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THE JACOBSON RADICAL OF AN EVOLUTION ALGEBRA

M. VICTORIA VELASCO

ABSTRACT. In this paper we characterize the maximal modular ideals of an
evolution algebra A in order to describe its Jacobson radical, Rad(A). We
characterize semisimple evolution algebras (i.e. those such that Rad(A) =
{0})as well as radical ones. We introduce two elemental notions of spectrum
of an element @ in an evolution algebra A, namely the spectrum ¢ (a) and
the m-spectrum an (a) (they coincide for associative algebras, but in general
o4(a) C o/ (a), and we show examples where the inclusion is strict). We
prove that they are non-empty and describe o (a) and o (a) in terms of the
eigenvalues of a suitable matrix related with the structure constants matrix
of A. We say A is m-semisimple (respectively spectrally semisimple) if zero
is the unique ideal contained into the set of a in A such that ¢/ (a) = {0}
(respectively 04 (a) = {0}). In contrast to the associative case (where the
notions of semisimplicity, spectrally semisimplicty and m-semisimplicity are
equivalent) we show examples of m-semisimple evolution algebras A that, nev-
ertheless, are radical algebras (i.e. Rad(A) = A). Also some theorems about
automatic continuity of homomorphisms will be considered.

1. INTRODUCTION

By an algebra we understand a linear space A over the field K (where either
K = R or C) provided with a bilinear map (a,b) — ab, from A x A — A, named
the multiplication of A. An algebra A is said to be associative if (ab)c = a(be),
for every a,b,c € A, and commutative if ab = ba, for every a,b € A. Therefore,
in contrast for instance with [3] 10, 26] 28], throughout this paper, the product
of an algebra does not need to be associative (or commutative), unless this fact is
explicitly specified. Moreover, we say that e € A is a unit of A if ae = ea = a, for
every a € A. Obviously such a unit element is unique whenever it exists.

Relevant examples of algebras in this general meaning that we are consider-
ing are evolution algebras. These algebras are very meaningful in Genetics and
its theory was founded in [34]. There, it is justified why evolution algebras have
emerged to enlighten the study of Non-Mendelian Genetics, which is the basic lan-
guage of Molecular Biology. In this pioneering monograph many connections of
evolution algebras with other mathematical fields (such as Graph Theory, Stochas-
tic Processes, Group Theory, Dynamic Systems, Mathematical Physics, etc.) are
established, pointing out some further research topics.
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An evolution algebra is an algebra A provided with a basis B := {e; : i € A}
such that e;e; = 0, whenever ¢ # j. Such a basis B is named a natural basis of
A If ef = ZkeA wiiek, then the structure matrix is given by

Mp(A) = (wii) € MA(K),

where M (K) denote the set of matrices in K*** whose columns have a finite
number of non-zero entries. The structure matrix defines the product of A, codifying
also the dynamic structure of A.

Recently, many different aspects of the theory of evolution algebras have been
developed. For instance, in [4] many algebraic properties of evolution algebras (like
simplicity, decomposability in direct sum of ideals), or graphs associated to them,
are deeply studied. The derivations of evolution algebras have been analyzed in [34]
5, [18]. In [I8], the evolution algebras have been used to describe the inheritance of a
bisexual population and, in this setting, the existence of non-trivial homomorphisms
onto the sex differentiation algebra have been studied in [19]. Algebraic notions such
as nilpotency and solvability may be interpreted biologically as the fact that some of
the original gametes (or generators) become extinct after certain generations, and
these algebraic properties have been studied in [8] 6] [30, B6] [0, 17, 12]. Moreover
evolution algebras associated with function spaces defined by Gibbs measures on a
graph are considered in [29], to provide a natural introduction of thermodynamics
in the studying of several systems in Biology, Physics and Mathematics. On the
other hand, chains of evolution algebras (i.e. dynamical systems the state of which
at each given time is an evolution algebra) are considered in [7], B}, 23] 24].

The aim of this paper is to study the Jacobson radical of an evolution algebra,
as well as some notions of semisimplicity related to it. The classical definition of
Jacobson radical of an associative Banach algebras was extended to the setting of
non-associative algebras in [20, Definition 4]. According to [20], the Jacobson
radical of a commutative algebra is defined as the intersection of all maximal
modular ideals (in other words, the intersection of all primitive ideals in the meaning
of [20, Definition 3]). A modular ideal of a commutative algebra A is an ideal
M endowed with a modular unit, that is u € A such that a — au € M, for every
a € A. It is not difficult to check that an ideal M is modular if and only if A/M
(provided with the canonical quotient product) is an algebra with a unit.

When A has a unit it turns out that every ideal I of A is modular ideal (because
the unit of A is a modular unit for I). Since the existence of a unit is someway
relevant for our approach, Section 2 of this paper is aimed to show that evolution
algebras exceptionally have a unit. More precisely in Proposition we prove
that infinite-dimensional evolution algebras have not a unit. Moreover, a finite-
dimensional evolution algebra has a unit if, and only if, the matriz structure of A
relative to an arbitrary natural basis B is diagonal with non-zero entries. This
result enlightens Proposition 1 in [34] Section 3.1.2], where the finite-dimension of
the considered evolution algebra is implicitly assumed. Moreover, we obtain that
every non-trivial evolution algebra does not have a unit, and its unitization is not
an evolution algebra (see Corollary 2.17).

Modular ideals of an evolution algebra are characterized in Corollary 3.7 As a
consequence, in Corollary B8 we obtain that mazimal modular ideals of an evolu-
tion algebra have codimension one. More precisely, if B := {e; : i € A} is a natural
basis of an evolution algebra A then, the set of modular index associated to A
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is defined as A, = {7 € A:w; # 0 and w;j = 01if ¢ # j} (see Definition BI0)
and, in Corollary BI2] it is showed that M is a maximal modular ideal of A if,
and only if, M = lin{e; : i € A\{io}}, for some iy € Ay, in which case ﬁeio
1s a modular unit for M. Therefore, in Corollary B.13, we obtain that the Jacobson
radical of A can be described as follows,

Rad(A) = lin{e; : i € A\A,,}.

Consequently, A is a radical algebra if and only if Ay, = 0. Similarly A is semisim-
ple if and only if A = A,,. Moreover, in Corollary B.14l we prove that A/Rad(A)
is either {0} or a non-zero trivial evolution algebra.

In Proposition we show that every quasi-invertible ideal, and particularly
every nilpotent ideal, of an evolution algebra A is contained in Rad(A). Neverthe-
less, in contrast with the associative case, we provide an example of an evolution
algebra containing elements in its Jacobson radical that are not quasi-invertible
(see Example B.21]).

In Section Ml we review the notion of spectrum of an element, a, in a non-
associative algebra, A, by considering two definitions of spectrum, namely o (a)
and o7 (a) (the spectrum and the multiplicative spectrum of a, respectively). More
precisely, for a complex algebra A which a unit, e, we define for every a € A,

o?(a) := {\ € C: a — )e is not invertible},

in the meaning that a — Ae has not left or a right inverse, and on the other hand
we define

o (a) := {\ € C: a — e is not m-invertible},

m
in the meaning that L, — AI or R, — Al are not bijective (where L, and R,
denote, respectively, the left and right multiplication operator by a). It is clear that
o4(a) C 0 (a) and also that for an associative algebra A we have 0 (a) = o2 (a).
Nevertheless, in Example 5] we show an element a in an evolution algebra A for
which o4 (a) is a proper subset of o (a).

On the other hand, for an evolution algebra A and a € A, we prove that the sets
0 (a) and 072 (a) are non-empty and we characterize both of them in Proposition[5.1]
(for trivial evolution algebras), in Proposition 53] (for finite-dimensional evolution
algebras), and in Proposition 53] (for the general case), according to the eigenvalues
of certain matrices related with a structure matrix.

As said in [26, p. 189] (see also [I0, Theorem 4.3.6]), in the classical theory of
Banach algebras, the radical of Jacobson of an associative algebra A can be described
as the largest ideal on which the spectral radius of each element is identically zero.
Consequently, A is semisimple if its radical is zero, that is if {0} is the only ideal
contained in the set of elements having spectral radius equal to zero.

Since we have two notions of spectrum for an element a € A, namely o (a)
and o2 (a), we define the corresponding notions of spectral radius, p and p,,, in
Definition Thus, for an evolution algebra A and a € A, we have that p(a) =0
if, and only if, 0 (a) = {0} meanwhile p,,(a) = 0 if and only if 67 (a) = {0}. In
the spirit of the associative case, we say that A is spectrally semisimple if zero
is the unique ideal of A contained in the set {a € A : p(a) = 0}. Similarly, we say
that A is multiplicatively semisimple or m-semisimple if zero is the unique
ideal of A contained in the set {a € A : p,,,(a) = 0} (see in Definition [4.1).
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It is known that if the algebra A is semisimple (that is Rad(A) = {0}) then A
is spectrally semisimple; that if A is spectrally semisimple then A is m-semisimple;
and also that if A is associative then, these three notions of semisimplicity are
equivalent (see Proposition [8]). In contrast to the associative case we provide, in
Example 5.4 an evolution algebra A which is a radical algebra and nevertheless A
is m-semisimple. This shows how far these three notions of semisimplicity can be
in the non-associative framework.

The notion of m-semisimplicity was used in [22] to prove the automatic continuity
of every surjective homomorphism from a Banach algebra onto a m-semisimple
Banach algebra.

2. ABOUT THE EXISTENCE OF A UNIT IN AN EVOLUTION ALGEBRA WITH
ARBITRARY DIMENSION

We begin by showing that an evolution algebra has a unit only in very special
cases. Indeed, an infinite-dimensional evolution algebra has no a unit, as we prove
in the next proposition. Previously, we establish a notion that will be very helpful
in our approach.

Definition 2.1. Let A be an evolution algebra, and B := {e; : i € A} a natural
basis of A. If a € A is such that a = ), aje; then, the support of a (respect to
B) is defined as
AB={ieA:a; #0}.
Similarly, if S is a non-void subset of A then the support of S (respect to B) is

the set given by
Ag = Aa

acsS
If there is no confusion about the prefixed natural basis then we write simply A,
and Ag, respectively.

Proposition 2.2. Let A be an evolution algebra.

(i) If dim A = oo then, A does not have a unit.

(i) If dim A < oo then, A has a unit if, and only if, for every natural basis
B = {e1,...,en} of A, we have that €2 = wie; with wy # 0, fori = 1,...,n, in
whose case the unit of A is given by e = w%lel +..+ -1

Wnn

€n.

Proof. Let A be an evolution algebra and B := {e; : i € A} a natural basis of A.
The assertion (i) is clear because if A is infinite, if e is a unit of A, and if i ¢ A,
then, ee; = 0, a contradiction that shows that A does not have a unit. To prove (ii),
suppose that A = {1,...,n}. If e is a unit for A then, clearly e = aye; + ... + ape,
with «; # 0 for every ¢ =1, ..., n. Since

e? = eieie) = ej(ae?) = ajwiie?

it follows that either e? = 0 or w;;a; = 1. If €2 = 0 then ee; = 0, a contradiction.

Therefore w;;cr; = 1 and hence e = w—luel + ...+ %en, so that ef = w;;e; with
nn
w;i; # 0, for every i = 1,...,n. The rest is obvious. O

Following [35] we introduce the next definition.

Definition 2.3. Let A be an evolution algebra and B := {e; : i € A} a natural
basis. We say that A is non-degenerate if e # 0 for any i € A.
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It turns out that the above definition does not depend on the prefixed natural
basis B, as it was proved in [4, Corollary 2.19]. This is because the evolution
algebra A is non-degenerate if, and only if, Ann(A) = {0}, where Ann(A) denotes
the annihilator of A (see [4, Proposition 2.18]). Indeed, Ann(A) = {0} if and only
if the set Ao = {i € A : €? = 0} is empty.

Definition 2.4. Let A be an evolution algebra and B := {e; : i € A} a natural
basis of A. Let B be another natural basis of A. We say that B and B are related

if there exists a family of non-zero constants {k;};ca and a bijection o : A — A
such that B = {kie,(;y 11 € A}.

The next result is easy to prove and nevertheless relevant because it gives us
information about when the natural basis of a non-degenerated evolution algebra
is unique (in the meaning that some other natural basis is related to it).

Proposition 2.5. Let B := {e; : i € A} a natural basis of a non-degenerate
evolution algebra A. If the set {e? : i € A} is linearly independent then, any two
natural basis of A are related.

Proof. Let B := {u; : © € A} be another natural basis of A. Let ¢,j € A with i # j.
Since wju; = 0 we have that A7 NAJ = 0, as the set {ef : i € A} is linearly
independent. Therefore, if we prove that card(Afi_ ) =1 for every i € A then, the
result follows, because this means that u; = aj,e;, (With aj, # 0) for a unique
jo € A. To the contrary, suppose that there exists ig € A such that card(Afio) # 1.

Let i1,i0 € Afio with 4y # ia. Then, u;, = aeq, + Bei, + 3 pcn, Trek Where af # 0,
and Ay = Aio\{il,ig}. Moreover i1, 1o ¢ Afj for every j € A\{io}. Denote by =;
projection of A on Ke;. If e;;, = ZieAg aju; then, either ig ¢ Agl in whose case
&
miy(€i) = iy Q;ep5 @iwi) = 0, a contradiction as i, (u;) = 0 if j € A\{io}, or
~ 6711
iy € Agl in whose case m;,(e;,) = ﬁi2(zieA§_ a;u;) # 0, another contradiction.
i1
This proves that card(Afio) =1 as desired. O

In the above proposition, the hypothesis that the set {€? : i € A} is linearly
independent cannot be removed as the next example shows.

Example 2.6. Let Abe an evolution algebra with natural basis B := {e,ea}
where ¢? = e; and €2 = —e;. Then A is non-degenerate and B := {uj,us} with
u1 = e1 + eo and ug = e — eo is a natural basis of A which is not related to B.

Corollary 2.7. Every two natural basis of a simple evolution algebra are related.

Proof. If A is a simple evolution algebra with a natural basis B := {e; : ¢ € A}
then, from [4, Proposition 4.1], it follows that A is non-degenerate, that {e? : i € A}
is a linearly independent set, and that A = lin{e? : i € A}, and hence the above
proposition applies. 0

The following result is a direct consequence of Proposition

Corollary 2.8. If A is a non-degenerate finite dimensional evolution algebra and
B is a natural basis such that det Mg(A) # 0 then every two natural basis of A are
related.
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Particular examples of algebras satisfying the hypothesis of the above result are
finite-dimensional simple evolution algebras (see [4, Corollary 4.10]).
According with [34] p. 18, Remark 2] we introduce the next definition.

Definition 2.9. Let A be an evolution algebra and B := {e; : i € A} a natural
basis of A. We say that A is a non-zero trivial evolution algebra if ef = W€
with w;; # 0, for every ¢ € A. This means that the structure matrix Mp(A) is
diagonal and that A is non-degenerate (i.e. Mp(A) diagonal with non-zero entries
in the diagonal).

Remark 2.10. By definition, a non-zero trivial evolution algebra is non-degenerate.
Therefore, from Proposition 2.5 it follows that the property of being a non-zero
trivial evolution algebra does not depend on the natural basis considered.

Nevertheless, we provide an example of an evolution algebra A (obviously degen-
erate) having two natural basis B and B such that Mp(A) is diagonal meanwhile
Mg(A) is not (so that B and B are not related).

Example 2.11. Let A be the evolution algebra with natural basis B := {ey, ez}
and product given by e? = 0 and €3 = e5. Consider the natural basis B := {uj.us}
where u; = e1, and ug = e1+e2. Then we have that the structure matrix Mp(A) =

0 0Y). .. . 0 —11Y. .
( 0 1 ) is diagonal meanwhile M5(A) = ( 0 1 ) is not diagonal.

From Proposition we obtain the following result.

Corollary 2.12. An evolution algebra A has a unit if and only if A is a finite-
dimensional non-zero trivial evolution algebra.

Remark 2.13. In [34, Section 3.1.2, Proposition 1] it is established that ”an evo-
lution algebra has a unitary element if and only if it is a non-zero trivial evolution
algebra”. Comparing this result with Proposition we conclude that the finite-
dimension of the algebra seems to be implicitly assumed.

Corollary 2.14. Let A be an evolution algebra and B a natural basis of A. Then
the following assertions are equivalent:

(i) A has a unit.

(ii) A s finite-dimensional, Mp(A) is diagonal, and has non-zero entries.

(iii) A finite-dimensional, non-degenerated, and the structure matrizc Mp(A) is
diagonal.

Proof. (i) <= (ii) is clear from Corollary [Z12] and (ii) <= (iii) follows from the
fact if Mp(A) is diagonal then A is non-degenerated (i.e. every column of Mp(A)
is non-zero) if and only if every entry in the diagonal is non-zero. O

As usual, if A is an algebra then we define the formal unitization of A as the
algebra A; := A@K1 endowed with the product (a+A1)(b+pl) = ab+Ab+pa+Aul,
to obtain an algebra A; with a unit, 1, containing A as an ideal (see [37]).

Next, we prove that the unitization A4; := A ® K1 of an evolution algebra A is
an evolution algebra if, and only if, A has a unit.

Lemma 2.15. If A; is a finite-dimensional evolution algebra and if By is a natural
basis of Ay, then By := BU{\(e — 1)} for some X\ # 0, where B := {e; : i € A}
is a natural basis of A such that e? = wjieq, with wy; # 0, for every i € A, and

_ 1, -
€= ,cA € s a unit of A.
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Proof. Let A be a finite-dimensional algebra such that A; := A®K1 is an evolution
algebra. Let By :={e; + A; 1 : i € A1} be a natural basis of A;. Since for i # j,

(ei + )\il)(ej + )\jl) =0,

we have that there is a unique ig € Ay such that A;, # 0. Indeed, if 7,57 € Ay with
i # j are such that \;A; # 0 then (e; + A\ 1)(e; + A; 1) # 0, a contradiction.
Therefore, for A := A1\{i0}, the natural basis B; can be written as follows,

Bl = {ei 11 € A} U {eio + )\iol}’

where A;, # 0. Consequently A is spanned by {e; : ¢« € A}, and hence A is an
evolution algebra and B := {e; : i € A} a natural basis of A.

On the other hand, since A; is an evolution algebra with a unit 1, by Corollary
214 for every i € A, there exists w;; # 0 such that e? = wj;e;, as well as w;,i, # 0
such that (e;, + Aig 1) = wigs, (€ig + Aig1). It follows that e = D iea w%iei is a unit
for A. Moreover, if e;, = >, 8;¢; then, since e;(e;, + A, 1) = 0 we have that

-1 -1 -1, 5, -1
€i = )\_ioeieig = )\—ioeij;\ﬂjej = )\_ioﬂiei = )\_ioﬂiwiiei-

Therefore g8, = —j}ﬂ for every i € A, so that

1
Cip = Zﬁze’t = _/\ig w—ei = —/\ioe.

i€EA jen

From the equality (&5, +Aig1)” = wiys, (€3, +Aig 1), we obtain that w;,s, = As,. Thus
By :={e;: i€ AYU{=)\j,(e—1)}, where \;, # 0 and B := {e; : i € A} is a natural
basis of A such that ef = wj;e;, with wy; # 0, for every i € A, and e = )
is a unit of A, as desired.

1.
ieA oy, G

Proposition 2.16. Let A be an algebra and let Ay its unitization. Then the fol-
lowing assertions are equivalent:

(i) Ay is an evolution algebra.

(ii) A is an evolution algebra with a unit.

(iii) A is a finite-dimensional non-zero trivial evolution algebra.

(iv) A is a finite-dimensional non-zero trivial evolution algebra.

Proof. (i) = (ii). From Corollary we have that dim A; < oo and applying
Lemma [2-TH we obtain (ii). That (ii) <= (iii) and that (i) <= (iv) are obvious by
Corollary To prove (iii) = (iv), let A be a non-zero trivial evolution algebra
and B := {e; : i € A} a natural basis. Then, for every i € A, let w;; # 0 be such
that e? = wy;e;. It follows that e = Yica w%_ei is a unit of A, and BU {1—e} is a
natural basis for A; whose structure matrix is diagonal with non-zero entries, as
1—e is idempotent. (|

We conclude that except in very special cases, the unitization process is incom-
patible with the property of being an evolution algebra.

Corollary 2.17. Every non-trivial evolution algebra does not have a unit, and its
unitization is not an evolution algebra.
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3. THE JACOBSON RADICAL OF AN EVOLUTION ALGEBRA

The Jacobson radical of an associative algebra is the intersection of its all prim-
itive ideals (see for instance [10]). This notion was generalized to arbitrary non-
associative algebras in [20] by defining a primitive ideal as the biggest two sided
ideal contained in a maximal one-sided modular ideal. Since evolution algebras are
commutative, we avoid the adjectives ”left” and "right” and we talk only about
"modular ideals” and ”"modular units”.

We recall that an ideal M of a commutative algebra A is said to be a modular
ideal if there exists u € A such that a —au € M, for every a € A (in other words
A(l —u) € M). In this case, we say that u is a modular unit for M. Therefore,
according with [20], we have the following definition.

Definition 3.1. Let A be an evolution algebra. A primitive ideal of A is a
maximal modular ideal, and the Jacobson radical of A is the intersection of all the
primitive ideals of A.

Our next goal is to characterize the primitive ideals of an evolution algebra.

Theorem 3.2. Let A be an evolution algebra, and B := {e; : i € A} a natural basis
of A. Let M be a modular ideal with support Ay;. Then:

(i) e; € M if and only if €2 € M.

(ii) M =lin{e; : i € Ap}. Consequently, M is proper if and only if Ay # A.
(i) A\Aps is finite. Moreover, if u is a modular unit for M then Ay U A, = A.
(iv) If M is proper then w;; # 0, for every i € A\Ar, and

1
wo= >, e
i€A\AN
is a modular unit for M. In fact, u € A is a modular unit for M if, and only if,
u =m+ ug for some m € M.

Proof. (i) Obviously if e; € M then e? € M. Conversely, suppose that e? € M and
let u be a modular unit for M. Let m;(u) = «;, where, as usual, 7; denotes the
projection of A on Ke;. Since €;(1 —u) = e; — a;e? € M and e? € M we have that
e; € M, as desired.

(ii) If w;(M) # {0} then e? € M and, by (i), we have that e; € M so that

lin{e; 1€ Ay} C M.
Conversely, if a = > f,e; € M (with 5, # 0 for every i € A,) then Ay C Ay, so
€A,
that a € lin{e; : i € Apr}. Thus M = lin{e; : i € Apr}, and the rest is clear.

(iii) If w is a modular unit for M and if i € (A\Aar) N (A\A,) then e; —e;u=¢;
is in M, a contradiction. It follows that (A\Ax;) € A, so that A\A,s is finite.
Moreover

A\(Ay UAy) = (A\Apy) N (A\Ay) =0,
that is Ay UA, = A.
(iv) Let w = > aje; be a modular unit for M. If A, N Ay = 0 then, take
1E€EN,
m = 0 and, otherwise, let m = > a,e;. Since (A\Apr) C A, by (iii),we obtain
1€EALNANM

U = E a;e; +m,

i€AAM

that
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for some m € M. For i € A\Ap we have that
ei(e; —eu) = (1 — quwyi)e? € M,

so that 1 — a;w;; = 0 and hence w;; # 0 and «; = wi Therefore, u = m + ug
and consequently wug is a modular unit for M, as desired. This concludes the proof
because, obviously, ug + m is a modular unit of M, for every m € M. ([l

The set of descendents of a set of indexes is a concept introduced in [4], Definitions
3.1] that will play an essential role in describing the dynamic nature of an evolution
algebra.

Definition 3.3. Let A be an evolution algebra, and B := {e; : ¢ € A} a natural
basis of A. If €2 = ijiej then, the set of first-generation descendents of the
JEA
index i € A is defined as
DYi):=A2 ={j€A:w; #0}.
Similarly, the set of second-generation descendents of i € A is given by
D)= |J A= |J D)
J€A2 JED (i)
Similarly, the set of nth-generation descendents of i € A is given by
p"(iy= |J D).
JED"=1(i)
Finally the set of descendents of the index i is defined as
D(i) = | J D"(i).
neN
On the other hand, the set of descendents of a non-empty set Ag C A is defined as
D(Ao) = | D(i).
i€ANo
In [4, Proposition 3.4] the set of descendents of an index in a natural basis was

characterized as follows.

Proposition 3.4. Let B :={e; : i € A} be a natural basis of an evolution algebra
A, and let M(A) = (w;;). Consider ig,j € A and m > 2.
(i) j € D'(io) if and only if wji, # 0, in which case ejel = wji €3

(ii) j € D™(io) if, and only if, there exist ki, ko, - , km—1 such that
Wik 1 Whin 1k 2o Whoks Whiig 7 0,
i i 2 . I Tt o 2
in which case €5 = Wik, 1 Wkp 1k o Whaky Whyig) €€k, 1 Chypy 5 """ ChyChy €5 -

Corollary 3.5. Let B :={e; : i € A} be a natural basis of an evolution algebra
A. Let m,n € N be such that m > n, and let ig € A. Then, k € D™ (ig) if, and only
if, k € D™(j) for some j € D™ "(iy). Consequently

pmi)= | D)

jeDm—n ('LO)
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Proof. The result follows from the above result and the fact that there exists
ki,ka, -+, km—1 such that wik,, Wk, k.o -WkokyWkyis 7 0, if and only if there
exists kq, ko, -+, k,_1 such that

Whky 1 Whp 1 kp 2 Whaoky Wk j 7 0,

and ki, ko -+, kpm—n—1 such that Wit 1Y Wit Yo # 0. O

m—n—1Kkm—n—2"

Proposition 3.6. Let A be an evolution algebra, and B := {e; : i € A} a natural
basis of A. If M is a non-zero modular ideal with support Aps then, D(i)\{i} C A,
for every i € A\Ayy.

Proof. If M = A then Ap; = A and there is nothing to prove. Otherwise, by
Theorem B2] we have that w;; # 0, for every i € A\Apy, and ug = > wl__ei
i€ANAN
is a modular unit for M. Let i € A\Ay;. For every j € D(i)\{i} = Ae2\{i} we
have m;(e; — ejug) = wj; # 0, with e; — e;ug € M, so that j € Ap. Therefore

D (i)\{i} € Aps. On the other hand,
D*i\{iy= [J DG},
jeD(3)
and if k € D'(j)\{i} for some j € D'(i) then, wy; # 0 and erel = wyjej. If

j = i then k € DY(i)\{i} C Apr. Otherwise, j € D (i)\{i} € Ap and then
e; = w%jeke? € M because e? € M. Thus e, € M, by Theorem B.2] and hence

k € Apr. This proves that D?(i)\{i} C Ajs and, by an inductive process, we obtain
that D™(i)\{i} C Au for every n € N, or equivalently D(i)\{i} C A O

Next we characterize the modular ideals of an evolution algebra by means of the
descendents set of a set of indexes.

Corollary 3.7. Let A be an evolution algebra and B := {e; : i € A} a natural
basis. A mnon-zero proper subset M C A is a modular ideal of A if, and only if,
M = lin{e; : j € Ao} for some non-empty proper subset Ao C A satisfying the
following conditions:

(i) A\Ag is finite and A\Ay C A\D(Ay),

(ii) i € D(¢) and D(i)\{i} C Ao, for every i € A\Ao;

in which case u= Y w%_iei is a modular unit for M.

€A\ Ao
Proof. Let Ag C A satisfying (i), and (ii). Then, the condition (i) assures that
M :=lin{e; : i € Ap} is an ideal as D(Ag) C Ao, which is proper as A\ Ay is finite.
For every i € A\Ag, by condition (ii) we have that w;; # 0 (as i € D(i)) so that
u= 3y wlii e; is well defined. Since D(i)\{i} C Ag, we have that
i€A\ Ao

e; —eu € lin{e; : j € D()\{i}} Clin{e;: j € Ao} = M,

1
e
wig "

for every i € A, which implies that M is a (proper) modular ideal and u = 3

i€Ag
a modular unit for M. Conversely, by Theorem and the above proposition, we
conclude that every proper modular ideal of A is of this type (take Ag = Aps). O

From the above result we characterize the maximal modular ideals of an evolution
algebra, and therefore its Jacobson radical.
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Corollary 3.8. Let A be an evolution algebra, B := {e; : i € A} a natural basis,
and Mp(A) = (wij) the structure matriz. Then M is a mazimal modular ideal of A
if, and only if, M = lin{e; : i € A\{ig}} for some ig € A satisfying that w;,i, # 0,
and that ig ¢ D(k) for every k € A\{io}, in which case ﬁeio is a modular unit

for M. Consequently every mazimal modular ideal of A has codimension one.

Proof. Suppose that ig is such that w;y;,, # 0 and ig ¢ D(k) for every k # io.
Then M = lin{e; : i # ip} is a maximal modular ideal as it can be deduced from
Corollary BT Indeed, for Ag = A\{ip} we have that

(i) A\Ag = {ip} is finite, and {ip} = A\Ag C A\D(Ag) because iy ¢ D(k) for
k }é io, so that io ¢ D(Ao) = D(A\{’Lo})

(11) 1€ D(’L) (that is Wigig }é 0) and, obviously, D(’Lo)\{lo} - AQ = A\{’Lo}

Therefore by the above corollary we obtain that M is a modular ideal of codi-
mension one, and hence maximal.

Conversely, let M be a maximal modular ideal. By Corollary [3.7 we have that
M =lin{ey : k € Ay} with

(1) A\AM finite, and A\AM - A\D(AM),

(ii) wi; # 0 and D(i)\{i} C Aps for every i € A\Apy.

Suppose that 4,5 € A\Ap; with ¢ # j. Then i ¢ D(j) and j ¢ D(¢) by the
hypothesis (ii). Indeed, if j € A\Ax and D(i)\{i} C A then j ¢ D(i)\{i} and
hence j ¢ D(i). Similarly ¢ ¢ D(j). Note that Ag := Aps U{é} is a proper subset of
A such that

(1) A\Ao is finite and A\Ag C A\D(Ay) since from the inclusion D(i)\{i} C A
(by keeping in mind that D(Ap) C Apy) it follows that

D(Ag) = D(Ayr U {i}) € Apy UD() U{i} € Apr U {i} = A,

(ii) wrr # 0, for every k € A\Ag (because wgy # 0 for k € A\Aps and A\Ay C
A\A ). Also D(k)\{k} C Ag for every k € A\Ao, (because D(k)\{k} C Ap C Ao).
Consequently, by Corollary B.7] we have that lin{ey : k € Ay U {i}} is a proper
modular ideal containing M. This contradiction proves that A\Ay; = {io} for some
io € A such that wsyi, # 0 and D(ig)\{io} C Anm with D(Apy) € A (that is
D(A\{io}) € A\{io}). Therefore iy ¢ D(k) for every k € A\{io}, as desired. It
also follows that €, is a modular unit for M. Thus, every maximal modular

Wigig
ideal of A has codimension one. O

The above result is very helpful in determining the maximal modular ideals of an
evolution algebra and hence its Jacobson radical, as the following example shows.

Example 3.9. Let A be the evolution algebra with natural basis
B := {61’ €2, €3, €4, €5, €q, 67}

and structure matrix given by

wip wiz wiz 0 0 0 w7

wa1 woz w2z 0 0 0 wor

w31 wsz wsz 0 0 0 wsr
0 0 0 W44 0 w46 0

o O O

0 0 0
0 0 0 0 wee6 0
0 0 0 0
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(where w;; # 0). Then, according to Corollary B8] the maximal modular ideals of
A are the following ones

Ms = lin{ei, ez, e3,¢€4,€5,€7},

M; = lin{es,ea,e3,¢€4,€5,¢6}.

Indeed if Ml = lin{ej : j S {1, 2, 3,4, 5, 6, 7}\{2}} then, Ml, MQ, Mg, ]\447 and M5
are not even modular ideals. Consequently,

Rad(A) = Mg N M7 = lin{e1, ez, e3,€4,€5}.

To characterize easily the Jacobson radical of an evolution algebra we introduce
the following notion.

Definition 3.10. Let A be a natural evolution algebra, B := {e; : i € A} a natural
basis of A, and Mp(A) = (w;i;j)axa the corresponding structure matrix. We say
that ip € A is a modular index if w;,;, # 0 and w;;, = 0 if 39 # j.

That ig € A is a modular index means that the corresponding ig—file in the
structure matrix Mp(A) = (wi;j)axa consists of zeros except for the entry w;y;, 7 0.

In the next result we characterize the modular indexes in terms of the sets of
descendents.

Lemma 3.11. Let A be an evolution algebra, B := {e; : i € A} a natural basis, and
Mp(A) = (wij) the structure matriz. Let i € A. Then, the following assertions
are equivalent:

(i) i is a modular index,

(ii) wigiy # 0 and ig & D(j), for every j € A\{io},

(ili) wigiy # 0 and ig & D(j), for every j € A\{io}.

Proof. (i) < (ii) is nothing but the definition of a modular index. To prove (ii) = (ii)
suppose that ig ¢ D(j), for every j € A\{ig}. Then it follows that ig ¢ D?(j) for
every j € A\{io}, because D2(j) = | J D(k), and if k € D'(j) for j € A\{io}
keD(5)
and ig € D'(k) then, by (ii), we have that k = ig so that i € D*(j) for j € A\{io},
a contradiction. Thus ig ¢ D?(j) for every j € A\{ip}. Assume that iqg ¢ D"(j) for
every j € A\{io}. Since D"T1(j) = U D*(k), we have that ig ¢ D"*1(j) for
KeD™ (j)
each j € A\{ip}, because otherwise ig € D!(k) for k € D"(j), and by (ii) we have
that k = ig so that igp € D"(j) for j € A\{io}, which contradicts the inductive
hypothesis. It follows that ig ¢ D(j) for every j € A\{io} which proves (iii).
Finally (iii) = (ii) is obvious because D'(j) C D(j), for every j € A. O

Maximal modular ideals can be characterized in terms of a modular index we do
next.

Corollary 3.12. Let A be an evolution algebra and B := {e; : i € A} a natural
basis. Then M is a mazimal modular ideal of A if, and only if, M = lin{e; : i €
AM\{io}} for some modular index ig € A, in which case ug := €i, s a modular

unit for M.

Wigig

Proof. The proof follows directly from Corollary 3.8 and the above Lemma. [
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Since the Jacobson radical, Rad(A), of an evolution algebra A is given by the
intersection of all maximal modular ideals of A, the above result allows us to char-
acterize it very easily.

Corollary 3.13. Let A be a non-zero evolution algebra, and B := {e; : i € A} a
natural basis of A. Let Ay, = {i € A: i is modular}. Then, A is a radical algebra
if, and only if, Ay, = 0 and A is semisimple if, and only if, A = A,,. Moreover,

Rad(A) = lin{e; : i € A\A,,}.

Proof. By Corollary the set of maximal modular ideals of A can be described
as {M;, : io € Ay} where M;, = lin{e; : i € A\{io}}. Therefore A has no modular
ideals if, and only if, A,, = ), in whose case A is a radical algebra. On the
other hand, if A,, # 0 then, Rad(A) = {0} if, and only, if A,,, = A, because the
unique maximal modular ideal that does not contain e;, is M;, provided that i¢ is
a modular index (this means that e;, € Rad(A) whenever ig ¢ A,,). Finally, if A,,
is a non-void proper subset of A then,

Rad(A) = () M, =linfe; i€ A\An}.
i0EA,

O

Since modular indexes are very easy to detect (ig is modular if the corresponding
ip—file in the structure matrix Mp(A) = (w;j)axa consists of zeros except for the
entry w;,;, # 0), thanks to the above result, we obtain that the Jacobson radical
of an evolution algebra is very easy to determine (see Example [3.9)).

Corollary 3.14. If A is a non-zero evolution algebra then,
(i) A is semisimple if, and only if, A a non-zero trivial evolution algebra,
(ii) A/Rad(A) is either {0} or a non-zero trivial evolution algebra.

Proof. (i) Let B := {e; : i« € A} a natural basis of A. From the above result
A is semisimple if, and only if, A = A,,, which means that all the indexes in A
are modular and hence Mp(A) is a diagonal matrix with non-zero entries in the
diagonal or, equivalently, that A is a non-zero trivial evolution algebra.

(ii) Since A/ Rad(A) is an evolution algebra by [4, Lemma 2.10], which is semisim-
ple by [20, Proposition 7], the assertion (ii) follows from (i). O

We have shown that evolution algebras are not semisimple (unless they are triv-
ial). Moreover for finite-dimensional evolution algebras we have the following result
which is obtained straightforwardly from Corollary 212 and Corollary .14

Corollary 3.15. Let A be a finite-dimensional evolution algebra. Then, A is
semisimple if and only if A has a unit.

Corollary 3.16. Let A be an evolution algebra and B := {e; : i € A} a natural
basis of A. Then e; € Rad(A) if and only if e? € Rad(A). Therefore,

Rad(A) = lin{e; 1 i € Apqaca)}-

Proof. If €2 € Rad(A) if and only if e? € M for every maximal modular ideal M of
A. Then, by Theorem[3.2] we have that e? € M if and only if e; € M. Consequently
e? € Rad(A) if, and only if, e; € Rad(A). The rest is clear. O
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The Jacobson radical of a general non-associative algebra was studied in [20].
There, the following results (that we include here for the sake of completeness) were
proved.

Proposition 3.17. Let A be an algebra and let Ay be the unitization of A. Then
Rad(A) = Rad(A;). Consequently A is semisimple if, and only if, Ay is semisimple.

Proposition 3.18. If A is a real algebra then, Rad(Ac) C Rad(A) + iRad(A),
where Ac denotes the complezification of A. Therefore if A is semisimple then, Ac
is semisimple.

Given an evolution algebra A, we define a" = a(a(a....(aa)))) = L7 *(a) where
Lo(b) = ab = ba, for every a,b € A.

The set of all nilpotent elements of an evolution algebra is not necessarily an
ideal as the next example shows.

Example 3.19. Let A be an evolution algebra with a natural basis B := {e1, e}
such that e% = ey and e% =e1. Then e:f = ele% = e%el = 0 and similarly e% =0.
But (e1 + e2)? = e1 + e so that (eq + e2)™ = e; + ea.

If an element a of an evolution algebra A is nilpotent then a is quasi-invertible.
Indeed if @™ = 0 then for b = —(a + a? + .... + a" ') we have that a + b — ba = 0,
so b is a quasi-inverse of a.

In |20 Proposition 9] it was proved that if @ is a quasi-invertible ideal of a non-
associative algebra then @ C Rad(A). Therefore we obtain the following result.

Proposition 3.20. If A is an evolution algebra then every quasi-invertible ideal of
A, and particularly every nilpotent ideal, is contained in Rad(A).

We point out that the radical of an evolution algebra may contain non quasi-
invertible elements, as we show next.

Example 3.21. Let A be an evolution algebra with a natural basis B := {e, ea}
such that e? = e; and e3 = e; +ea. Then, by Corollary[3.13 we have that Rad(A) =
Keq, and e; is not quasi-invertible. Note that the only non trivial modular ideal of
A is Ke; as it can be deduced from Corollary 3.8

O

4. REVIEWING THE NOTION OF SPECTRUM IN THE NON-ASSOCIATIVE SETTING

Since the beginning of the XX century, a great variety of non-associative algebras
have been used to model many phenomena in different scientific contexts of Biology,
Physics, or Engineering (see for instance [2] 13}, [25] 27, [38]). Nevertheless, for non-
associative algebras, the notion of spectrum of an element was not considered before
[B7 and [22]. Indeed the definition of an invertible element in a non-associative
algebra with a unit never was considered either.

Throughout this section A will denote an algebra which does not need to be asso-
ciative or commutative. The classical notion of invertible element of an associative
algebra with a unit was extended to the non-associative setting in the following two
different ways, given in Definition 1] and Definition below.

Definition 4.1. [37, Definition 2] Let A be an algebra with a unit e. We say that
a € A is invertible if a has a left and a right inverse (that is, there exists b,c € A

such that bc = ca = e). The set of invertible elements of the algebra A was denoted
by inv(A).
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The definition of spectrum related to the above definition of invertible element
is the next one (originally established in [37, Definition 2]).

Definition 4.2. For a complex algebra A with a unit e, the spectrum of a € A
is defined as the set

o(a) := {\ € C:a— Xe is not invertible}.

As in the associative case, the spectrum of an element @ in a complex algebra
A without a unit is defined as o1 (a), that is the spectrum of a in A; (the
unitization of A). Similarly the spectrum of an element a in a real algebra A is
defined as 0¢(a), where Ac is the complexification of A.

To study the invertibility of an element in the unitization algebra A; in terms of
the algebra A we use the notion of quasi-invertible element (as in the associative
case). We recall that for an arbitrary algebra A (associative or not) we say that
a € A is left quasi-invertible if there exists b € A such that a + b — ab = 0.
Similarly it is said that a is right quasi-invertible if there exists ¢ € A such that
a+ c— ca = 0. Finally we say that a is quasi-invertible if a is both left and right
quasi-invertible. We denote by ¢ — inv(A) the set of quasi-invertible elements in A.

For an algebra A without a unit, it was proved in [37] that for every a € A,

(4.1) o™(a) = {0} U {\ € C\{0} : % ¢ q—inv(A)}.

Indeed, it is clear that if A has no a unit then, 0 € o (a) for every a € A because
a ¢ inv(Ar). Moreover if A # 0 then a — A1 € inv(A;) if and only if there exists
b € A such that (a — A1)(b— ;1) = 1, which means that Ab is a quasi-inverse of £.
Thus a — A1 € inv(A;) if and only if § € ¢ —inv(A). Therefore we conclude that
if A is an algebra without a unit then,

(4.2) oM (@\{0} = {r € C\{0} : 5 ¢ g — inv(4)},

for every a € A, which generalizes what happens whenever A is associative to the
general setting that we are considering. If A has a unit, e, a similar argument by
replacing 1 with e shows us that (£2) holds and, in this case, 0 € 0(a) if and only
if a ¢ inv(A).

On the other hand, along the last century, non-associative division algebras were
considered to generalize the Gelfand-Mazur theorem among other goals (see for
instance [T, 32, [15] [16]). Indeed, a main problem was to look for fields, other than
C, to study their associated geometries.

In these works, a division algebra was defined as an algebra A with a unit (non
necessarily associative) such that the left and right multiplication operators, L, and
R, associated to every non-zero element a € A are bijective. (We recall that L,
and R, are, respectively, the operators on A given by L,(b) = ab and R, (b) = ba,
for every b € A). In [16], I. Kaplansky proved that left division complete normed
(non-associative) algebras are isomorphic to C. Many years ago, I. Kaplansky had
obtained similar characterizations of the field of complex numbers in [I5]. Inspired
by these facts, in [22, Definition 2.1] (see also [21I]) the following definition of an
invertible element was established. This definition is nothing but [3, Proposition
1.19] free of the requirement of associativity.
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Definition 4.3. Let A be an algebra with a unit. We say that a € A is multi-
plicatively invertible (shortly m-invertible) if the corresponding multiplication
operators L, and R, are bijective.

In relation with this definition of invertibility, the corresponding definition of the
spectrum that we establish next was originally introduced in [22] Definition 2.1].

Definition 4.4. Let A be a complex algebra with a unit. We define the multi-
plicative spectrum, or shortly the m-spectrum, of a € A as the set
A

Om

(a) :=={X € C:a— Xe is not m-invertible}.

If A is a complex algebra without a unit then, we define the m-spectrum of a € A as
the set o721 (a) where A; denotes the unitization of A. Finally, if A is a real algebra
then, we define the m-spectrum of a € A as the set ¢7:¢(a) where Ac denotes the
complexification of A.

Therefore, for a complex algebra with a unit, the m-spectrum and the spectrum
of an element are related as follows

om(a) = o (La) U (Ry),

where L£(A) denotes algebra of all linear operators on A, which is associative (even
if A is not it). Moreover from the Banach isomorphism theorem, if A is a complete
complex normed algebra we have that

ofl(a) = UL(A)(La) U UL(A)(R,I),

where L(A) denotes the Banach algebra of all bounded linear operators on A.
As proved in [22] Proposition 2.2], for an arbitrary algebra A and a € A,

o (@\{0} = "D (Ly) UM (R,).
In fact, if A has not a unit then,
(4.3) o2 (a) = oFA) (L) Ut A)(R,) = 65 (Ly) Ut M (R,) U {0},
for every a € A, meanwhile if A has a unit then, by definition, as said already,
o2 (a) = oFA (L) U A(R,).

Moreover, as it is well known, if A is an associative then, o(a) = o7 (a), and

this set is nothing but the classical spectrum of a. However, for a non-associative
algebra A, and a € A, it turns out that ¢(a) and o7 (a) may be different. Of
course, the following relation between the spectrum and the m-spectrum is obvious

o’ (a) C op(a).

In the next example we show an element in an evolution algebra for which the above
inclusion is strict.

Example 4.5. Let A be the algebra generated by B := {e1,es} with structure

matrix given by
1
( . )
. .
3

Let @ = 3e1 + 2es. If b = 2¢1 + %62 then, ab = 22 because

8 1 1 8 3 1 4 2
§e§ = —6(§el+§eg)+§(zel+§ez) = —361—262+261+§€2 = —61—562.

N[= [

ab = 6e3+



THE JACOBSON RADICAL OF AN EVOLUTION ALGEBRA 17

Therefore

1 1 3 4 1 2
—§a+ b+ Eab = —(561 +ea) + 2e; + 3¢ + 5(—61 - geg) =0,

so that —1 ¢ 0*(a). However

1 1 1
(Lo + El)a = (3e1 + 2e2)* + 5(3e1 +2e5) = 9¢? + 4e2 + 5(361 + 2e5) =

1 1 3 1 1
—9(561 + 562) + 4(161 + 562) + 5(361 + 262) = O
which proves that L, + %I is not injective and hence —% € o2 (a). Consequently
o4 (a) is strictly contained into o/ (a).

Associated to each notion of spectrum we have the corresponding notion of spec-
tral radius.

Definition 4.6. Let A be an algebra and let a € A. We define the spectral radius
of a as the value given by

pla) = sup{|A| : A € o (a)},

if 04 (a) is non-empty and p(a) := {0} otherwise. Thus, 0 < p(a) < co.
Similarly we define the m-spectral radius of a as the value

pm(a) = sup{|A| : X € o7 ()},

if 02 (a) is non-empty, and p,,(a) := {0} otherwise (note that if A does not need
to be normed and hence o2 (a) may be empty).
Since 04 (a) C 0 (a) we have that p(a) < p,,(a), for every a € A.

In the classical theory of Banach algebras the spectrum has a relevant role in
relation to the radical of the algebra. In fact, as is said in [26] p. 189] (see also [10,
Theorem 4.3.6]) the Jacobson radical of an associative algebra A can be described
as the largest ideal on which the spectral radius of each element is identically zero.
Consequently, A is semisimple if its radical is zero, that is if {0} is the only ideal
contained in the set of elements having spectral radius equal to zero.

According to this quote, since we have two natural notions of spectral radius, we
consider the following definitions of simplicity.

Definition 4.7. We say that an algebra A is spectrally semisimple if zero is
the unique ideal of A contained in the set {a € A : p(a) = 0}. Similarly, we say
that A is multiplicatively semisimple or m-semisimple if zero is the unique
ideal of A contained in the set {a € A : p,,(a) = 0}.

If A is associative then the two notions of semisimplicity defined above coincide
and mean precisely that the Jacobson radical of A is zero (see [26, Theorem 4.3.6]).
Nevertheless for general algebras we have the following.

Proposition 4.8. Let A be an algebra, and consider the following assertions:

(i) A is semisimple,

(i) A spectrally semisimple,

(iii) A is m-semisimple.

Then (i) = (ii) = (iil). Moreover, if A is associative then these assertions are
equivalent.
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Proof. (i) = (ii). If A is not spectrally semisimple then there exists a non-zero
ideal @ contained in {a € A : p(a) = 0}. Therefore @ is quasi-invertible because
1 ¢ 04(a) for every a € A. By [20, Proposition 9] we have that @ C Rad(A) and
hence A is not semisimple. The assertion (ii) = (iii) is obvious because p,,(a) =
0 implies that p(a) = 0, for a € A. For the proof of the fact that (iii) = (i) if A is
associative, see for instance [26, Theorem 4.3.6]. O

In [22] (see Theorem 3.5 and Corollary 3.6) we proved the following result in
the general non-associative setting.

Theorem 4.9. Eevery surjective homomorphism from a Banach algebra onto a
m-semisimple Banach algebra, is continuous. Consequently, m-semisimple Banach
algebras has a unique complete norm topology.

Particularly, whenever A is associative, we obtain as a corollary the well known
theorem of B. E. Johnson [I4] (see also [3], 10, 26]) that in words of T. Palmer
is a ”cornerstone of the Banach algebra theory”. Note that, in the above result,
m-semisimple can be replaced by spectrally semisimple or by semisimple (see [20]).

5. THE SPECTRUM OF AN ELEMENT IN AN EVOLUTION ALGEBRA

In this section we characterize the spectrum and the m-spectrum of an element in
an evolution algebra. Moreover we study the notions of semisimplicity established
in the above section in the framework of evolution algebras. Throughout this section
all the algebras that we will consider will be complex. This is not restrictive because
the spectrum, as well as the m-spectrum, of an element in a real algebra A is defined
as the corresponding one in the complexified algebra Ac.

Let A be a finite dimensional evolution algebra and B := {ey,...,e,} a natural
basis of A. Let Mp(A) = (wij) € Mpxn(K) be the structure matrix of A relative

to B. Then, it is straightforward to check that for a = > aye; and b= Y B,e; in

i=1 =1
A, we have
w11 Win a1y
(5.1) ab = oo : =
Wnl e Wnn O‘nﬁn
w1l . Win ay o 0 B1
Wnl e Wnn 0 e Qp Bn

The result can be easily adapted to the infinite dimensional case working with
the finite set of index defined by A.p, i.e. the support of ab. Note that if A, and
Ay denote as usual the support of a and b (respectively) and if A, N Ay # 0 then,
Aap = DY(A, N Ap) (see Definition [3.3).

We begin this section by determining the spectrum and the multiplicative spec-
trum of an element in a non-zero trivial evolution algebra (in an arbitrary algebra A
with zero product we have that 0 (a) = o2 (a) = {0}, for every a € A). We recall
that every structure matrix of such an algebra is diagonal with non-zero entries (see
Definition 2.8 and Remark 2.10). Moreover, by Proposition 2.2] a non-zero trivial
evolution algebra has a unit if, and only if, its dimension is finite.
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Proposition 5.1. Let A be a non-zero trivial evolution algebra, B := {e; : i € A}
a natural basis, and Mp(A) = (wi;) the corresponding structure matriz. Let a € A
be such that a = a;e;. Then

o (a) = oi(a) = {awi; 11 € A},

and,

@)\ {0} = o (@)\ {0} = {avwrs - € A},
Moreover,
(i) If Ao # A (this happens particularly when dim A = oo ) then 0 (a) = o4 (a) =
{aiwii 11 € Aa} U {0}
(ii) If A = A (and hence dim A < 00) then 0% (a) = o4 (a) = {iwi; 1 1 € Ay}

m

Proof. If A is a non-zero trivial evolution algebra and B := {e; : i € A} is a
natural basis then, e? = wy;e; with w;; # 0, for every i € A. Let a = > aie; € A.
We have that § € ¢ —inv(A) for A # 0 if and only if there exists b € A such that
a+Ab—ab=0.1fb=>" B,e; this meansthat Y a;e;+A> 5,ei—> a;Bwiie; =0,
so that a; + (A — a;w;;) B; = 0, for very i € A. Consequently & ¢ g —inv(A) if, and
only if, A — a;w;; = 0 and «; # 0. Since by ([{.2)

oM (@\{0} = {r € C\{0} : 5 ¢ g — inv(4)},

we obtain that o4(a)\{0} = {a;w;; : i € A,}. Moreover, by Proposition 22 the
non-zero trivial evolution algebra A has a unit if, and only if, dim A < oo, and in
this case a € inv(A) (that is 0 ¢ 0 (a)) if and only if A, = A. Thus 0 € 04(a) if,
and only if, A, # A.

With respect to the m—invertibility, by ([@3), we have o2 (a)\{0} = 0% (L,).
For A # 0, note that L, — AI is injective (respectively surjective) if, and only if,
aiwi; — A # 0, for every i € A,. Therefore o2 (a)\{0} = {a;w;; : i € A,}. Moreover,
if A has no unit then, 0 € o (a) as showed in [22, Proposition 2.2]. If A has a
unit then dim A < oo, so that L, is bijective if, and only if, L, is injective which
happens if, and only if, A, = A. Thus 0 € o2 (a) if, and only if, A, # A, and the
result follows. O

Corollary 5.2. One-dimensional evolution algebras with non-zero product are m-
semisimple (and hence spectrally semisimple and semisimple).

Proof. If A = Ke with 2 = we for w # 0 then, we have that o4(e) = 02 (e) = {w}
and the result follows. O

For a non-trivial evolution algebra A, we have the following characterization of
the m-spectrum, o2 (a), and the spectrum, o (a), of an element a € A.

Proposition 5.3. Let A be a finite-dimensional non-trivial evolution algebra and
B:={e1,...,en} a natural basis. If X\ € C, and if a =), | ase; then,
(1) A € o2t (a) if, and only if, X =0 or X is an eigenvalue of the matriz

w11 e Win a1 “ee O
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(ii) A € o4(a) if, and only if, \ = 0 or the equation

w11 e Win a1 e O A e O /81 a1

Wni W 0 - a, 0 ... )\ 8, an,
has no solution for X (in which case A € o2 (a)).
Proof. By Corollary 212 we have that A has not a unit, and by (€3),
o (a) == {0} Ut (L,).

m

Since (L, — M) is bijective if, and only if, it is injective (because A is finite-
dimensional) we have from (1)) that A € o%(4)(L,) if, and only if, the equation

wig 0 a; -+ 0 A - 0 B, 0
0 - Won 0 - ap 0 --- M\ B, 0

has a non-zero solution b = " | 8,e; which proves (i). Similarly, by (I} we have
that

o(a) ;== {0} U {\ € C\{0} : % ¢ q—inv(A)}.

Take A € C\{0}. Since ¢ € ¢ —inv(A) if, and only if, there exists b € A such that
$4b—%b =0, or equivalently ab—Ab = a, we obtain from (5.1)) that § ¢ ¢—inv(A)
if, and only if, the equation

w11 e Win a1 “ee O A e O /81 a1

wnl .. wnn O DRI an O DR A /Bn an
has no solution b = >""" | B;e; (which also implies that A € o“()(L,)). This proves
(ii). O

Example 5.4. The evolution algebra A given in Example 5 whose structure
matrix with respect to B := {e1,e2} is

-

is such that e? = —32e2, so that the ideal generated by € is (e}) = Ke? . Similarly,
if a € A\{0} is not multiple of e} then (a) = A (because dim (a) = 2) and hence
the unique non-zero proper ideal of A is Ke? . Since the eigenvalues of

_1 1 _1
4 4
— 1 _1
6 6
1

1
3
are 0 and -, we conclude that o7} (e?) = {0, &}

W= N
= W

[SY S )
= W
\_/
VN

|
o N

|

an)

\_/
I
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b — 1P B ( -3 )
1 1 1 ’
gﬂl - 152 3

so that, from the above theorem,

1
o (ed) = o () = 0.5}

It follows that {0} is the unique ideal contained in {a € A : p,,(a) = 0}, (and
therefore also in {a € A : p(a) = 0}), so that A is m-semisimple (and spectrally
semisimple). Nevertheless A is a radical algebra because A has no modular ideals
as it can be deduced from Corollary BI3 Actually e; — eju ¢ (e3) =Ke? for any
u € A

has no solution as

Next we determine the spectrum and the m-spectrum of an element in an evo-
lution algebra of arbitrary dimension.
Proposition 5.5. Let A be a non trivial evolution algebra, and B := {e; : i € A}
a natural basis. For a = Z aze; € A, define
i€A,
BOa) = {e; i € Ao}
Bl(a) := Ujep, {ej 1 wj; # 0}.
If B%(a) = {e1, - ,er} and B°(a) U B'(a) = {e1, -+ , ek, €xt1, " ,em]} then,
(1) A € 022 (a) if, and only if, X =0 or X is an eigenvalue of the matriz

Wil Wim a; - 0
)
Wmi " W 0 - ap
where apy1 = = ay, = 0.

(ii) A € o4(a) if, and only if, A\ = 0 or the equation

(o0 0 )

where 41 = -+ = Quy, = 0, has no solution for X (in which case \ € o/ (a)).

Proof. Since A is a non trivial evolution algebra, by Proposition 2.2] we have that
A has not a unit and hence 0 € 0“(a) C o7 (a). On the other hand, let Ay :=
lin{e1, -+ ,ek,ex+1, "+ ,em}. If ¢ € A then, there exists a unique ¢y € Ay and
c1 € lin(B\{e1, - ,ek,€k+1, "+ ,em}) such that ¢ = ¢y + ¢1. We claim that for
A € C\{0} and ¢ € A, the equation (L, — AI)b = ¢ has a unique solution, b € A
if, and only if, the equation (L, — AI)by = ¢¢ has a unique solution by € Ap. In
fact, if b = bg + by and ¢ = ¢g + ¢1 then ab = abg € Ag so that ab — Ab = ¢ if, and
only if, abg — Abg = ¢g and —Aby = ¢;. Consequently, the claim is proved because
the necessary condition is obvious and, conversely, given (L, — A )b=c¢, if by € A
is the unique solution of (L, — AI)by = ¢o then b = by + by with by = —%cl is the
unique solution of (L, — AI)b = ¢. The result follows directly from this fact. Indeed,

if bO = Z;C:l ﬁiei + Z;‘i]ﬁkl ﬁiei S AQ then,

k m
2
ab = E ;b6 = E ;€45
i—1 i=1
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where
«
M w1l Wizt Wik 151
= Wg1  Wg2 Wkk
Nim Wm1 Wm2 - Wmk O‘kﬂ]q

Therefore (L, — AI) is bijective if and only if the equation

w11 e wie e e wim
a1y AB1q 71
5.2 WE1 ot Wk : aBr | _ | Ak _|
(5:2) 0 ABr1 Yh+1
0 A -
Wt e e
i=m i=m
has a unique solution by = E B;e; for every ¢g = E ~ve;. This means that, for
i—1 i=1
Q41 = - = auy = 0, the equation

(0 D6 D)

has a unique solution. Equivalently (L, — AI) is not bijective if, and only if, that
A is an eigenvalue of the matrix

wll ... wlm al DR 0
wml .. wmm O DR am
where ajy1 = -+ = a,, = 0. This proves (i).
On the other hand, § € ¢g—inv(A) if and only if the equation (5.2) has a solution
when v; = ay, for i =1,---  k, and v, = --- =7, = 0. This proves (ii). O
For the next result, recall that if B := {e; : ¢ € A} is a natural basis of an

evolution algebra A, and if Ag C A is non-empty, then set of descendents of Ag is
defined as

i€No
where D(i) denotes the set of descendents of i (see Definition [B3]).

Proposition 5.6. Let A be an evolution algebra and B := {e; : i € A} a natural
basis. Let J be an ideal of A,with support Aj. Then, I :=lin{e? :i € A;UD(Ay)}
and I == lin{e; : i € Ay UD(Ay)} are ideals of A and

I, CJCl.

Moreover, if dim A < co and det Mp(A) # 0 then, I = J = I5.
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Proof. That I is an ideal is clear because if i« € Ay UD(A ) and j € A then, either
eje? =0 or eje? = wjie? with wj; # 0 so that j € D'(i) C D(A,). Similarly, I is
another ideal because if i € A; U D(Ay) then ef =Y, .\ wiiex and Aez € D(A).
Obviously I; € J C Is. On the other hand, if dim A < co and det Mg (A) # 0 then
11:,]:[2 as dlm]lzdlmlg O

Corollary 5.7. Let A be an evolution algebra and B := {e; : i € A} a natural basis
of A. Then, for everyi € A, the ideal generated by e? is

(eF)y =lin{e] : j € D(i) U {i}}.

Consequently the dimension of every one-generated ideal in an evolution algebra is
countable.

Proof. From the above result we have that lin{e? : j € D(i) U {i}} is an ideal
contained into (e?), and obviously € € lin{e? : j € D(i) U {i}}, so the result

follows (note that D(4) is countable). O

In the next result we characterize m-semisimple evolution algebras with finite
dimension.

Corollary 5.8. Let A be an evolution algebra and B := {e; : i € A} a natural
basis.

(i) A is spectrally semisimple if and only if, for every index i € A there exists a
in lin{e3 : j € D(i) U{i}} such that o4(a) #0.

(ii) A is m-semisimple if, and only if, for every index i € A there exists a in
lin{e3 : j € D(i) U{i}} such that o} (a) # 0.

Proof. By definition, A is spectrally semisimple (respectively m-semisimple) if and
only if, the set {a € A : 04(a) = 0} (respectively {a € A : 0/ (a) = 0}) does not
contain a non-zero ideal. Since a subset S C A contains a non-zero ideal if and

only if S contains an ideal of the type <ef> for some i € A, the result follows from
Corollary .11 O

For finite dimensional evolution algebras we have the following characterization
of the m-semisimplicity.

Corollary 5.9. Let A be a finite-dimensional evolution algebra and B := {e1, ...,en}
a natural basis. Then A is m-semisimple if, and only if, for every i =1,...,n, there
exists a = Y, agey, € lin{e? : j € D(i) U{i}} such that the matriz

wll DY wln al DRI O
Mp(A) =

wnl .. wnn O DRI an
has a non-zero eigenvalue.

Proof. The result follows directly from the above corollary and Proposition[5.3l [

The following result provides a helpful sufficient condition for the semisimplicity
of a finite dimensional evolution algebra.
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Corollary 5.10. Let A be an evolution algebra, and B := {e1,...,e,} a natural
basis. If, for every i =1,...,n, the matriz

Wil o Win wip oo 0
M;(B) =

Wn1 Wnn 0 T Win

has a non-zero eigenvalue then, A is m-semisimple.

Proof. The proof is clear as o7, (e?) # 0 for every i = 1,...,n. Therefore zero is the

unique ideal contained into {a € A : o2 (a) = 0} . O
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