Contents

List of Tables xiv
List of Figures xvi
Why Did I Write This Book? xix
Reading, Learning and/or Teaching from this Book xxii
Acknowledgments xxvi

I Mathematics is Connected to Everything 1

1 Earth’s Climate and Some Basic Principles 3
 1.1 One of the Greatest Crimes of the 20th Century 3
 1.2 Feedback 4
 1.3 Edison’s Algorithm: Listening to Nature’s Feedback 5
 1.4 Fuzzy Logic, Filters, the Bigger Picture Principle 8
 1.5 Consequences of the Crime: Suburbia’s Topology 12
 1.6 A Toxic Consequence of the Crime 14
 1.7 Hubbert’s Peak and the End of Cheap Oil 15
 1.8 Resource Wars: Oil and Water 20
 1.9 The CO2 Greenhouse Law of Svante Arrhenius 21

2 Economic Instability: Ongoing Causes 31
 2.1 Necessary Conditions for Economic Success 32
 2.2 The Mathematical Structure of Ponzi Schemes 34
 2.3 Dishonest Assessment of Risk 37
 2.4 One Reason Why Usury Should Again Be Illegal 42

3 What is Mathematics? More Basics 45
 3.1 The Definition of Mathematics Used in this Book 45
 3.2 The Logic of Nature and the Logic of Civilization 47
 3.3 Box-Flow Models 51
 3.4 Cycles and Scales in Nature and Mathematics 55
 3.5 The Art of Estimating 67
4 We All Soak in a Synthetic Chemical Soup 73
 4.1 Thomas Latimer’s Unfortunate Experience. 73
 4.2 What’s in the Synthetic Chemical Soup? 75
 4.3 Synthetic Flows and Assumptions 78
 4.4 The Flow of Information About Synthetic Flows 81
 4.5 You Cannot Do Just One Thing: Two Examples 90

 5.1 The “Hour Glass” Industrial Agriculture Machine 99
 5.2 Industrial Agriculture Logic vs. the Logic of Life 103
 5.3 Fast Foods, Few Foods, and Fossil Fuels 107
 5.4 Genetic Engineering: One Mathematical Perspective 113
 5.5 Toxic Sludge is Good for You! 124
 5.6 Media Concentration 130
 5.7 Oceans: Rising Acidity and Disappearing Life 131
 5.8 Stocks, Flows and Distributions of Food 138
 5.9 My Definition of Food 142
 5.10 Choices: Central versus Diverse Decision Making 143
 5.11 Correlations 146

6 Mathematics and Energy 151
 6.1 How Much Solar Energy is There? 151
 6.2 Solar Energy is There, Do We Know How to Get It? 154
 6.3 Four Falsehoods 158
 6.4 Nuclear Power: Is it Too Cheap to Meter? 161
 6.5 Net Primary Productivity and Ecological Footprints 165
 6.6 NPP, Soil, Biofuels, and The Super Grid 166

7 The Brower-Cousteau Model of the Earth 173
 7.1 How Heavily Do We Weigh upon the Earth? 173
 7.2 Mining and Damming: Massive Rearrangements 174
 7.3 Fish, Forests, Deserts, and Soil: Revisited 176
 7.4 The Cousteau-Brower Earth Model 180

8 Fuzzy Logic, Sharp Logic, Frames, and Bigger Pictures 187
 8.1 Sharp (Aristotelian) Logic: A Standard Syllogism 187
 8.2 Measuring Truth Values: Fuzzy/Measured Logic 188
 8.3 Definitions, Assumptions and the Frame of Debate 193
 8.4 Humans in Denial – Nature Cannot be Fooled – Gravity Exists. 195
 8.5 The Bigger Picture Principle 198

9 The Dunbar Number 203
 9.1 The Sustainability Hypothesis: Is it True? 203
 9.2 The Dunbar Number 204
9.3 Public Relations, Political Power, and the Organization of Society ... 207
9.4 Political Uses of Fear ... 214
9.5 Confronting Fear (and Apathy): Organizing Your Community for Self-Preservation and Sustainability 217

II Math and Nature: The Nature of Math 223

10 One Pattern Viewed Via Geometry and Numbers: Mathese 225
10.1 The Square Numbers of Pythagoras 225
10.2 The Language of Mathematics: Mathese 228
10.3 A General Expression in Mathese: A Formula for Odd Numbers .. 228
10.4 An Important Word in Mathese: Σ 229
10.5 Sentences in Mathese: Equations with Σ and a Dummy Variable .. 230
10.6 Induction, Deduction, Mathematical Research, Mathematical Proofs .. 231
10.7 What Is a Mathematical Proof? ... 232
10.8 What Is a Deductive System? .. 234
10.9 Originalidades volver al Origen .. 234

11 Axioms and Atoms 237
11.1 Molecules and Atoms: the Atomic Number and the Atomic Mass Number of an Atom 237
11.2 Scaling and Our First Two Axioms for Numbers 239
11.3 Our First Axiom for Numbers ... 240
11.4 Number 1: Its Definition, Properties, Uniqueness 241
11.5 The Definition of Multiplicative Inverse 242
11.6 Our Second Axiom for Numbers 243
11.7 If . . . , Then Our First Proofs 244
11.8 Return to the Problem: How Many Protons in One Gram of Protons? ... 250
11.9 What Is a Mole? Scaling Up from the Atomic to the Human Scale .. 251

12 Five More Axioms for Numbers 255
12.1 Associativity, Identity, and Inverses for + 256
12.2 Commutativity of + and * .. 257
12.3 Distributivity .. 258

13 What Patterns Can Be Deduced in Our Deductive System? 261
13.1 Playing the Mathematics Game 261
13.2 Rules for Playing the Mathematics Game 262
13.3 The Usual Rules for Fractions are Part of Our Deductive System ... 264
13.4 Can You Tell the Difference Between True and False Patterns? 268
13.5 More Exercises ... 269

III One of the Oldest Mathematical Patterns 279

14 A Short Story and Some Numberless Mathematics 281
14.1 Relations Defined as Collections of Ordered Pairs 282
14.2 Symmetric Relations ... 283
14.3 Transitive and Reflexive Relations 284
14.4 Equivalence Relations 286
14.5 Relations that are Functions 287

15 A Set of Social Rules for the Warlpiri People 289
15.1 The Section Rule .. 289
15.2 The Mother Relation Rules 290
15.3 The Marriage Rules .. 290
15.4 The Father Relation Rules 291
15.5 Cultural Contexts in Which Mathematics Is Done 294

IV Counting 303

16 Counting Exactly 305
16.1 Numeracy .. 305
16.2 Counting Social Security Numbers Among Other Things ... 305
16.3 Permutations: Order Matters 310
16.4 There are n! Permutations of n Distinct Objects 312
16.5 Counting Connections: Order Does Not Matter 313

17 Equivalence Relations and Counting 321
17.1 Using Equivalence Relations to Count 321
17.2 Combinations: Order Does Not Matter 326
17.3 Additional Counting Problems 327
17.4 DNA Computing ... 329
17.5 More Exercises .. 332

V Box Models: Population, Money, Recycling 339

18 Some Population Numbers 341
18.1 Counting People in the World 341
18.2 A Fundamental Axiom of Population Ecology 343
18.3 Counting People in the United States 345
25 What Exactly Is Economics? 457
 25.1 It Takes the Longest Time to Think of the Simplest Things 457
 25.2 A Preview of Two Laws of Nature 457
 25.3 Three Kinds of Economists 459
 25.4 The Human Economy Depends on Nature’s Flows of Energy and Entropy 462
 25.5 Nature’s Services and Human Wealth: Important Calculations 466
 25.6 How We Treat Each Other: How We Treat Nature — The Tragedy of the Commons 469

26 Mathematical Concepts and Economics 477
 26.1 Misapplied Mathematics 477
 26.2 New Mathematical Patterns: Self-Organizing Systems 479
 26.3 Finding a Niche: Habits and Habitats 482

27 The Concept of Money 487
 27.1 Financial Wealth and Real Wealth 487
 27.2 Is Financial Collapse Possible Now? 489
 27.3 Follow the Money 492
 27.4 Are You Paying More or Less Than Your Fair Share of Taxes? 500
 27.5 Financial Growth versus Fish Growth 502
 27.6 Fractional Reserve Banking: An Amazing Mathematical Trick 503

28 Distributed vs. Centralized Control and Decision Making 511
 28.1 Farms: To Be Run by Few or by Many? 511
 28.2 Utilities: MUNI or Investor-Owned? 512
 28.3 Linux vs. Microsoft 513
 28.4 Medicine for People or for Profit or Both? 515
 28.5 A Little History 518
 28.6 An Example of the Need for Fuzzy Logic: The Definition of Poverty 521

29 Energy and Thermodynamics 525
 29.1 Energy and the First Law of Thermodynamics 525
 29.2 The First Law of Thermodynamics 531
 29.3 Entropy and the Second Law of Thermodynamics 533
 29.4 Early Statements of the Second Law of Thermodynamics 535
 29.5 Algebraic Statement of the Second Law of Thermodynamics 537
 29.6 So What Is Entropy and Can We Measure It? 538
 29.7 Some Applications of The Second Law of Thermodynamics: Power Plants and Hurricanes 542
 29.8 Hiking Up a Mountain 544
 29.9 Understanding Entropy With a Little Mathematics 547