ0(μ0(f, a, b), c, d).

For e ∈ (U, V ),

〈μ0(f, [cba], d), e〉 = 〈f, [ed[cba]]〉,

and

〈μ0(μ0(f, a, b), c, d), e〉 = 〈μ0(f, a, b), [edc]〉 = 〈f, [[edc]ba]〉. (5.12)

This proves [LK[HGF ]] = [[LKH]GF ].
(ii) For f ∈ (X, V )′,

〈[L[GHK]F ], f〉 = 〈F, μ2([GHK], L, f)〉, (5.13)

so by (5.7) and (5.13), it suffices to prove

μ2([GHK], L, f)) = μ2(G, [LKH], f).

For a ∈ (X, Y ),

〈μ2([GHK], L, f)), a〉 = 〈[GHK], μ1(L, f, a)〉
= 〈RK,HG,μ1(L, f, a)〉
= 〈G,R′

K,H(μ1(L, f, a))〉, (5.14)

where RK,H is, by assumption, the weak*-continuous operator sending G to [GHK], so by (5.8) and (5.14), 
it suffices to prove

R′
K,H(μ1(L, f, a)) = μ1([LKH], f, a).

For b ∈ (Z, Y ),

〈R′
K,H(μ1(L, f, a)), b〉 = 〈̂b,R′

K,H(μ1(L, f, a))〉
= 〈[̂bHK], μ1(L, f, a)〉
= 〈H,Q′̂ (μ1(L, f, a)〉) (5.15)
b,K
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where QH,K is the conjugate linear and weak*-continuous operator sending G to [HGK], and by (5.9) and 
(5.15), it suffices to prove

〈H,μ2(K,L, μ0(f, a, b))〉 = 〈H,Q′
b̂,K

(μ1(L, f, a))〉. (5.16)

We shall complete the proof by verifying (5.16), and we may assume that H = ĉ for some c ∈ (Z, W ). 
We may also assume, by weak*-continuity in the right variable, that K = d̂. Thus

〈H,Q′
b̂,K

(μ1(L, f, a))〉 = 〈[̂bĉK], μ1(L, f, a)〉
= 〈K,L′

b̂ĉ
(μ1(L, f, a))〉

= 〈μ1(L, f, a), [bcd]〉
= 〈L, μ0(f, a, [bcd])〉

and

〈H,μ2(K,L, μ0(f, a, b))〉 = 〈μ2(K,L, μ0(f, a, b)), c〉
= 〈K,μ1(L, μ0(f, a, b), c)〉
= 〈μ1(L, μ0(f, a, b), c), d〉
= 〈L, μ0(μ0(f, a, b), c, d))〉.

Thus (5.16) is equivalent to

μ0(μ0(f, a, b), c, d)) = μ0(f, a, [bcd])〉. (5.17)

Take e ∈ (U, V ). Then

〈μ0(μ0(f, a, b), c, d)), e〉 = 〈μ0(f, a, b), [edc]〉 = 〈f, [[edc]ba]〉

and

〈μ0(f, a, [bcd]), e〉 = 〈f, [e[bcd]a]〉

thus proving (5.17) and [LK[HGF ]] = [L[GHK]F ]. �
Definition 5.12. The Arens bidual of a linear ternary category C, denoted C′′, or (C′′, Arens), is the linear 
category having the same objects as C, morphism sets Hom(X, Y ) = (X, Y )′′ and composition given by the 
Arens construction in Definition 5.10. The category C is said to be Arens regular if the composition [HGF ]
is separately weak*-continuous.

Proposition 5.13. A T*-category C is Arens regular, and hence its Arens bidual C′′ is a T*-category.

Proof. As stated in [15, Remark 2.10], every multilinear map f : X1 × · · · ×Xn → Y from Banach spaces 
Xi satisfying Pelczynski’s property V to a Banach space Y admits a unique separately weak*-continuous 
extension from X ′′

1 × · · · ×X ′′
n to Y ′′. C*-ternary rings are JB*-triples and JB*-triples satisfy Pelczynski’s 

property V ([5]). As stated in [15, Remark 2.3], if f : X1 × X2 × X3 → Y admits a norm preserving 
extension F : X ′′

1 ×X ′′
2 ×X ′′

3 → Y ′′ (produced by any method) which is separately weak*-continuous, then 
f is Aron-Berner regular and therefore the extension given by Definition 5.10 (denoted by f∗∗∗∗ in [15]) is 
separately weak*-continuous. Thus a T*-category is Arens regular.
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Items (i), (iii), and (iv) in Definition 4.6 are immediate. Item (ii) holds by Lemma 5.11. By Remark 4.8, 
(X, Y ) is a C*-ternary ring. The bidual (X, Y )′′ of (X, Y ) is also a C*-ternary ring, by [16, Theorem 2], 
from which item (v) in Definition 4.6 follows. �
6. Proof of Proposition 2.3(iv)

Let M be a C*-ternary ring. Recall that, M being a normed associative triple system, it is, by Remark 1.4, 
a left L(M)-Banach module via L(M) ×M 
 (A, f) �→ A ·f = A1f ∈ M and a right R(M)op-Banach module 
via M ×R(M) 
 (f, B) �→ f ·B = B1f ∈ M , and that

A = {a =
[
A f
g B

]
: A ∈ L(M), B ∈ R(M), f, g ∈ M},

is an algebra with multiplication (1.1) and involution (1.2).

Proposition 6.1 (Restatement of Proposition 2.3). With the above notation, we have

(i): R(M) is a C*-algebra with the norm from B(M).
(ii): M is a right Banach R(M)op-module.
(iii): With 〈f |g〉 = 〈f |g〉M : M ×M → R(M) defined by 〈f |g〉 = r(g, f) = ([·gf ], [·fg]), we have

〈f ·B|g〉 = 〈f |g〉 ◦B.

(iv): If M is a right R(M)op-Hilbert module, then A can be normed to be a C*-algebra.

Proof. (i)-(iii) have been proved in section 2.
(iv) We mimic the proof in [2, 8.1.17, p. 303] by showing that the map π : A → B(M⊕R) to the bounded 

operators on the right Rop-Hilbert module M ⊕R defined, for a =
[
A f
g B

]
∈ A by

π(a)
[
f ′

B′

]
=

[
A f
g B

] [
f ′

B′

]
=

[
A · f ′ + f ·B′

r(g, f ′) + B ◦B′

]
, (6.1)

is an injective *-homorphism. Letting ‖a‖ = ‖π(a)‖ turns A into a C*-algebra.
We will use the facts that R is a right Rop-Hilbert module, via

R×Rop 
 (B′, B) �→ B ·B′ = B′ ◦B ∈ R,

and that M ⊕R is a right Rop-Hilbert module, via

(M ⊕R) ×Rop 
 ((f,B′), B) �→ (f,B′) ·B = (f ·B,B′ ◦B) ∈ M ⊕R.

Thus for b′ =
[
f ′

B′

]
, and b′′ =

[
f ′′

B′′

]
in M ⊕R,

〈b′, b′′〉M⊕R = 〈f ′, f ′′〉M + 〈B′, B′′〉R,

where 〈f, g〉M := r(g, f) = ([·gf ], [·fg]) and 〈B′, B〉R = B ◦B′.
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First, with a =
[
A f
g B

]
∈ A, b′ =

[
f ′

B′

]
, and b′′ =

[
f ′′

B′′

]
in M ⊕R, we have

〈π(a#)b′, b′′〉 = 〈
[
A g
f B

] [
f ′

B′

]
,

[
f ′′

B′′

]
〉 =

[
A · f ′ + g ·B′

r(f, f ′) + B ◦B′

]
,

[
f ′′

B′′

]
〉

= 〈A · f ′ + g ·B′, f ′′〉M + 〈r(f, f) + B ◦B′, B′′〉R
= 〈A · f ′, f ′′〉M + 〈g ·B′, f ′′〉M + 〈r(f, f ′), B′′〉R + 〈B ◦B′, B′′〉R

and

〈π(a)∗b′, b′′〉 = 〈
[
f ′

B′

]
, π(a)

[
f ′′

B′′

]
〉 = 〈

[
f ′

B′

]
,

[
A · f ′′ + f ·B′′

r(g, f ′′) + B ◦B′′

]
〉

= 〈f ′, A · f ′′〉M + f ·B′′〉M + 〈B′, r(g, f ′′) + B ◦B′′〉R.

= 〈f ′, A · f ′′〉M + 〈f ′, f ·B′′〉M + 〈B′, r(g, f ′′)〉R + 〈B′, B ◦B′′〉R.

The fact that π(a#) = π(a)∗ now follows from the following four identities,

〈A · f ′, f ′′〉M = 〈f ′, A · f ′′〉M (6.2)

〈g ·B′, f ′′〉M = 〈B′, r(g, f ′′)〉R (6.3)

〈r(f, f ′), B′′〉R = 〈f ′, f ·B′′〉M (6.4)

〈B ◦B′, B′′〉R = 〈B′, B ◦B′′〉R. (6.5)

To prove (6.2), we may assume that A = �(h, k) = ([hk·], [kh·]). Then

〈A · f ′, f ′′〉M = 〈([kh·], [hk·]) · f ′, f ′′〉M
= 〈[khf ′], f ′′〉M
= r(f ′′, [khf ′])

= ([·f ′′[khf ′]], [·[khf ′]f ′′]),

and

〈f ′, A · f ′′〉M = 〈f ′, [hkf ′′]〉M
= r([hkf ′′], f ′)

= ([·[hkf ′′]f ′], [·f ′[hkf ′′]]).

To prove (6.3), we may assume that B′ = r(h, k) = (·[hk], [·kh]). Then

〈g ·B′, f ′′〉M = 〈[ghk], f ′′〉M
= r(f ′′, [ghk])

= ([·f ′′[ghk]], [·[ghk]f ′′]),

and
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〈B′, r(g, f ′′)〉R = r(g, f ′′) ◦ ([·hk], [·kh])

= ([·f ′′g], [·gf ′′]) ◦ ([·hk], [·kh])

= ([·hk], [·kh])([·f ′′g], [·gf ′′])

= ([·hk][·f ′′g], [·gf ′′][·kh])

= ([[·f ′′g]hk], [[·kh]gf ′′]).

To prove (6.4), we may assume that B′′ = r(h, k) = (·[hk], [·kh]). Then

〈r(f, f ′), B′′〉R = 〈r(f, f ′), r(h, k)〉R
= r(h, k) ◦ r(f, f ′)

= ([·ff ′], [·f ′f ])([·kh], [·hk])

= ([·ff ′][·kh], [·hk][·f ′f ])

= ([[·kh]ff ′], [[·f ′f ]hk])

and

〈f ′, f ·B′′〉M = 〈f ′, [fhk]〉M
= r([fhk], f ′)

= ([·[fhk]f ′], [·f ′[fhk]]).

Finally to prove (6.5), we have

〈B ◦B′, B′′〉R = B′′ ◦ (B ◦B′) = (B ◦B′)B′′ = B′BB′′

and

〈B′, B ◦B′′〉R = B ◦B′′ ◦B′ = B′(B′′B) = B′BB′′.

Next, we show that with a, a′′ ∈ A and b′ =
[
f ′

B′

]
, we have

π(a′′)π(a)b′ = π(a′′a)b′,

so that π is a homorphism.
We have

π(a′′)π(a)b′ =
[
A′′ f ′′

g′′ B′′

] [
A · f ′ + f ·B′

r(g, f ′) + B ◦B′

]

=
[

A′′ · (A · f ′) + A′′ · (f ·B′) + f ′′ · r(g, f ′) + f ′′ · (B ◦B′)
r(g′′, A · f ′) + B′′ ◦ r(g, f ′) + r(g′′, f ·B′) + B′′ ◦ (B ◦B′)

]

and

π(a′′a)b′ =
[
A′′A + �(f ′′, g) A′′ · f + f ′′ ·B
g′′ ·A + B′′ · g r(g′′, f) + B′′ ◦B

] [
f ′

B′

]

=
[

(A′′A) · f ′ + �(f ′′, g) · f ′ + (A′′ · f) ·B′ + (f ′′ ·B) ·B′

r(g′′ ·A, f) + r(B′′ · g, f ′) + r(g′′, f) ◦B′ + (B′′ ◦B) ◦B′

]
.
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The first components of π(a′′)π(a)b′ and π(a′′a)b′ are equal by the module properties and

�(f ′′, g) · f ′ = f ′′ · r(g, f ′), (6.6)

and the second components are equal because of the three identities

r(g′′ ·A, f ′) = r(g′′, A · f ′) (6.7)

r(B′′ · g, f ′) = B′′ ◦ r(g, f ′) (6.8)

r(g′′, f) ◦B′ = r(g′′, f ·B′). (6.9)

To prove (6.6), we have

�(f ′′, g) · f ′ = ([f ′′g·], [gf ′′·]) · f ′ = [f ′′gf ′]

and

f ′′ · r(g, f ′) = f ′′ · ([·gf ′], [·f ′g]) = [f ′′gf ′].

To prove (6.7), we may assume that A = �(h, k) = ([hk·], [kh·]). Then

r(g′′ ·A, f ′) = r(g′′ · ([hk·], [kh·]), f ′) = r([khg′′], f ′) = ([·[khg′′]f ′], [·f ′[khg′′])

and

r(g′′, A · f ′) = r(g′′, ([hk·], [kh·]) · f ′) = r(g′′, [hkf ′]) = ([·g′′[hkf ′], [·[hkf ′]g′′]).

To prove (6.8), we may assume that B′′ = r(h, k) = (·[hk], [·kh]). Then

r(B′′ · g, f ′) = r([gkh], f ′) = ([·[gkh]f ′], [·f ′[gkh])

and

B′′ ◦ r(g, f ′) = r(g, f ′)(·[hk], [·kh])

= ([·gf ′], [·f ′g])(·[hk], [·kh])

= ([·gf ′], [·hk])(·[kh], [·f ′g])

= ([[·hk]gf ′], [[·f ′g]kh]).

To prove (6.9), we may assume that B′ = r(h, k) = (·[hk], [·kh]). Then

r(g′′, f) ◦B′ = ([·g′′f ], [·fg′′]) ◦ ([·hk], [·kh])

= (·[hk], [·kh])([·g′′f ], [·fg′′])
= ([·hk][·g′′f ], [·fg′′][·kh])

= ([[·g′′f ]hk], [[·kh]fg′′])

and

r(g′′, f ·B′) = r(g′′, [fhk]) = ([·g′′[fhk]], [·[fhk]g′′]).
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Let us now show that π is injective. For a =
[
A f
g B

]
∈ A, if π(a) = 0, then by (6.1)

A · f ′ + f ·B′ = 0 and r(g, f ′) + B ◦B′ = 0

for all f ′ ∈ M, B′ ∈ R, and in particular,

A · f ′ = 0 and f ·B′ = 0, (6.10)

and

r(g, f ′) = 0 and B ◦B′ = 0. (6.11)

From (6.10) with B′ = r(f, f), [fff ] = 0 so f = 0. From (6.11), B∗B = 0 and r(g, g) = 0, so B = 0 and 
g = 0.

It remains to show that A = 0. Since π(a#) = 0, we have

A · f ′ = 0 for all f ′ ∈ M. (6.12)

Suppose first that A = �(g, h). Then by (6.10) and (6.12), [f ′gh] = 0 and [f ′hg] = 0 so that A =
([·gh], [·hg]) = 0. By the same argument, if A =

∑
i �(gi, hi), then A = 0.

Now suppose A ∈ L, let ε > 0 and choose A′ =
∑

i �(gi, hi) with ‖A − A′‖ < ε. Then ‖A′ · f ′‖ =
‖(A −A′) · f ′‖ ≤ ε‖f ′‖, so that ‖A‖ ≤ ‖A −A′‖ + ‖A′‖ < 2ε, and A = 0.

It remains to show that π(A) is a C*-algebra, that is, complete, and for this it is enough to show that the 
range of π is closed. For T = [tij ] ∈ B(M ⊕R), we have ‖tij‖ ≤ ‖T‖. Thus if T ∈ π(A), then t11 ∈ L = L, 
t12 ∈ M = M , . . . , and so T ∈ π(A). �
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