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THE JACOBSON RADICAL OF AN EVOLUTION ALGEBRA

M. VICTORIA VELASCO

Abstract. In this paper we characterize the maximal modular ideals of an
evolution algebra A in order to describe its Jacobson radical, Rad(A). We
characterize semisimple evolution algebras (i.e. those such that Rad(A) =
{0})as well as radical ones. We introduce two elemental notions of spectrum
of an element a in an evolution algebra A, namely the spectrum σA(a) and
the m-spectrum σA

m(a) (they coincide for associative algebras, but in general
σA(a) ⊆ σA

m(a), and we show examples where the inclusion is strict). We
prove that they are non-empty and describe σA(a) and σA

m(a) in terms of the
eigenvalues of a suitable matrix related with the structure constants matrix
of A. We say A is m-semisimple (respectively spectrally semisimple) if zero
is the unique ideal contained into the set of a in A such that σA

m(a) = {0}
(respectively σA(a) = {0}). In contrast to the associative case (where the
notions of semisimplicity, spectrally semisimplicty and m-semisimplicity are
equivalent) we show examples of m-semisimple evolution algebras A that, nev-
ertheless, are radical algebras (i.e. Rad(A) = A). Also some theorems about
automatic continuity of homomorphisms will be considered.

1. Introduction

By an algebra we understand a linear space A over the field K (where either
K = R or C) provided with a bilinear map (a, b) → ab, from A × A → A, named
the multiplication of A. An algebra A is said to be associative if (ab)c = a(bc),
for every a, b, c ∈ A, and commutative if ab = ba, for every a, b ∈ A. Therefore,
in contrast for instance with [3, 10, 26, 28], throughout this paper, the product
of an algebra does not need to be associative (or commutative), unless this fact is
explicitly specified. Moreover, we say that e ∈ A is a unit of A if ae = ea = a, for
every a ∈ A. Obviously such a unit element is unique whenever it exists.

Relevant examples of algebras in this general meaning that we are consider-
ing are evolution algebras. These algebras are very meaningful in Genetics and
its theory was founded in [34]. There, it is justified why evolution algebras have
emerged to enlighten the study of Non-Mendelian Genetics, which is the basic lan-
guage of Molecular Biology. In this pioneering monograph many connections of
evolution algebras with other mathematical fields (such as Graph Theory, Stochas-
tic Processes, Group Theory, Dynamic Systems, Mathematical Physics, etc.) are
established, pointing out some further research topics.
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2 M. VICTORIA VELASCO

An evolution algebra is an algebra A provided with a basis B := {ei : i ∈ Λ}
such that eiej = 0, whenever i 6= j. Such a basis B is named a natural basis of
A. If e2i =

∑
k∈Λ ωkiek, then the structure matrix is given by

MB(A) = (ωki) ∈ MΛ(K),

where MΛ(K) denote the set of matrices in KΛ×Λ whose columns have a finite
number of non-zero entries. The structure matrix defines the product ofA, codifying
also the dynamic structure of A.

Recently, many different aspects of the theory of evolution algebras have been
developed. For instance, in [4] many algebraic properties of evolution algebras (like
simplicity, decomposability in direct sum of ideals), or graphs associated to them,
are deeply studied. The derivations of evolution algebras have been analyzed in [34,
5, 18]. In [18], the evolution algebras have been used to describe the inheritance of a
bisexual population and, in this setting, the existence of non-trivial homomorphisms
onto the sex differentiation algebra have been studied in [19]. Algebraic notions such
as nilpotency and solvability may be interpreted biologically as the fact that some of
the original gametes (or generators) become extinct after certain generations, and
these algebraic properties have been studied in [8, 6, 30, 36, 9, 17, 12]. Moreover
evolution algebras associated with function spaces defined by Gibbs measures on a
graph are considered in [29], to provide a natural introduction of thermodynamics
in the studying of several systems in Biology, Physics and Mathematics. On the
other hand, chains of evolution algebras (i.e. dynamical systems the state of which
at each given time is an evolution algebra) are considered in [7, 31, 23, 24].

The aim of this paper is to study the Jacobson radical of an evolution algebra,
as well as some notions of semisimplicity related to it. The classical definition of
Jacobson radical of an associative Banach algebras was extended to the setting of
non-associative algebras in [20, Definition 4]. According to [20], the Jacobson

radical of a commutative algebra is defined as the intersection of all maximal
modular ideals (in other words, the intersection of all primitive ideals in the meaning
of [20, Definition 3]). A modular ideal of a commutative algebra A is an ideal
M endowed with a modular unit, that is u ∈ A such that a − au ∈ M, for every
a ∈ A. It is not difficult to check that an ideal M is modular if and only if A/M
(provided with the canonical quotient product) is an algebra with a unit.

When A has a unit it turns out that every ideal I of A is modular ideal (because
the unit of A is a modular unit for I). Since the existence of a unit is someway
relevant for our approach, Section 2 of this paper is aimed to show that evolution
algebras exceptionally have a unit. More precisely in Proposition 2.2 we prove
that infinite-dimensional evolution algebras have not a unit. Moreover, a finite-
dimensional evolution algebra has a unit if, and only if, the matrix structure of A
relative to an arbitrary natural basis B is diagonal with non-zero entries. This
result enlightens Proposition 1 in [34, Section 3.1.2], where the finite-dimension of
the considered evolution algebra is implicitly assumed. Moreover, we obtain that
every non-trivial evolution algebra does not have a unit, and its unitization is not
an evolution algebra (see Corollary 2.17).

Modular ideals of an evolution algebra are characterized in Corollary 3.7. As a
consequence, in Corollary 3.8, we obtain that maximal modular ideals of an evolu-
tion algebra have codimension one. More precisely, if B := {ei : i ∈ Λ} is a natural
basis of an evolution algebra A then, the set of modular index associated to Λ
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is defined as Λm = { i ∈ Λ : ωii 6= 0 and ωij = 0 if i 6= j} (see Definition 3.10)
and, in Corollary 3.12, it is showed that M is a maximal modular ideal of A if,
and only if, M = lin{ei : i ∈ Λ\{i0}}, for some i0 ∈ Λm, in which case 1

ωi0i0

ei0
is a modular unit for M. Therefore, in Corollary 3.13, we obtain that the Jacobson
radical of A can be described as follows,

Rad(A) = lin{ei : i ∈ Λ\Λm}.

Consequently, A is a radical algebra if and only if Λm = ∅. Similarly A is semisim-
ple if and only if Λ = Λm. Moreover, in Corollary 3.14, we prove that A/Rad(A)
is either {0} or a non-zero trivial evolution algebra.

In Proposition 3.20 we show that every quasi-invertible ideal, and particularly
every nilpotent ideal, of an evolution algebra A is contained in Rad(A). Neverthe-
less, in contrast with the associative case, we provide an example of an evolution
algebra containing elements in its Jacobson radical that are not quasi-invertible
(see Example 3.21).

In Section 4, we review the notion of spectrum of an element, a, in a non-
associative algebra, A, by considering two definitions of spectrum, namely σA(a)
and σA

m(a) (the spectrum and the multiplicative spectrum of a, respectively). More
precisely, for a complex algebra A which a unit, e, we define for every a ∈ A,

σA(a) := {λ ∈ C : a− λe is not invertible},

in the meaning that a − λe has not left or a right inverse, and on the other hand
we define

σA
m(a) := {λ ∈ C : a− λe is not m-invertible},

in the meaning that La − λI or Ra − λI are not bijective (where La and Ra

denote, respectively, the left and right multiplication operator by a). It is clear that
σA(a) ⊆ σA

m(a) and also that for an associative algebra A we have σA(a) = σA
m(a).

Nevertheless, in Example 4.5, we show an element a in an evolution algebra A for
which σA(a) is a proper subset of σA

m(a).
On the other hand, for an evolution algebra A and a ∈ A, we prove that the sets

σA(a) and σA
m(a) are non-empty and we characterize both of them in Proposition 5.1

(for trivial evolution algebras), in Proposition 5.3 (for finite-dimensional evolution
algebras), and in Proposition 5.5 (for the general case), according to the eigenvalues
of certain matrices related with a structure matrix.

As said in [26, p. 189] (see also [10, Theorem 4.3.6]), in the classical theory of
Banach algebras, the radical of Jacobson of an associative algebra A can be described
as the largest ideal on which the spectral radius of each element is identically zero.
Consequently, A is semisimple if its radical is zero, that is if {0} is the only ideal
contained in the set of elements having spectral radius equal to zero.

Since we have two notions of spectrum for an element a ∈ A, namely σA(a)
and σA

m(a), we define the corresponding notions of spectral radius, ρ and ρm, in
Definition 4.6. Thus, for an evolution algebra A and a ∈ A, we have that ρ(a) = 0
if, and only if, σA(a) = {0} meanwhile ρm(a) = 0 if and only if σA

m(a) = {0}. In
the spirit of the associative case, we say that A is spectrally semisimple if zero
is the unique ideal of A contained in the set {a ∈ A : ρ(a) = 0}. Similarly, we say
that A is multiplicatively semisimple or m-semisimple if zero is the unique
ideal of A contained in the set {a ∈ A : ρm(a) = 0} (see in Definition 4.7).
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It is known that if the algebra A is semisimple (that is Rad(A) = {0}) then A
is spectrally semisimple; that if A is spectrally semisimple then A is m-semisimple;
and also that if A is associative then, these three notions of semisimplicity are
equivalent (see Proposition 4.8). In contrast to the associative case we provide, in
Example 5.4, an evolution algebra A which is a radical algebra and nevertheless A
is m-semisimple. This shows how far these three notions of semisimplicity can be
in the non-associative framework.

The notion of m-semisimplicity was used in [22] to prove the automatic continuity
of every surjective homomorphism from a Banach algebra onto a m-semisimple
Banach algebra.

2. About the existence of a unit in an evolution algebra with

arbitrary dimension

We begin by showing that an evolution algebra has a unit only in very special
cases. Indeed, an infinite-dimensional evolution algebra has no a unit, as we prove
in the next proposition. Previously, we establish a notion that will be very helpful
in our approach.

Definition 2.1. Let A be an evolution algebra, and B := {ei : i ∈ Λ} a natural
basis of A. If a ∈ A is such that a =

∑
i∈Λ αiei then, the support of a (respect to

B) is defined as

ΛB
a := {i ∈ Λ : αi 6= 0}.

Similarly, if S is a non-void subset of A then the support of S (respect to B) is
the set given by

ΛB
S :=

⋃

a∈S

Λa.

If there is no confusion about the prefixed natural basis then we write simply Λa

and ΛS , respectively.

Proposition 2.2. Let A be an evolution algebra.
(i) If dimA = ∞ then, A does not have a unit.
(ii) If dimA < ∞ then, A has a unit if, and only if, for every natural basis

B := {e1, ..., en} of A, we have that e2i = ωiiei with ωii 6= 0, for i = 1, ..., n, in
whose case the unit of A is given by e = 1

ω11
e1 + ...+ 1

ωnn
en.

Proof. Let A be an evolution algebra and B := {ei : i ∈ Λ} a natural basis of A.
The assertion (i) is clear because if Λ is infinite, if e is a unit of A, and if i /∈ Λe

then, eei = 0, a contradiction that shows that A does not have a unit. To prove (ii),
suppose that Λ = {1, ..., n}. If e is a unit for A then, clearly e = α1e1 + ...+ αnen
with αi 6= 0 for every i = 1, ..., n. Since

e2i = ei(eie) = ei(αie
2
i ) = αiωiie

2
i

it follows that either e2i = 0 or ωiiαi = 1. If e2i = 0 then eei = 0, a contradiction.
Therefore ωiiαi = 1 and hence e = 1

ω11
e1 + ... + 1

ωnn
en, so that e2i = ωiiei with

ωii 6= 0, for every i = 1, ..., n. The rest is obvious. �

Following [35] we introduce the next definition.

Definition 2.3. Let A be an evolution algebra and B := {ei : i ∈ Λ} a natural
basis. We say that A is non-degenerate if e2i 6= 0 for any i ∈ Λ.
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It turns out that the above definition does not depend on the prefixed natural
basis B, as it was proved in [4, Corollary 2.19]. This is because the evolution
algebra A is non-degenerate if, and only if, Ann(A) = {0}, where Ann(A) denotes
the annihilator of A (see [4, Proposition 2.18]). Indeed, Ann(A) = {0} if and only
if the set Λ0 = {i ∈ Λ : e2i = 0} is empty.

Definition 2.4. Let A be an evolution algebra and B := {ei : i ∈ Λ} a natural

basis of A. Let B̃ be another natural basis of A. We say that B and B̃ are related
if there exists a family of non-zero constants {ki}i∈Λ and a bijection σ : Λ → Λ

such that B̃ = {kieσ(i) : i ∈ Λ}.

The next result is easy to prove and nevertheless relevant because it gives us
information about when the natural basis of a non-degenerated evolution algebra
is unique (in the meaning that some other natural basis is related to it).

Proposition 2.5. Let B := {ei : i ∈ Λ} a natural basis of a non-degenerate
evolution algebra A. If the set {e2i : i ∈ Λ} is linearly independent then, any two
natural basis of A are related.

Proof. Let B̃ := {ui : i ∈ Λ} be another natural basis of A. Let i, j ∈ Λ with i 6= j.
Since uiuj = 0 we have that ΛB

ui
∩ ΛB

uj
= ∅, as the set {e2i : i ∈ Λ} is linearly

independent. Therefore, if we prove that card(ΛB
ui
) = 1 for every i ∈ Λ then, the

result follows, because this means that ui = αj0ej0 (with αj0 6= 0) for a unique
j0 ∈ Λ. To the contrary, suppose that there exists i0 ∈ Λ such that card(ΛB

ui0
) 6= 1.

Let i1, i2 ∈ ΛB
ui0

with i1 6= i2. Then, ui0 = αei1 +βei2 +
∑

k∈Λ0
γkek where αβ 6= 0,

and Λ0 = ΛB
ui0

\{i1, i2}. Moreover i1, i2 /∈ ΛB
uj

for every j ∈ Λ\{i0}. Denote by πj

projection of A on Kej. If ei1 =
∑

i∈ΛB̃
ei1

αiui then, either i0 /∈ ΛB̃
ei1

in whose case

πi1(ei1) = πi1 (
∑

i∈ΛB̃
ei1

αiui) = 0, a contradiction as πi1(uj) = 0 if j ∈ Λ\{i0}, or

i0 ∈ ΛB̃
ei1

in whose case πi2(ei1) = πi2(
∑

i∈ΛB̃
ei1

αiui) 6= 0, another contradiction.

This proves that card(ΛB
ui0

) = 1 as desired. �

In the above proposition, the hypothesis that the set {e2i : i ∈ Λ} is linearly
independent cannot be removed as the next example shows.

Example 2.6. Let Abe an evolution algebra with natural basis B := {e1, e2}

where e21 = e1 and e22 = −e1. Then A is non-degenerate and B̃ := {u1, u2} with
u1 = e1 + e2 and u2 = e1 − e2 is a natural basis of A which is not related to B.

Corollary 2.7. Every two natural basis of a simple evolution algebra are related.

Proof. If A is a simple evolution algebra with a natural basis B := {ei : i ∈ Λ}
then, from [4, Proposition 4.1], it follows that A is non-degenerate, that {e2i : i ∈ Λ}
is a linearly independent set, and that A = lin{e2i : i ∈ Λ}, and hence the above
proposition applies. �

The following result is a direct consequence of Proposition 2.5.

Corollary 2.8. If A is a non-degenerate finite dimensional evolution algebra and
B is a natural basis such that detMB(A) 6= 0 then every two natural basis of A are
related.
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Particular examples of algebras satisfying the hypothesis of the above result are
finite-dimensional simple evolution algebras (see [4, Corollary 4.10]).

According with [34, p. 18, Remark 2] we introduce the next definition.

Definition 2.9. Let A be an evolution algebra and B := {ei : i ∈ Λ} a natural
basis of A. We say that A is a non-zero trivial evolution algebra if e2i = ωiiei
with ωii 6= 0, for every i ∈ Λ. This means that the structure matrix MB(A) is
diagonal and that A is non-degenerate (i.e. MB(A) diagonal with non-zero entries
in the diagonal).

Remark 2.10. By definition, a non-zero trivial evolution algebra is non-degenerate.
Therefore, from Proposition 2.5, it follows that the property of being a non-zero
trivial evolution algebra does not depend on the natural basis considered.

Nevertheless, we provide an example of an evolution algebra A (obviously degen-

erate) having two natural basis B and B̃ such that MB(A) is diagonal meanwhile

M
B̃
(A) is not (so that B and B̃ are not related).

Example 2.11. Let A be the evolution algebra with natural basis B := {e1, e2}

and product given by e21 = 0 and e22 = e2. Consider the natural basis B̃ := {u1.u2}
where u1 = e1, and u2 = e1+e2. Then we have that the structure matrix MB(A) =(

0 0
0 1

)
is diagonal meanwhile M

B̃
(A) =

(
0 −1
0 1

)
is not diagonal.

From Proposition 2.2 we obtain the following result.

Corollary 2.12. An evolution algebra A has a unit if and only if A is a finite-
dimensional non-zero trivial evolution algebra.

Remark 2.13. In [34, Section 3.1.2, Proposition 1] it is established that ”an evo-
lution algebra has a unitary element if and only if it is a non-zero trivial evolution
algebra”. Comparing this result with Proposition 2.2 we conclude that the finite-
dimension of the algebra seems to be implicitly assumed.

Corollary 2.14. Let A be an evolution algebra and B a natural basis of A. Then
the following assertions are equivalent:

(i) A has a unit.
(ii) A is finite-dimensional, MB(A) is diagonal, and has non-zero entries.
(iii) A finite-dimensional, non-degenerated, and the structure matrix MB(A) is

diagonal.

Proof. (i) ⇐⇒ (ii) is clear from Corollary 2.12, and (ii) ⇐⇒ (iii) follows from the
fact if MB(A) is diagonal then A is non-degenerated (i.e. every column of MB(A)
is non-zero) if and only if every entry in the diagonal is non-zero. �

As usual, if A is an algebra then we define the formal unitization of A as the
algebraA1 := A⊕K1 endowed with the product (a+λ1)(b+µ1) = ab+λb+µa+λµ1,
to obtain an algebra A1 with a unit, 1, containing A as an ideal (see [37]).

Next, we prove that the unitization A1 := A ⊕ K1 of an evolution algebra A is
an evolution algebra if, and only if, A has a unit.

Lemma 2.15. If A1 is a finite-dimensional evolution algebra and if B1 is a natural
basis of A1, then B1 := B ∪ {λ(e − 1)} for some λ 6= 0, where B := {ei : i ∈ Λ}
is a natural basis of A such that e2i = ωiiei, with ωii 6= 0, for every i ∈ Λ, and
e =

∑
i∈Λ

1
ωi
ei is a unit of A.
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Proof. Let A be a finite-dimensional algebra such that A1 := A⊕K1 is an evolution
algebra. Let B1 := {ei + λi 1 : i ∈ Λ1} be a natural basis of A1. Since for i 6= j,

(ei + λi1)(ej + λj1) = 0,

we have that there is a unique i0 ∈ Λ1 such that λi0 6= 0. Indeed, if i, j ∈ Λ1 with
i 6= j are such that λiλj 6= 0 then (ei + λi 1)(ej + λj 1) 6= 0, a contradiction.
Therefore, for Λ := Λ1\{i0}, the natural basis B1 can be written as follows,

B1 := {ei : i ∈ Λ} ∪ {ei0 + λi01},

where λi0 6= 0. Consequently A is spanned by {ei : i ∈ Λ}, and hence A is an
evolution algebra and B := {ei : i ∈ Λ} a natural basis of A.

On the other hand, since A1 is an evolution algebra with a unit 1, by Corollary
2.14, for every i ∈ Λ, there exists ωii 6= 0 such that e2i = ωiiei, as well as ωi0i0 6= 0

such that (ei0 + λi01)
2 = ωi0i0(ei0 + λi01). It follows that e =

∑
i∈Λ

1
ωii

ei is a unit

for A. Moreover, if ei0 =
∑

j∈Λ βjej then, since ei(ei0 + λi01) = 0 we have that

ei =
−1

λi0

eiei0 =
−1

λi0

ei
∑

j∈Λ

βjej =
−1

λi0

βie
2
i =

−1

λi0

βiωiiei.

Therefore βi = −
λi0

ωii
for every i ∈ Λ, so that

ei0 =
∑

i∈Λ

βiei = −λi0

∑

j∈Λ

1

ωii

ei = −λi0e.

From the equality (ei0 +λi01)
2
= ωi0i0(ei0 +λi01), we obtain that ωi0i0 = λi0 . Thus

B1 := {ei : i ∈ Λ}∪{−λi0(e−1)}, where λi0 6= 0 and B := {ei : i ∈ Λ} is a natural
basis of A such that e2i = ωiiei, with ωii 6= 0, for every i ∈ Λ, and e =

∑
i∈Λ

1
ωii

ei
is a unit of A, as desired. �

Proposition 2.16. Let A be an algebra and let A1 its unitization. Then the fol-
lowing assertions are equivalent:

(i) A1 is an evolution algebra.
(ii) A is an evolution algebra with a unit.
(iii) A is a finite-dimensional non-zero trivial evolution algebra.
(iv) A1 is a finite-dimensional non-zero trivial evolution algebra.

Proof. (i) ⇒ (ii). From Corollary 2.12 we have that dimA1 < ∞ and applying
Lemma 2.15 we obtain (ii). That (ii) ⇐⇒ (iii) and that (i) ⇐⇒ (iv) are obvious by
Corollary 2.12 To prove (iii) ⇒ (iv), let A be a non-zero trivial evolution algebra
and B := {ei : i ∈ Λ} a natural basis. Then, for every i ∈ Λ, let ωii 6= 0 be such
that e2i = ωiiei. It follows that e =

∑
i∈Λ

1
ωi
ei is a unit of A, and B ∪ {1−e} is a

natural basis for A1 whose structure matrix is diagonal with non-zero entries, as
1−e is idempotent. �

We conclude that except in very special cases, the unitization process is incom-
patible with the property of being an evolution algebra.

Corollary 2.17. Every non-trivial evolution algebra does not have a unit, and its
unitization is not an evolution algebra.
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3. The Jacobson radical of an evolution algebra

The Jacobson radical of an associative algebra is the intersection of its all prim-
itive ideals (see for instance [10]). This notion was generalized to arbitrary non-
associative algebras in [20] by defining a primitive ideal as the biggest two sided
ideal contained in a maximal one-sided modular ideal. Since evolution algebras are
commutative, we avoid the adjectives ”left” and ”right” and we talk only about
”modular ideals” and ”modular units”.

We recall that an ideal M of a commutative algebra A is said to be a modular

ideal if there exists u ∈ A such that a− au ∈ M, for every a ∈ A (in other words
A(1 − u) ⊆ M). In this case, we say that u is a modular unit for M. Therefore,
according with [20], we have the following definition.

Definition 3.1. Let A be an evolution algebra. A primitive ideal of A is a
maximal modular ideal, and the Jacobson radical of A is the intersection of all the
primitive ideals of A.

Our next goal is to characterize the primitive ideals of an evolution algebra.

Theorem 3.2. Let A be an evolution algebra, and B := {ei : i ∈ Λ} a natural basis
of A. Let M be a modular ideal with support ΛM . Then:

(i) ei ∈ M if and only if e2i ∈ M.
(ii) M = lin{ei : i ∈ ΛM}. Consequently, M is proper if and only if ΛM 6= Λ.
(iii) Λ\ΛM is finite. Moreover, if u is a modular unit for M then ΛM ∪Λu = Λ.
(iv) If M is proper then ωii 6= 0, for every i ∈ Λ\ΛM , and

u0 =
∑

i∈Λ\ΛM

1

ωii

ei

is a modular unit for M . In fact, u ∈ A is a modular unit for M if, and only if,
u = m+ u0 for some m ∈ M.

Proof. (i) Obviously if ei ∈ M then e2i ∈ M. Conversely, suppose that e2i ∈ M and
let u be a modular unit for M . Let πi(u) = αi, where, as usual, πi denotes the
projection of A on Kei. Since ei(1− u) = ei − αie

2
i ∈ M and e2i ∈ M we have that

ei ∈ M, as desired.
(ii) If πi(M) 6= {0} then e2i ∈ M and, by (i), we have that ei ∈ M so that

lin{ei : i ∈ ΛM} ⊆ M.

Conversely, if a =
∑

i∈Λa

βiei ∈ M (with βi 6= 0 for every i ∈ Λa) then Λa ⊆ ΛM , so

that a ∈ lin{ei : i ∈ ΛM}. Thus M = lin{ei : i ∈ ΛM}, and the rest is clear.
(iii) If u is a modular unit for M and if i ∈ (Λ\ΛM )∩ (Λ\Λu) then ei − eiu = ei

is in M, a contradiction. It follows that (Λ\ΛM ) ⊆ Λu so that Λ\ΛM is finite.
Moreover

Λ\(ΛM ∪ Λu) = (Λ\ΛM ) ∩ (Λ\Λu) = ∅,

that is ΛM ∪ Λu = Λ.
(iv) Let u =

∑
i∈Λu

αiei be a modular unit for M. If Λu ∩ ΛM = ∅ then, take

m = 0 and, otherwise, let m =
∑

i∈Λu∩ΛM

αiei. Since (Λ\ΛM ) ⊆ Λu by (iii),we obtain

that
u =

∑

i∈Λ\ΛM

αiei +m,
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for some m ∈ M. For i ∈ Λ\ΛM we have that

ei(ei − eiu) = (1− αiωii)e
2
i ∈ M,

so that 1 − αiωii = 0 and hence ωii 6= 0 and αi = 1
ωii

. Therefore, u = m + u0

and consequently u0 is a modular unit for M , as desired. This concludes the proof
because, obviously, u0 +m is a modular unit of M, for every m ∈ M. �

The set of descendents of a set of indexes is a concept introduced in [4, Definitions
3.1] that will play an essential role in describing the dynamic nature of an evolution
algebra.

Definition 3.3. Let A be an evolution algebra, and B := {ei : i ∈ Λ} a natural

basis of A. If e2i =
∑

j∈Λ

ωjiej then, the set of first-generation descendents of the

index i ∈ Λ is defined as

D1(i) := Λe2
i
= {j ∈ Λ : ωji 6= 0}.

Similarly, the set of second-generation descendents of i ∈ Λ is given by

D2(i) =
⋃

j∈Λ
e2
i

Λe2
j
=

⋃

j∈D1(i)

D1(j).

Similarly, the set of nth-generation descendents of i ∈ Λ is given by

Dn(i) =
⋃

j∈Dn−1(i)

D1(j).

Finally the set of descendents of the index i is defined as

D(i) =
⋃

n∈N

Dn(i).

On the other hand, the set of descendents of a non-empty set Λ0 ⊆ Λ is defined as

D(Λ0) =
⋃

i∈Λ0

D(i).

In [4, Proposition 3.4] the set of descendents of an index in a natural basis was
characterized as follows.

Proposition 3.4. Let B := {ei : i ∈ Λ} be a natural basis of an evolution algebra
A, and let MB(A) = (ωij). Consider i0, j ∈ Λ and m ≥ 2.

(i) j ∈ D1(i0) if and only if ωji0 6= 0, in which case eje
2
i0
= ωji0e

2
j .

(ii) j ∈ Dm(i0) if, and only if, there exist k1, k2, · · · , km−1 such that

ωjkm−1
ωkm−1km−2···ωk2k1

ωk1i0 6= 0,

in which case e2j = (ωjkm−1
ωkm−1km−2···ωk2k1

ωk1i0)
−1ejekm−1

ekm−2
· · · ek2

ek1
e2i0 .

Corollary 3.5. Let B := {ei : i ∈ Λ} be a natural basis of an evolution algebra
A. Let m,n ∈ N be such that m > n, and let i0 ∈ Λ. Then, k ∈ Dm(i0) if, and only
if, k ∈ Dn(j) for some j ∈ Dm−n(i0). Consequently

Dm(i0) =
⋃

j∈Dm−n(i0)

Dn(j).
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Proof. The result follows from the above result and the fact that there exists
k1, k2, · · · , km−1 such that ωkkm−1

ωkm−1km−2···ωk2k1
ωk1i0 6= 0, if and only if there

exists k1, k2, · · · , kn−1 such that

ωkkn−1
ωkn−1kn−2···ωk2k1

ωk1j 6= 0,

and k̃1, k̃2 · · · , k̃m−n−1 such that ω
jk̃m−n−1

ω
k̃m−n−1k̃m−n−2···

ω
k̃2k̃1

ω
k̃1i0

6= 0. �

Proposition 3.6. Let A be an evolution algebra, and B := {ei : i ∈ Λ} a natural
basis of A. If M is a non-zero modular ideal with support ΛM then, D(i)\{i} ⊆ ΛM ,
for every i ∈ Λ\ΛM .

Proof. If M = A then ΛM = Λ and there is nothing to prove. Otherwise, by
Theorem 3.2, we have that ωii 6= 0, for every i ∈ Λ\ΛM , and u0 =

∑
i∈Λ\ΛM

1
ωii

ei

is a modular unit for M . Let i ∈ Λ\ΛM . For every j ∈ D1(i)\{i} = Λe2
i
\{i} we

have πj(ei − eiu0) = ωji 6= 0, with ei − eiu0 ∈ M, so that j ∈ ΛM . Therefore
D1(i)\{i} ⊆ ΛM . On the other hand,

D2(i)\{i} =
⋃

j∈D1(i)

D1(j)\{i},

and if k ∈ D1(j)\{i} for some j ∈ D1(i) then, ωkj 6= 0 and eke
2
j = ωkje

2
k. If

j = i then k ∈ D1(i)\{i} ⊆ ΛM . Otherwise, j ∈ D1(i)\{i} ⊆ ΛM and then
e2k = 1

ωkj
eke

2
j ∈ M because e2j ∈ M. Thus ek ∈ M, by Theorem 3.2, and hence

k ∈ ΛM . This proves that D2(i)\{i} ⊆ ΛM and, by an inductive process, we obtain
that Dn(i)\{i} ⊆ ΛM for every n ∈ N, or equivalently D(i)\{i} ⊆ ΛM . �

Next we characterize the modular ideals of an evolution algebra by means of the
descendents set of a set of indexes.

Corollary 3.7. Let A be an evolution algebra and B := {ei : i ∈ Λ} a natural
basis. A non-zero proper subset M ⊆ A is a modular ideal of A if, and only if,
M = lin{ej : j ∈ Λ0} for some non-empty proper subset Λ0 ⊆ Λ satisfying the
following conditions:

(i) Λ\Λ0 is finite and Λ\Λ0 ⊆ Λ\D(Λ0),
(ii) i ∈ D(i) and D(i)\{i} ⊆ Λ0, for every i ∈ Λ\Λ0;
in which case u =

∑
i∈Λ\Λ0

1
ωii

ei is a modular unit for M .

Proof. Let Λ0 ⊆ Λ satisfying (i), and (ii). Then, the condition (i) assures that
M := lin{ei : i ∈ Λ0} is an ideal as D(Λ0) ⊆ Λ0, which is proper as Λ\Λ0 is finite.
For every i ∈ Λ\Λ0, by condition (ii) we have that ωii 6= 0 (as i ∈ D(i)) so that
u =

∑
i∈Λ\Λ0

1
ωii

ei is well defined. Since D(i)\{i} ⊆ Λ0, we have that

ei − eiu ∈ lin{ej : j ∈ D(i)\{i}} ⊆ lin{ej : j ∈ Λ0} = M,

for every i ∈ Λ, which implies that M is a (proper) modular ideal and u =
∑
i∈Λ0

1
ωii

ei

a modular unit for M. Conversely, by Theorem 3.2 and the above proposition, we
conclude that every proper modular ideal of A is of this type (take Λ0 = ΛM ). �

From the above result we characterize the maximal modular ideals of an evolution
algebra, and therefore its Jacobson radical.
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Corollary 3.8. Let A be an evolution algebra, B := {ei : i ∈ Λ} a natural basis,
and MB(A) = (ωij) the structure matrix. Then M is a maximal modular ideal of A
if, and only if, M = lin{ei : i ∈ Λ\{i0}} for some i0 ∈ Λ satisfying that ωi0i0 6= 0,
and that i0 /∈ D(k) for every k ∈ Λ\{i0}, in which case 1

ωi0i0

ei0 is a modular unit

for M. Consequently every maximal modular ideal of A has codimension one.

Proof. Suppose that i0 is such that ωi0i0 6= 0 and i0 /∈ D(k) for every k 6= i0.
Then M = lin{ei : i 6= i0} is a maximal modular ideal as it can be deduced from
Corollary 3.7. Indeed, for Λ0 = Λ\{i0} we have that

(i) Λ\Λ0 = {i0} is finite, and {i0} = Λ\Λ0 ⊆ Λ\D(Λ0) because i0 /∈ D(k) for
k 6= i0, so that i0 /∈ D(Λ0) = D(Λ\{i0}).

(ii) i ∈ D(i) (that is ωi0i0 6= 0) and, obviously, D(i0)\{i0} ⊆ Λ0 = Λ\{i0}.
Therefore by the above corollary we obtain that M is a modular ideal of codi-

mension one, and hence maximal.
Conversely, let M be a maximal modular ideal. By Corollary 3.7 we have that

M = lin{ek : k ∈ ΛM} with
(i) Λ\ΛM finite, and Λ\ΛM ⊆ Λ\D(ΛM ),
(ii) ωii 6= 0 and D(i)\{i} ⊆ ΛM for every i ∈ Λ\ΛM .
Suppose that i, j ∈ Λ\ΛM with i 6= j. Then i /∈ D(j) and j /∈ D(i) by the

hypothesis (ii). Indeed, if j ∈ Λ\ΛM and D(i)\{i} ⊆ ΛM then j /∈ D(i)\{i} and
hence j /∈ D(i). Similarly i /∈ D(j). Note that Λ0 := ΛM ∪ {i} is a proper subset of
Λ such that

(i) Λ\Λ0 is finite and Λ\Λ0 ⊆ Λ\D(Λ0) since from the inclusion D(i)\{i} ⊆ ΛM

(by keeping in mind that D(ΛM ) ⊆ ΛM ) it follows that

D(Λ0) = D(ΛM ∪ {i}) ⊆ ΛM ∪D(i) ∪ {i} ⊆ ΛM ∪ {i} = Λ0,

(ii) ωkk 6= 0, for every k ∈ Λ\Λ0 (because ωkk 6= 0 for k ∈ Λ\ΛM and Λ\Λ0 ⊆
Λ\ΛM). Also D(k)\{k} ⊆ Λ0 for every k ∈ Λ\Λ0, (because D(k)\{k} ⊆ ΛM ⊆ Λ0).
Consequently, by Corollary 3.7, we have that lin{ek : k ∈ ΛM ∪ {i}} is a proper
modular ideal containing M. This contradiction proves that Λ\ΛM = {i0} for some
i0 ∈ Λ such that ωi0i0 6= 0 and D(i0)\{i0} ⊆ ΛM with D(ΛM ) ⊆ ΛM (that is
D(Λ\{i0}) ⊆ Λ\{i0}). Therefore i0 /∈ D(k) for every k ∈ Λ\{i0}, as desired. It
also follows that 1

ωi0i0

ei0 is a modular unit for M . Thus, every maximal modular

ideal of A has codimension one. �

The above result is very helpful in determining the maximal modular ideals of an
evolution algebra and hence its Jacobson radical, as the following example shows.

Example 3.9. Let A be the evolution algebra with natural basis

B := {e1, e2, e3, e4, e5, e6, e7}

and structure matrix given by



ω11 ω12 ω13 0 0 0 ω17

ω21 ω22 ω23 0 0 0 ω27

ω31 ω32 ω33 0 0 0 ω37

0 0 0 ω44 0 ω46 0
0 0 0 0 ω55 ω56 0
0 0 0 0 0 ω66 0
0 0 0 0 0 0 ω77



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(where ωij 6= 0). Then, according to Corollary 3.8, the maximal modular ideals of
A are the following ones

M6 = lin{e1, e2, e3, e4, e5, e7},

M7 = lin{e1, e2, e3, e4, e5, e6}.

Indeed if Mi = lin{ej : j ∈ {1, 2, 3, 4, 5, 6, 7}\{i}} then, M1,M2,M3,M4, and M5

are not even modular ideals. Consequently,

Rad(A) = M6 ∩M7 = lin{e1, e2, e3, e4, e5}.

To characterize easily the Jacobson radical of an evolution algebra we introduce
the following notion.

Definition 3.10. Let A be a natural evolution algebra, B := {ei : i ∈ Λ} a natural
basis of A, and MB(A) = (ωij)Λ×Λ the corresponding structure matrix. We say
that i0 ∈ Λ is a modular index if ωi0i0 6= 0 and ωji0 = 0 if i0 6= j.

That i0 ∈ Λ is a modular index means that the corresponding i0−file in the
structure matrixMB(A) = (ωij)Λ×Λ consists of zeros except for the entry ωi0i0 6= 0.

In the next result we characterize the modular indexes in terms of the sets of
descendents.

Lemma 3.11. Let A be an evolution algebra, B := {ei : i ∈ Λ} a natural basis, and
MB(A) = (ωij) the structure matrix. Let i0 ∈ Λ. Then, the following assertions
are equivalent:

(i) i0 is a modular index,
(ii) ωi0i0 6= 0 and i0 /∈ D1(j), for every j ∈ Λ\{i0},
(iii) ωi0i0 6= 0 and i0 /∈ D(j), for every j ∈ Λ\{i0}.

Proof. (i) ⇔ (ii) is nothing but the definition of a modular index. To prove (ii) ⇒ (ii)
suppose that i0 /∈ D1(j), for every j ∈ Λ\{i0}. Then it follows that i0 /∈ D2(j) for

every j ∈ Λ\{i0}, because D2(j) =
⋃

k∈D1(j)

D1(k), and if k ∈ D1(j) for j ∈ Λ\{i0}

and i0 ∈ D1(k) then, by (ii), we have that k = i0 so that i0 ∈ D1(j) for j ∈ Λ\{i0},
a contradiction. Thus i0 /∈ D2(j) for every j ∈ Λ\{i0}. Assume that i0 /∈ Dn(j) for

every j ∈ Λ\{i0}. Since Dn+1(j) =
⋃

k∈Dn(j)

D1(k), we have that i0 /∈ Dn+1(j) for

each j ∈ Λ\{i0}, because otherwise i0 ∈ D1(k) for k ∈ Dn(j), and by (ii) we have
that k = i0 so that i0 ∈ Dn(j) for j ∈ Λ\{i0}, which contradicts the inductive
hypothesis. It follows that i0 /∈ D(j) for every j ∈ Λ\{i0} which proves (iii).
Finally (iii) ⇒ (ii) is obvious because D1(j) ⊆ D(j), for every j ∈ Λ. �

Maximal modular ideals can be characterized in terms of a modular index we do
next.

Corollary 3.12. Let A be an evolution algebra and B := {ei : i ∈ Λ} a natural
basis. Then M is a maximal modular ideal of A if, and only if, M = lin{ei : i ∈
Λ\{i0}} for some modular index i0 ∈ Λ, in which case u0 := 1

ωi0i0

ei0 is a modular

unit for M.

Proof. The proof follows directly from Corollary 3.8 and the above Lemma. �
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Since the Jacobson radical, Rad(A), of an evolution algebra A is given by the
intersection of all maximal modular ideals of A, the above result allows us to char-
acterize it very easily.

Corollary 3.13. Let A be a non-zero evolution algebra, and B := {ei : i ∈ Λ} a
natural basis of A. Let Λm := {i ∈ Λ : i is modular}. Then, A is a radical algebra
if, and only if, Λm = ∅ and A is semisimple if, and only if, Λ = Λm. Moreover,

Rad(A) = lin{ei : i ∈ Λ\Λm}.

Proof. By Corollary 3.12 the set of maximal modular ideals of A can be described
as {Mi0 : i0 ∈ Λm} where Mi0 = lin{ei : i ∈ Λ\{i0}}. Therefore A has no modular
ideals if, and only if, Λm = ∅, in whose case A is a radical algebra. On the
other hand, if Λm 6= ∅ then, Rad(A) = {0} if, and only, if Λm = Λ, because the
unique maximal modular ideal that does not contain ei0 is Mi0 provided that i0 is
a modular index (this means that ei0 ∈ Rad(A) whenever i0 /∈ Λm). Finally, if Λm

is a non-void proper subset of Λ then,

Rad(A) =
⋂

i0∈Λm

Mi0 = lin{ei : i ∈ Λ\Λm}.

�

Since modular indexes are very easy to detect (i0 is modular if the corresponding
i0−file in the structure matrix MB(A) = (ωij)Λ×Λ consists of zeros except for the
entry ωi0i0 6= 0), thanks to the above result, we obtain that the Jacobson radical
of an evolution algebra is very easy to determine (see Example 3.9).

Corollary 3.14. If A is a non-zero evolution algebra then,
(i) A is semisimple if, and only if, A a non-zero trivial evolution algebra,
(ii) A/Rad(A) is either {0} or a non-zero trivial evolution algebra.

Proof. (i) Let B := {ei : i ∈ Λ} a natural basis of A. From the above result
A is semisimple if, and only if, Λ = Λm, which means that all the indexes in Λ
are modular and hence MB(A) is a diagonal matrix with non-zero entries in the
diagonal or, equivalently, that A is a non-zero trivial evolution algebra.

(ii) Since A/Rad(A) is an evolution algebra by [4, Lemma 2.10], which is semisim-
ple by [20, Proposition 7], the assertion (ii) follows from (i). �

We have shown that evolution algebras are not semisimple (unless they are triv-
ial). Moreover for finite-dimensional evolution algebras we have the following result
which is obtained straightforwardly from Corollary 2.12, and Corollary 3.14.

Corollary 3.15. Let A be a finite-dimensional evolution algebra. Then, A is
semisimple if and only if A has a unit.

Corollary 3.16. Let A be an evolution algebra and B := {ei : i ∈ Λ} a natural
basis of A. Then ei ∈ Rad(A) if and only if e2i ∈ Rad(A). Therefore,

Rad(A) = lin{ei : i ∈ ΛRad(A)}.

Proof. If e2i ∈ Rad(A) if and only if e2i ∈ M for every maximal modular ideal M of
A. Then, by Theorem 3.2 we have that e2i ∈ M if and only if ei ∈ M. Consequently
e2i ∈ Rad(A) if, and only if, ei ∈ Rad(A). The rest is clear. �



14 M. VICTORIA VELASCO

The Jacobson radical of a general non-associative algebra was studied in [20].
There, the following results (that we include here for the sake of completeness) were
proved.

Proposition 3.17. Let A be an algebra and let A1 be the unitization of A. Then
Rad(A) = Rad(A1). Consequently A is semisimple if, and only if, A1 is semisimple.

Proposition 3.18. If A is a real algebra then, Rad(AC) ⊆ Rad(A) + iRad(A),
where AC denotes the complexification of A. Therefore if A is semisimple then, AC

is semisimple.

Given an evolution algebra A, we define an = a(a(a....(aa)))) = Ln−1
a (a) where

La(b) = ab = ba, for every a, b ∈ A.
The set of all nilpotent elements of an evolution algebra is not necessarily an

ideal as the next example shows.

Example 3.19. Let A be an evolution algebra with a natural basis B := {e1, e2}
such that e21 = e2 and e22 = e1. Then e31 = e1e

2
1 = e21e1 = 0 and similarly e32 = 0.

But (e1 + e2)
2 = e1 + e2 so that (e1 + e2)

n = e1 + e2.

If an element a of an evolution algebra A is nilpotent then a is quasi-invertible.
Indeed if an = 0 then for b = −(a+ a2 + ....+ an−1) we have that a+ b − ba = 0,
so b is a quasi-inverse of a.

In [20, Proposition 9] it was proved that if Q is a quasi-invertible ideal of a non-
associative algebra then Q ⊆ Rad(A). Therefore we obtain the following result.

Proposition 3.20. If A is an evolution algebra then every quasi-invertible ideal of
A, and particularly every nilpotent ideal, is contained in Rad(A).

We point out that the radical of an evolution algebra may contain non quasi-
invertible elements, as we show next.

Example 3.21. Let A be an evolution algebra with a natural basis B := {e1, e2}
such that e21 = e1 and e22 = e1+e2. Then, by Corollary 3.13 we have that Rad(A) =
Ke1, and e1 is not quasi-invertible. Note that the only non trivial modular ideal of
A is Ke1 as it can be deduced from Corollary 3.8.

�

4. Reviewing the notion of spectrum in the non-associative setting

Since the beginning of the XX century, a great variety of non-associative algebras
have been used to model many phenomena in different scientific contexts of Biology,
Physics, or Engineering (see for instance [2, 13, 25, 27, 38]). Nevertheless, for non-
associative algebras, the notion of spectrum of an element was not considered before
[37] and [22]. Indeed the definition of an invertible element in a non-associative
algebra with a unit never was considered either.

Throughout this section A will denote an algebra which does not need to be asso-
ciative or commutative. The classical notion of invertible element of an associative
algebra with a unit was extended to the non-associative setting in the following two
different ways, given in Definition 4.1 and Definition 4.3 below.

Definition 4.1. [37, Definition 2] Let A be an algebra with a unit e. We say that
a ∈ A is invertible if a has a left and a right inverse (that is, there exists b, c ∈ A
such that bc = ca = e). The set of invertible elements of the algebra A was denoted
by inv(A).
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The definition of spectrum related to the above definition of invertible element
is the next one (originally established in [37, Definition 2]).

Definition 4.2. For a complex algebra A with a unit e, the spectrum of a ∈ A
is defined as the set

σA(a) := {λ ∈ C : a− λe is not invertible}.

As in the associative case, the spectrum of an element a in a complex algebra
A without a unit is defined as σA1(a), that is the spectrum of a in A1 (the
unitization of A). Similarly the spectrum of an element a in a real algebra A is
defined as σAC(a), where AC is the complexification of A.

To study the invertibility of an element in the unitization algebra A1 in terms of
the algebra A we use the notion of quasi-invertible element (as in the associative
case). We recall that for an arbitrary algebra A (associative or not) we say that
a ∈ A is left quasi-invertible if there exists b ∈ A such that a + b − ab = 0.
Similarly it is said that a is right quasi-invertible if there exists c ∈ A such that
a+ c− ca = 0. Finally we say that a is quasi-invertible if a is both left and right
quasi-invertible. We denote by q− inv(A) the set of quasi-invertible elements in A.

For an algebra A without a unit, it was proved in [37] that for every a ∈ A,

(4.1) σA(a) := {0} ∪ {λ ∈ C\{0} :
a

λ
/∈ q − inv(A)}.

Indeed, it is clear that if A has no a unit then, 0 ∈ σA(a) for every a ∈ A because
a /∈ inv(A1). Moreover if λ 6= 0 then a − λ1 ∈ inv(A1) if and only if there exists
b ∈ A such that (a− λ1)(b− 1

λ
1) = 1, which means that λb is a quasi-inverse of a

λ
.

Thus a− λ1 ∈ inv(A1) if and only if a
λ
∈ q − inv(A). Therefore we conclude that

if A is an algebra without a unit then,

(4.2) σA(a)\{0} = {λ ∈ C\{0} :
a

λ
/∈ q − inv(A)},

for every a ∈ A, which generalizes what happens whenever A is associative to the
general setting that we are considering. If A has a unit, e, a similar argument by
replacing 1 with e shows us that (4.2) holds and, in this case, 0 ∈ σA(a) if and only
if a /∈ inv(A).

On the other hand, along the last century, non-associative division algebras were
considered to generalize the Gelfand-Mazur theorem among other goals (see for
instance [1, 32, 15, 16]). Indeed, a main problem was to look for fields, other than
C, to study their associated geometries.

In these works, a division algebra was defined as an algebra A with a unit (non
necessarily associative) such that the left and right multiplication operators, La and
Ra, associated to every non-zero element a ∈ A are bijective. (We recall that La

and Ra are, respectively, the operators on A given by La(b) = ab and Ra(b) = ba,
for every b ∈ A). In [16], I. Kaplansky proved that left division complete normed
(non-associative) algebras are isomorphic to C. Many years ago, I. Kaplansky had
obtained similar characterizations of the field of complex numbers in [15]. Inspired
by these facts, in [22, Definition 2.1] (see also [21]) the following definition of an
invertible element was established. This definition is nothing but [3, Proposition
1.19] free of the requirement of associativity.
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Definition 4.3. Let A be an algebra with a unit. We say that a ∈ A is multi-

plicatively invertible (shortly m-invertible) if the corresponding multiplication
operators La and Ra are bijective.

In relation with this definition of invertibility, the corresponding definition of the
spectrum that we establish next was originally introduced in [22, Definition 2.1].

Definition 4.4. Let A be a complex algebra with a unit. We define the multi-

plicative spectrum, or shortly the m-spectrum, of a ∈ A as the set

σA
m(a) := {λ ∈ C : a− λe is not m-invertible}.

If A is a complex algebra without a unit then, we define the m-spectrum of a ∈ A as
the set σA1

m (a) where A1 denotes the unitization of A. Finally, if A is a real algebra
then, we define the m-spectrum of a ∈ A as the set σAC

m (a) where AC denotes the
complexification of A.

Therefore, for a complex algebra with a unit, the m-spectrum and the spectrum
of an element are related as follows

σA
m(a) = σL(A)(La) ∪ σL(A)(Ra),

where L(A) denotes algebra of all linear operators on A, which is associative (even
if A is not it). Moreover from the Banach isomorphism theorem, if A is a complete
complex normed algebra we have that

σA
m(a) = σL(A)(La) ∪ σL(A)(Ra),

where L(A) denotes the Banach algebra of all bounded linear operators on A.
As proved in [22, Proposition 2.2], for an arbitrary algebra A and a ∈ A,

σA
m(a)\{0} = σL(A)(La) ∪ σL(A)(Ra).

In fact, if A has not a unit then,

(4.3) σA
m(a) = σL(A1)(La) ∪ σL(A1)(Ra) = σL(A)(La) ∪ σL(A)(Ra) ∪ {0},

for every a ∈ A, meanwhile if A has a unit then, by definition, as said already,

σA
m(a) = σL(A)(La) ∪ σL(A)(Ra) .

Moreover, as it is well known, if A is an associative then, σA(a) = σA
m(a), and

this set is nothing but the classical spectrum of a. However, for a non-associative
algebra A, and a ∈ A, it turns out that σA(a) and σA

m(a) may be different. Of
course, the following relation between the spectrum and the m-spectrum is obvious

σA(a) ⊆ σA
m(a).

In the next example we show an element in an evolution algebra for which the above
inclusion is strict.

Example 4.5. Let A be the algebra generated by B := {e1, e2} with structure
matrix given by (

− 1
2

3
4

− 1
3

1
2

)
.

Let a = 3e1 + 2e2. If b = 2e1 +
4
3e2 then, ab = 2e21 because

ab = 6e21+
8

3
e22 = −6(

1

2
e1+

1

3
e2)+

8

3
(
3

4
e1+

1

2
e2) = −3e1−2e2+2e1+

4

3
e2 = −e1−

2

3
e2.
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Therefore

−
1

2
a+ b+

1

2
ab = −(

3

2
e1 + e2) + 2e1 +

4

3
e2 +

1

2
(−e1 −

2

3
e2) = 0,

so that − 1
2 /∈ σA(a). However

(La +
1

2
I)a = (3e1 + 2e2)

2 +
1

2
(3e1 + 2e2) = 9e21 + 4e22 +

1

2
(3e1 + 2e2) =

−9(
1

2
e1 +

1

3
e2) + 4(

3

4
e1 +

1

2
e2) +

1

2
(3e1 + 2e2) = 0.

which proves that La + 1
2I is not injective and hence − 1

2 ∈ σA
m(a). Consequently

σA(a) is strictly contained into σA
m(a).

Associated to each notion of spectrum we have the corresponding notion of spec-
tral radius.

Definition 4.6. Let A be an algebra and let a ∈ A. We define the spectral radius
of a as the value given by

ρ(a) := sup{|λ| : λ ∈ σA(a)},

if σA(a) is non-empty and ρ(a) := {0} otherwise. Thus, 0 ≤ ρ(a) ≤ ∞.
Similarly we define the m-spectral radius of a as the value

ρm(a) := sup{|λ| : λ ∈ σA
m(a)},

if σA
m(a) is non-empty, and ρm(a) := {0} otherwise (note that if A does not need

to be normed and hence σA
m(a) may be empty).

Since σA(a) ⊆ σA
m(a) we have that ρ(a) ≤ ρm(a), for every a ∈ A.

In the classical theory of Banach algebras the spectrum has a relevant role in
relation to the radical of the algebra. In fact, as is said in [26, p. 189] (see also [10,
Theorem 4.3.6]) the Jacobson radical of an associative algebra A can be described
as the largest ideal on which the spectral radius of each element is identically zero.
Consequently, A is semisimple if its radical is zero, that is if {0} is the only ideal
contained in the set of elements having spectral radius equal to zero.

According to this quote, since we have two natural notions of spectral radius, we
consider the following definitions of simplicity.

Definition 4.7. We say that an algebra A is spectrally semisimple if zero is
the unique ideal of A contained in the set {a ∈ A : ρ(a) = 0}. Similarly, we say
that A is multiplicatively semisimple or m-semisimple if zero is the unique
ideal of A contained in the set {a ∈ A : ρm(a) = 0}.

If A is associative then the two notions of semisimplicity defined above coincide
and mean precisely that the Jacobson radical of A is zero (see [26, Theorem 4.3.6]).
Nevertheless for general algebras we have the following.

Proposition 4.8. Let A be an algebra, and consider the following assertions:
(i) A is semisimple,
(ii) A spectrally semisimple,
(iii) A is m-semisimple.
Then (i) ⇒ (ii) ⇒ (iii). Moreover, if A is associative then these assertions are

equivalent.



18 M. VICTORIA VELASCO

Proof. (i) ⇒ (ii). If A is not spectrally semisimple then there exists a non-zero
ideal Q contained in {a ∈ A : ρ(a) = 0}. Therefore Q is quasi-invertible because
1 /∈ σA(a) for every a ∈ A. By [20, Proposition 9] we have that Q ⊆ Rad(A) and
hence A is not semisimple. The assertion (ii) ⇒ (iii) is obvious because ρm(a) =
0 implies that ρ(a) = 0, for a ∈ A. For the proof of the fact that (iii) ⇒ (i) if A is
associative, see for instance [26, Theorem 4.3.6]. �

In [22] (see Theorem 3.5 and Corollary 3.6) we proved the following result in
the general non-associative setting.

Theorem 4.9. Eevery surjective homomorphism from a Banach algebra onto a
m-semisimple Banach algebra, is continuous. Consequently, m-semisimple Banach
algebras has a unique complete norm topology.

Particularly, whenever A is associative, we obtain as a corollary the well known
theorem of B. E. Johnson [14] (see also [3, 10, 26]) that in words of T. Palmer
is a ”cornerstone of the Banach algebra theory”. Note that, in the above result,
m-semisimple can be replaced by spectrally semisimple or by semisimple (see [20]).

5. The spectrum of an element in an evolution algebra

In this section we characterize the spectrum and the m-spectrum of an element in
an evolution algebra. Moreover we study the notions of semisimplicity established
in the above section in the framework of evolution algebras. Throughout this section
all the algebras that we will consider will be complex. This is not restrictive because
the spectrum, as well as the m-spectrum, of an element in a real algebra A is defined
as the corresponding one in the complexified algebra AC.

Let A be a finite dimensional evolution algebra and B := {e1, ..., en} a natural
basis of A. Let MB(A) = (ωij) ∈ Mn×n(K) be the structure matrix of A relative

to B. Then, it is straightforward to check that for a =
n∑

i=1

αiei and b =
n∑

i=1

βiei in

A, we have

ab =




ω11 · · · ω1n

...
. . .

...
ωn1 · · · ωnn







α1β1
...

αnβn


 =(5.1)




ω11 · · · ω1n

...
. . .

...
ωn1 · · · ωnn







α1 · · · 0
...

. . .
...

0 · · · αn







β1
...
βn


 .

The result can be easily adapted to the infinite dimensional case working with
the finite set of index defined by Λab, i.e. the support of ab. Note that if Λa and
Λb denote as usual the support of a and b (respectively) and if Λa ∩ Λb 6= ∅ then,
Λab = D1(Λa ∩ Λb) (see Definition 3.3).

We begin this section by determining the spectrum and the multiplicative spec-
trum of an element in a non-zero trivial evolution algebra (in an arbitrary algebra A
with zero product we have that σA(a) = σA

m(a) = {0}, for every a ∈ A). We recall
that every structure matrix of such an algebra is diagonal with non-zero entries (see
Definition 2.8 and Remark 2.10). Moreover, by Proposition 2.2, a non-zero trivial
evolution algebra has a unit if, and only if, its dimension is finite.
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Proposition 5.1. Let A be a non-zero trivial evolution algebra, B := {ei : i ∈ Λ}
a natural basis, and MB(A) = (ωij) the corresponding structure matrix. Let a ∈ A
be such that a =

∑
αiei. Then

σA(a) = σA
m(a) = {αiωii : i ∈ Λ},

and,

σA(a)\{0} = σA
m(a)\{0} = {αiωii : i ∈ Λa}.

Moreover,
(i) If Λa 6= Λ (this happens particularly when dimA = ∞) then σA(a) = σA

m(a) =
{αiωii : i ∈ Λa} ∪ {0}.

(ii) If Λa = Λ (and hence dimA < ∞) then σA(a) = σA
m(a) = {αiωii : i ∈ Λa}.

Proof. If A is a non-zero trivial evolution algebra and B := {ei : i ∈ Λ} is a
natural basis then, e2i = ωiiei with ωii 6= 0 , for every i ∈ Λ. Let a =

∑
αiei ∈ A.

We have that a
λ
∈ q − inv(A) for λ 6= 0 if and only if there exists b ∈ A such that

a+λb−ab = 0. If b =
∑

βiei this means that
∑

αiei+λ
∑

βiei−
∑

αiβiωiiei = 0,
so that αi + (λ−αiωii)βi = 0, for very i ∈ Λ. Consequently a

λ
/∈ q− inv(A) if, and

only if, λ− αiωii = 0 and αi 6= 0. Since by (4.2)

σA(a)\{0} = {λ ∈ C\{0} :
a

λ
/∈ q − inv(A)},

we obtain that σA(a)\{0} = {αiωii : i ∈ Λa}. Moreover, by Proposition 2.2, the
non-zero trivial evolution algebra A has a unit if, and only if, dimA < ∞, and in
this case a ∈ inv(A) (that is 0 /∈ σA(a)) if and only if Λa = Λ. Thus 0 ∈ σA(a) if,
and only if, Λa 6= Λ.

With respect to the m−invertibility, by (4.3), we have σA
m(a)\{0} = σL(A)(La).

For λ 6= 0, note that La − λI is injective (respectively surjective) if, and only if,
αiωii−λ 6= 0, for every i ∈ Λa. Therefore σ

A
m(a)\{0} = {αiωii : i ∈ Λa}. Moreover,

if A has no unit then, 0 ∈ σA
m(a) as showed in [22, Proposition 2.2]. If A has a

unit then dimA < ∞, so that La is bijective if, and only if, La is injective which
happens if, and only if, Λa = Λ. Thus 0 ∈ σA

m(a) if, and only if, Λa 6= Λ, and the
result follows. �

Corollary 5.2. One-dimensional evolution algebras with non-zero product are m-
semisimple (and hence spectrally semisimple and semisimple).

Proof. If A = Ke with e2 = ωe for ω 6= 0 then, we have that σA(e) = σA
m(e) = {ω}

and the result follows. �

For a non-trivial evolution algebra A, we have the following characterization of
the m-spectrum, σA

m(a), and the spectrum, σA(a), of an element a ∈ A.

Proposition 5.3. Let A be a finite-dimensional non-trivial evolution algebra and
B := {e1, ..., en} a natural basis. If λ ∈ C, and if a =

∑n

i=1 αiei then,
(i) λ ∈ σA

m(a) if, and only if, λ = 0 or λ is an eigenvalue of the matrix



ω11 · · · ω1n

...
. . .

...
ωn1 · · · ωnn







α1 · · · 0
...

. . .
...

0 · · · αn


 .
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(ii) λ ∈ σA(a) if, and only if, λ = 0 or the equation






ω11 · · · ω1n

...
. . .

...
ωn1 · · · ωnn







α1 · · · 0
...

. . .
...

0 · · · αn


−




λ · · · 0
...

. . .
...

0 · · · λ










β1
...
βn


 =




α1

...
αn




has no solution for λ (in which case λ ∈ σA
m(a)).

Proof. By Corollary 2.12 we have that A has not a unit, and by (4.3),

σA
m(a) := {0} ∪ σL(A)(La).

Since (La − λI) is bijective if, and only if, it is injective (because A is finite-
dimensional) we have from (5.1) that λ ∈ σL(A)(La) if, and only if, the equation






ω11 · · · 0
...

. . .
...

0 · · · ωnn







α1 · · · 0
...

. . .
...

0 · · · αn


−




λ · · · 0
...

. . .
...

0 · · · λ










β1
...
βn


 =




0
...
0




has a non-zero solution b =
∑n

i=1 βiei which proves (i). Similarly, by (4.1) we have
that

σA(a) := {0} ∪ {λ ∈ C\{0} :
a

λ
/∈ q − inv(A)}.

Take λ ∈ C\{0}. Since a
λ
∈ q − inv(A) if, and only if, there exists b ∈ A such that

a
λ
+b− a

λ
b = 0, or equivalently ab−λb = a, we obtain from (5.1) that a

λ
/∈ q−inv(A)

if, and only if, the equation






ω11 · · · ω1n

...
. . .

...
ωn1 · · · ωnn







α1 · · · 0
...

. . .
...

0 · · · αn


−




λ · · · 0
...

. . .
...

0 · · · λ










β1
...
βn


 =




α1

...
αn




has no solution b =
∑n

i=1 βiei (which also implies that λ ∈ σL(A)(La)). This proves
(ii). �

Example 5.4. The evolution algebra A given in Example 4.5, whose structure
matrix with respect to B := {e1, e2} is

(
− 1

2
3
4

− 1
3

1
2

)
,

is such that e21 = − 3
2e

2
2, so that the ideal generated by e21 is

〈
e21
〉
= Ke21 . Similarly,

if a ∈ A\{0} is not multiple of e21 then 〈a〉 = A (because dim 〈a〉 = 2) and hence
the unique non-zero proper ideal of A is Ke21 . Since the eigenvalues of

(
− 1

2
3
4

− 1
3

1
2

)(
− 1

2 0

0 − 1
3

)
=

( 1
4 − 1

4

1
6 − 1

6

)

are 0 and 1
12 , we conclude that σA

m(e21) = {0, 1
12}. On the other hand,

[( 1
4 − 1

4

1
6 − 1

6

)
−

( 1
12 0

0 1
12

)](
β1

β2

)
=

(
− 1

2

− 1
3

)
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has no solution as 


1
6β1 − 1

4β2

1
6β1 −

1
4β2


 6=

(
− 1

2

− 1
3

)
,

so that, from the above theorem,

σA(e21) = σA
m(e21) = {0,

1

12
}.

It follows that {0} is the unique ideal contained in {a ∈ A : ρm(a) = 0}, (and
therefore also in {a ∈ A : ρ(a) = 0}), so that A is m-semisimple (and spectrally
semisimple). Nevertheless A is a radical algebra because A has no modular ideals
as it can be deduced from Corollary 3.13. Actually e1 − e1u /∈

〈
e21
〉
= Ke21 for any

u ∈ A.

Next we determine the spectrum and the m-spectrum of an element in an evo-
lution algebra of arbitrary dimension.

Proposition 5.5. Let A be a non trivial evolution algebra, and B := {ei : i ∈ Λ}

a natural basis. For a =
∑

i∈Λa

αiei ∈ A, define

B0(a) := {ei : i ∈ Λa}.
B1(a) := ∪i∈Λa

{ej : ωji 6= 0}.

If B0(a) = {e1, · · · , ek} and B0(a) ∪B1(a) = {e1, · · · , ek, ek+1, · · · , em} then,
(i) λ ∈ σA

m(a) if, and only if, λ = 0 or λ is an eigenvalue of the matrix



ω11 · · · ω1m

...
. . .

...
ωm1 · · · ωmm







α1 · · · 0
...

. . .
...

0 · · · αm


 ,

where αk+1 = · · · = αm = 0.
(ii) λ ∈ σA(a) if, and only if, λ = 0 or the equation
((

ω11 · · · ω1m

.

.

.

.

.

.

.

.

.

ωm1 · · · ωmm

)(
α1 · · · 0

.

.

.

.

.

.

.

.

.

0 · · · αm

)
−

(
λ · · · 0

.

.

.

.

.

.

.

.

.

0 · · · λ

))(
β1

.

.

.

βm

)
=

(
γ1

.

.

.

γm

)
,

where αk+1 = · · · = αm = 0, has no solution for λ (in which case λ ∈ σA
m(a)).

Proof. Since A is a non trivial evolution algebra, by Proposition 2.2, we have that
A has not a unit and hence 0 ∈ σA(a) ⊆ σA

m(a). On the other hand, let A0 :=
lin{e1, · · · , ek, ek+1, · · · , em}. If c ∈ A then, there exists a unique c0 ∈ A0 and
c1 ∈ lin(B\{e1, · · · , ek, ek+1, · · · , em}) such that c = c0 + c1. We claim that for
λ ∈ C\{0} and c ∈ A, the equation (La − λI)b = c has a unique solution, b ∈ A
if, and only if, the equation (La − λI)b0 = c0 has a unique solution b0 ∈ A0. In
fact, if b = b0 + b1 and c = c0 + c1 then ab = ab0 ∈ A0 so that ab − λb = c if, and
only if, ab0 − λb0 = c0 and −λb1 = c1. Consequently, the claim is proved because
the necessary condition is obvious and, conversely, given (La − λI)b = c, if b0 ∈ A
is the unique solution of (La − λI)b0 = c0 then b = b0 + b1 with b1 = − 1

λ
c1 is the

unique solution of (La−λI)b = c. The result follows directly from this fact. Indeed,

if b0 =
∑k

i=1 βiei +
∑m

i=k+1 βiei ∈ A0 then,

ab =

k∑

i=1

αiβie
2
i =

m∑

i=1

ηiei,
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where 


η1
...
...
...
ηm




=




ω11 ω12 · · · ω1k

...
...

ωk1 ωk2 · · · ωkk

...
...

ωm1 ωm2 · · · ωmk







α1β1
...
...
...
αkβk




.

Therefore (La − λI) is bijective if and only if the equation

(5.2)




ω11 · · · ω1k · · · · · · ω1m

.

.

.
.
.
.

.

.

.

.

.

.

ωk1 · · · ωkk

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.
.
.
.

.

.

.
ωm1 · · · · · · · · · · · · ωmm







α1β1

.

.

.
αkβk
0

.

.

.
0




−




λβ1

.

.

.
λβk
λβk+1

.

.

.
λβm




=




γ1

.

.

.
γk
γk+1

.

.

.
γm




has a unique solution b0 =

i=m∑

i=1

βiei for every c0 =

i=m∑

i=1

γei. This means that, for

αk+1 = · · · = αm = 0, the equation
((

ω11 · · · ω1m

.

.

.
.
.
.

.

.

.
ωm1 · · · ωmm

)(
α1 · · · 0

.

.

.
.
.
.

.

.

.
0 · · · αm

)
−

(
λ · · · 0

.

.

.
.
.
.

.

.

.
0 · · · λ

))(
β1

.

.

.
βm

)
=

(
γ1

.

.

.
γm

)
,

has a unique solution. Equivalently (La − λI) is not bijective if, and only if, that
λ is an eigenvalue of the matrix




ω11 · · · ω1m

...
. . .

...
ωm1 · · · ωmm







α1 · · · 0
...

. . .
...

0 · · · αm


 ,

where αk+1 = · · · = αm = 0. This proves (i).
On the other hand, a

λ
∈ q−inv(A) if and only if the equation (5.2) has a solution

when γi = αi, for i = 1, · · · , k, and γk+1 = · · · = γm = 0. This proves (ii). �

For the next result, recall that if B := {ei : i ∈ Λ} is a natural basis of an
evolution algebra A, and if Λ0 ⊆ Λ is non-empty, then set of descendents of Λ0 is
defined as

D(Λ0) =
⋃

i∈Λ0

D(i),

where D(i) denotes the set of descendents of i (see Definition 3.3).

Proposition 5.6. Let A be an evolution algebra and B := {ei : i ∈ Λ} a natural
basis. Let J be an ideal of A,with support ΛJ . Then, I1 := lin{e2i : i ∈ ΛJ ∪D(ΛJ )}
and I2 := lin{ei : i ∈ ΛJ ∪D(ΛJ)} are ideals of A and

I1 ⊆ J ⊆ I2.

Moreover, if dimA < ∞ and detMB(A) 6= 0 then, I = J = I2.



THE JACOBSON RADICAL OF AN EVOLUTION ALGEBRA 23

Proof. That I1 is an ideal is clear because if i ∈ ΛJ ∪D(ΛJ ) and j ∈ Λ then, either
eje

2
i = 0 or eje

2
i = ωjie

2
j with ωji 6= 0 so that j ∈ D1(i) ⊆ D(ΛJ). Similarly, I2 is

another ideal because if i ∈ ΛJ ∪D(ΛJ ) then e2i =
∑

k∈Λ ωkiek and Λe2
i
⊆ D(ΛJ).

Obviously I1 ⊆ J ⊆ I2. On the other hand, if dimA < ∞ and detMB(A) 6= 0 then
I1 = J = I2 as dim I1 = dim I2. �

Corollary 5.7. Let A be an evolution algebra and B := {ei : i ∈ Λ} a natural basis
of A. Then, for every i ∈ Λ, the ideal generated by e2i is

〈
e2i
〉
= lin{e2j : j ∈ D(i) ∪ {i}}.

Consequently the dimension of every one-generated ideal in an evolution algebra is
countable.

Proof. From the above result we have that lin{e2j : j ∈ D(i) ∪ {i}} is an ideal

contained into
〈
e2i
〉
, and obviously e2i ∈ lin{e2j : j ∈ D(i) ∪ {i}}, so the result

follows (note that D(i) is countable). �

In the next result we characterize m-semisimple evolution algebras with finite
dimension.

Corollary 5.8. Let A be an evolution algebra and B := {ei : i ∈ Λ} a natural
basis.

(i) A is spectrally semisimple if and only if, for every index i ∈ Λ there exists a
in lin{e2j : j ∈ D(i) ∪ {i}} such that σA(a) 6= 0.

(ii) A is m-semisimple if, and only if, for every index i ∈ Λ there exists a in
lin{e2j : j ∈ D(i) ∪ {i}} such that σA

m(a) 6= 0.

Proof. By definition, A is spectrally semisimple (respectively m-semisimple) if and
only if, the set {a ∈ A : σA(a) = 0} (respectively {a ∈ A : σA

m(a) = 0}) does not
contain a non-zero ideal. Since a subset S ⊆ A contains a non-zero ideal if and
only if S contains an ideal of the type

〈
e2i
〉
for some i ∈ Λ, the result follows from

Corollary 5.7. �

For finite dimensional evolution algebras we have the following characterization
of the m-semisimplicity.

Corollary 5.9. Let A be a finite-dimensional evolution algebra and B := {e1, ..., en}
a natural basis. Then A is m-semisimple if, and only if, for every i = 1, ..., n, there
exists a =

∑n
k=1 αkek ∈ lin{e2j : j ∈ D(i) ∪ {i}} such that the matrix

MB(A) =




ω11 · · · ω1n

...
. . .

...
ωn1 · · · ωnn







α1 · · · 0
...

. . .
...

0 · · · αn




has a non-zero eigenvalue.

Proof. The result follows directly from the above corollary and Proposition 5.3. �

The following result provides a helpful sufficient condition for the semisimplicity
of a finite dimensional evolution algebra.
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Corollary 5.10. Let A be an evolution algebra, and B := {e1, ..., en} a natural
basis. If, for every i = 1, ..., n, the matrix

Mj(B) =




ω11 · · · ω1n

...
. . .

...
ωn1 · · · ωnn







ωi1 · · · 0
...

. . .
...

0 · · · ωin




has a non-zero eigenvalue then, A is m-semisimple.

Proof. The proof is clear as σA
m(e2i ) 6= 0 for every i = 1, ..., n. Therefore zero is the

unique ideal contained into {a ∈ A : σA
m(a) = 0} . �
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