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ALMOST INNER DERIVATIONS OF LIE ALGEBRAS
DIETRICH BURDE, KAREL DEKIMPE, AND BERT VERBEKE

ABSTRACT. We study almost inner derivations of Lie algebras, which were introduced by Gor-
don and Wilson in their work on isospectral deformations of compact solvmanifolds. We com-
pute all almost inner derivations for low-dimensional Lie algebras, and introduce the concept
of fixed basis vectors for proving that all almost inner derivations are inner for 2-step nilpotent
Lie algebras determined by graphs, free 2 and 3-step nilpotent Lie algebras, free metabelian
nilpotent Lie algebras on two generators, almost abelian Lie algebras and triangular Lie alge-
bras. On the other hand we also exhibit families of nilpotent Lie algebras having an arbitrary
large space of non-inner almost inner derivations.

1. INTRODUCTION

Almost inner automorphisms of Lie groups and almost inner derivations of Lie algebras have
been introduced by Gordon and Wilson [7] in the study of isospectral deformations of compact
solvmanifolds. A classical question going back to Hermann Weyl was whether or not isospectral
manifolds are necessarily isometric. Milnor [10] in 1964 gave a negative answer by constructing
two isospectral nonisometric flat tori in dimension 16. Mark Kac in 1966 gave the question
the popular title “Can One Hear the Shape of a Drum?” The problem in two dimensions re-
mained open until 1992, when Gordon, Webb, and Wolpert constructed, based on the Sunada
method, a pair of regions in the plane that have different shapes but identical eigenspectra. In
1984 however, Gordon and Wilson wanted to construct not only finite families of isospectral
nonisometric manifolds, but rather continuous families. They constructed isospectral but noni-
sometric compact Riemannian manifolds of the form G/T", with a simply connected exponential
solvable Lie group G, and a discrete cocompact subgroup I' of G. For this construction, almost
inner automorphisms and almost inner derivations were crucial.

The concept of “almost inner” automorphisms and derivations, almost homomorphisms, or al-
most conjugate subgroups arises in many contexts in algebra, number theory and geometry.
Another example here is the study on the relation between element-conjugacy and global conju-
gacy for algebraic groups by Larsen [8]. This is, by a theorem of Sunada, closely related to the
question of when a compact group can be the common covering space of a pair of non-isometric
isospectral manifolds.

There are several other studies on related concepts, for example on local derivations [2], which
are a generalization of almost inner derivations.

The goal of our paper is to begin a systematic study of almost inner derivations of Lie algebras.
Gordon and Wilson, and later others have given several examples of solvable and nilpotent Lie
algebras and their almost inner derivations. However, the methods were ad hoc, and many
examples were restricted to 2-step nilpotent Lie algebras.
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The paper is structured as follows. We first introduce almost inner and central almost inner
derivations, and prove basic properties. Then we give examples of Lie algebras in dimension 5
having non-inner almost inner derivations. In section 3 we explain the concept of fixed basis
vectors. This enables us to show, without computing all derivations, that for several kinds of
Lie algebras all almost inner derivations are already inner. This includes 2-step nilpotent Lie
algebras determined by graphs, free 2-and 3-step nilpotent Lie algebras, free metabelian nilpo-
tent Lie algebras on two generators, almost abelian Lie algebras and triangular Lie algebras.
In section 7 we prove that all metabelian filiform Lie algebras of dimension n > 5, except for
the standard graded one, admit a non-inner almost inner derivation. In section 8 we classify
all complex Lie algebras of dimension 5 admitting a non-inner almost inner derivation, and
compute the space of almost inner derivations for all complex nilpotent Lie algebras of dimen-
sion 6. Finally, we construct infinite families of Lie algebras g having a space AID(g)/Inn(g)
of arbitrarily large dimension n, for any given n € N.

2. PRELIMINARIES

Unless otherwise specified all Lie algebras we consider are over a general field K. The
definition of almost inner derivations of Lie algebras in [7] is as follows.

Definition 2.1. A derivation D € Der(g) of a Lie algebra g is said to be almost inner, if
D(x) € [g,z] for all x € g. The space of all almost inner derivations of g is denoted by AID(g).

A derivation is almost inner if and only if it coincides on each one-dimensional subspace with
an inner derivation. In particular, the set of all inner derivations Inn(g) is a subset of AID(g).
Note that it is not enough in general to check the condition D(z) € [g, x] only for basis vectors
of g. We introduce a new subspace of AID(g) as follows.

Definition 2.2. An almost inner derivation D € AID(g) is called central almost inner if there
exists an x € g such that D —ad(z) maps g to the center Z(g). We denote the space of central
almost inner derivations of g by CAID(g).

The subspaces Inn(g), CAID(g) and AID(g) of Der(g) become Lie subalgebras via the Lie
bracket [D, DY) = DD’ — D'D.

Proposition 2.3. We have the following inclusions of Lie subalgebras
Inn(g) € CAID(g) C AID(g) C Der(g).

Proof. Let D, D’ € AID(g) and = € g. Then there exist y,y" € g such that D(z) = [y, 2| and
D'(z) = [y, x]. Using the derivation rule and the Jacobi identity we obtain

(D, D')(x )= (DD")(x) = (D'D)(x)
D(ly', x]) = D'([y, 1)
[D( ), 2] + 1y, D(x)] = [D'(y), 2] — [y, D'(w)]
= [DW) 2]+, [y, «ll = [D'(y), 2] = [y, [/, =]
= D), 2] = [y, ¢}, 2] = [D'(y), 2].

(

Hence [D, D'|(z) = [D(Y') — [y,y'] — D'(y), x| € [g, 2] for all x € g, so that [D, D'] € AID(g).
Let C,C" € CAID(g). Then there exist y,y’ € g such that C' — ad(y) and C’ — ad(y’) map g to
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Z(g). Using [D,ad(z)] = ad(D(z)) for D € Der(g) we obtain
(€ —ad(y), " —ad(y)] = [C, '] = [C,ad(y)] = [ad(y), C'] + [ad(y), ad(y")]
= [0, 0 = ad(C(y)) +ad(C"(y)) + ad([y, ¥']),
so that [C, C'| —ad(C(y") —C'(y) — [y, ¥']) = [C —ad(y), C" —ad(y’)] maps g to Z(g), and hence
[C, C'"] € CAID(g). O
Proposition 2.4. The subalgebra CAID(g) is a Lie ideal in AID(g), and Inn(g) is a Lie ideal

in all subalgebras of Der(g) containing it.

Proof. Let C' € CAID(g) and D € AID(g). We need to show that [D,C] € CAID(g). We
already know that [D,C]| € AID(g). Fix an element = € g such that C' := C' — ad(x) maps g
to Z(g). Define D' := [D,C] —ad(D(z)). Then D" = [D, C"] because of ad(D(z)) = [D, ad(x)],
and D' maps g to Z(g), since

D'(y) = [D,C"|(y)
= D(C'(y)) — C"(D(y))

for all y € g, because C’' maps g to Z(g) and D maps Z(g) to Z(g).

)
Finally, [D,ad(z)] = ad(D(x)) is inner for all D € Der(g), so that Inn(g) is an ideal in all
subalgebras of Der(g) containing Inn(g). O

Remark 2.5. We conjecture that AID(g) is always a Lie ideal in Der(g). However, this seems
not to be known, and there is no obvious algebraic argument for it.

As a first example we will compute the almost inner derivations of the Heisenberg Lie algebra
ng(K), given by the Lie brackets [e1, es] = e3. By this notation we will mean that ns(K) is a
3-dimensional vector space over K with basis vectors ey, e; and e3. The Lie brackets between
basis vectors which are not specified are assumed to be zero, so [eq, e3] = [es, €3] = 0.

Example 2.6. For g = n3(K) we have AID(g) = Inn(g).

Indeed, every derivation D of ng(K) is of the form D(e;) = aje; + asey + ages, D(eg) =
agey + ases + ages, and D(es) = (o + as)es. Assume that D is almost inner. Then D(ey) €
lg,e1] = (e3), so that oy = ay = 0. In the same way D(e2) € [g,e2] = (e3) implies that
ay = a5 =0, and D(e3) € [g,e3] =0 gives a; + a5 = 0. It follows that D € Inn(g).

The next examples show that there exist Lie algebras having more interesting almost inner
derivations, i.e., having non-inner almost inner derivations. Let g5 be the filiform nilpotent
Lie algebra with basis {e,...,e5} and Lie brackets

le1, 6] = €1, 2 <1i <4,
[eg, €3] = es5.
Let g5 3 be the 3-step nilpotent Lie algebra with basis {ey,...,es} and Lie brackets
le1, €2] = ey, |e1,e4] = €5, [e2, €3] = e5.

Denote by E;; the matrix with entry 1 at position (4, j) and 0 otherwise. As a linear map, it
maps ey to 0 for k # j, and e; to e;.

Example 2.7. For g = g5 we have AID(g) = Inn(g) ® (Es2), and for g = gs3 we have
AID(g) = Inn(g) ® (Es3)-
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The proof follows again by a direct computation. The derivation D = FE54 for gs¢ is not
inner, but almost inner (in fact, central almost inner). The same holds for D = Ej 3 for gs 3.
We will see later also examples of Lie algebras g where the inclusion CAID(g) C AID(g) is
strict.

The following table shows the result of a computation of almost inner derivations for all complex
nilpotent Lie algebras of dimension 5. The classification of such Lie algebras is taken from [9];
c(g) denotes the nilpotency class of g, and d(g) the derived length. If the entry in the last
column is non zero, it gives an example of an almost inner derivation which is not inner.

Magnin | ¢(g) | d(g) | dim Inn(g) | dim CAID(g) | dim AID(g) | dim Der(g) | D
95,6 4 2 4 ) ) 8 E5,2
95,5 4 2 4 4 4 9 0
95,3 3 2 4 5 5 10 Es 5
g4 | 3 | 2 3 3 3 10 0

n®C | 3 2 3 3 3 11 0
95,2 2 2 3 3 3 13 0
95,1 2 2 4 4 4 15 0

ng C*| 2 2 2 2 2 16 0
C® 1 1 0 0 0 25 0

A further computation shows that 5 is the minimal dimension where we have a complex Lie
algebra admitting a non-inner almost inner derivation:

Proposition 2.8. Let g be a complex Lie algebra of dimension n < 4. Then we have AID(g) =
CAID(g) = Inn(g).

We will conclude this section with a few more easy facts on almost inner derivations. Clearly
Inn(g) = CAID(g) = AID(g) = 0 for abelian Lie algebras. Recall that a Lie algebra g is called
complete, if Z(g) = 0 and Der(g) = Inn(g). Of course we have AID(g) = CAID(g) = Inn(g) in
this case. In particular semisimple Lie algebras, and parabolic subalgebras of semisimple Lie
algebras are complete.

Proposition 2.9. Let g be a Lie algebra. Then the following statements hold.

1) Let D € AID(g). Then D(g) C [g,9], D(Z(g)) =0 and D(I) C I for every ideal I of g.
2) For D € CAID(g) there exists an x € g such that Djgq = ad(2)|jg,4-

3) If g is 2-step nilpotent, then CAID(g) = AID(g).

4) If Z(g) = 0, then CAID(g) = Inn(g).

5) If g is nilpotent, then AID(g) is nilpotent and all D € AID(g) are nilpotent.

6) We have AID(g @ g') = AID(g) @ AID(g') for the direct sum of two Lie algebras.

P U

Proof. By definition, an almost inner derivation maps g into [g, g] and the center Z(g) to 0.
Let x € I. Then we have D(z) € [g,z] C [g,I] C I, and (1) follows.
Given D € CAID(g), there exists an x € g such that D' = D — ad(z) satisfies D'(g) C Z(g).

Since D’ is also a derivation we have

D'([u, v]) = [D'(u), v] + [u, D'(v)] = 0
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for all u,v € g. This shows (2). If g is 2-step nilpotent then D(g) C [g,g9] C Z(g) for any
D € AID(g). Hence AID(g) C CAID(g), and we have equality. This shows (3). Suppose that
Z(g) = 0 and D € CAID(g). Then there exists an x € g such that D(z) — ad(x) = 0. Hence
D is inner. This shows (4). Let D € AID(g) and = € g, then D*(z) € [g,[g,]...,[g,7]...]]]
(k times g). If k is higher than the nilpotence class of g, we have that D*(z) = 0, hence D is
nilpotent. By Engel’s theorem AID(g) is nilpotent, and (5) follows. For the last statement, let
D € AID(g®g’). Then the restrictions are again almost inner derivations, i.e., Dy € AID(g) and
Dy € AID(g'). It is easy to see that the map D — Dj;@ D)y gives a one-to-one correspondence
between AID(g @ ¢’) and AID(g) ® AID(g’). O

3. FIXED BASIS VECTORS

For the computation of almost inner derivations of a given Lie algebra one does not always
need to know its derivation algebra explicitly. Instead one can use a concept, which we will
call fixed basis vectors. This is very useful, also for proving several results on almost inner
derivations. Unfortunately the definition is not particularly clear, although it is elementary.
We will need to explain it with some examples.

For the rest of this section, g is an n-dimensional Lie algebra over a field K and with chosen
basis {e1,...,e,}. For x € g we denote the centralizer of x by Cy(z) ={y € g | [z,y] = 0}. Let
D be an almost inner derivation D of g. Then there exists a map ¢p: g — g such that

D(x) = [z, op(z)]

for all z € g. This map is not unique as we may change ¢p(z) to pp(z)+y for any y € Cy(x).
It need also not be linear in general. If z = » ", a;e;, then we denote by #;(x) = a; the i-th
coordinate of x with respect to the given basis.

Definition 3.1. Let D be an almost inner derivation of g determined by a map ¢p : g — ¢.
We will say that a basis vector e; is a fized vector for D with fized value o € K if and only if
forall j € {1,2,...n}:

if e; & Cy(e;) then t;(¢p(e;)) = a.

Note that the a must be the same for all ;7 where this condition applies. As an example,
consider the Heisenberg Lie algebra ng(K) with basis {ey, es, e3} and Lie bracket [eq, es] = es.

Example 3.2. Let g = n3(K), and D an almost inner derivation of g given by a map pp: g —
g. Then every basis vector e; is fixed.

For i = 1 we have Cy(e1) = (e1, e3), and the condition just applies for j = 2: since e; & Cy(e1),
we must have ¢(pp(ez2)) = a. Certainly this is true, with the a given by the map ¢p. The
same holds for i = 2, where we have Cy(e2) = (ez,e3). For i = 3 we have Cy(e3) = g, so that
the condition is vacuously true.

The importance of finding fixed vectors comes from the following fact. If each basis vector
for every almost inner derivations is fixed, then we have AID(g) = Inn(g). We will prove this
result in Corollary 3.6l Often we can show that every basis vector is fixed without knowing the
structure of Der(g). A trivial example is the following lemma.

Lemma 3.3. Let g be a Lie algebra with given basis {ey, ..., e,}, such that for given i, the

number of basis vectors in Cy(x;) is equal to dim(g) or dim(g) — 1. Then the basis vector e; is
fized.
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Proof. In this case the condition for a fixed basis vector is vacuously true, or can be satisfied
uniquely by the « given by the map ¢p. ([l

We already saw this argument for i = 1,2, 3 in the example of g = n3(K) above.
We also want to present an example, where not every basis vector is fixed. For the Lie algebra
956 of Example 2.7 we will show that there is an almost inner derivation D determined by a
map p such that not every basis vector is fixed.

Example 3.4. For g = g5 ¢ and the almost inner derivation D = Es 5 the basis vector ez is not

fixed.

We need to find a map ¢p representing D. Let x = aje; + ...+ azes € g. Define pp as
follows:

(1) If ay # 0, then pp(z) = ey

«

(2) If ag =0, then pp(x) = e;.
It is easy to see that D(x) = [z, ¢p(z)] for all = € g. Definition Bl for this ¢p and i = 3 says:
forall j € {1,...,5}, if e; & Cy(es) = (es, eq, €5), then t3(¢p(ej)) = «, each time for the same
fixed . This applies for j = 1,2, and we have pp(e;) =0, pp(es) = es, so that

t3(wp(e2)) = tz(ez) = 1,
ts(wpler)) = t3(0) = 0.

So there is no fixed «, and e3 is not fixed.

Lemma 3.5. Let D : g — g be an almost inner derivation determined by a map ¢p : g — g. If
e; is a fized basis vector with fized value o, then D' = D +ad(«e;) is an almost inner derivation
which is determined by a map ¢pr @ — @ such that for all j,k € {1,2,...,n}:

tj(pp(en)) = ti(enler)) fori#j
ti(pp(ex)) = 0.
Proof. Clearly D’ is an almost inner derivation, and we have that
(D + ad(ae;))(x) = [z, op(x)] + [oes, 2] = [z, op(z) — ceq].
So D' is determined by the map ¢p : g — g: 2 — ¢p(z) — ae;.
Now define the map

@D(x)_aei ifx¢{617627"'76n}7
op(x) —ti(ep(x))e; if x € {er,eq,..., e}
We claim that D’ is also determined by this new map ¢p. Indeed, for all non basis vectors

we have ¢p/(x) = ¢p/(x), so we only have to consider basis vectors. Let e; be a basis vector.
Then there are two possibilities:

(,OD/ZQ—>QZSL’I—>{

Case 1: e; € Cy(e;). Then we have
D'(ej) = D(e;) = lej, wp(e;)] = e, n(e5) — ti(pp())es] = [ej, op/(€))]-
Case 2: e; & Cy(e;). Then t;(¢p(ej)) = a, from which it follows that ¢p/(e;) = ppr(e;).

Hence D' is determined by ¢p. By definition of ¢ it is also easy to see that the requirements
ti(pp(ex)) =ti(pn(er)), for j # i, and t;(ppr(ex)) = 0 hold. O
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As an immediate consequence we obtain the following result.

Corollary 3.6. Let D € AID(g) be determined by a map pp. If each basis vector is fixed, then
D € Inn(g).

Proof. Let «; denote the fixed value of e;. Then by iteratively applying Lemma B.5 we find
that D + ad(aqer) + ad(azes) + -+ - + ad(ane,) = D + ad(v), with v = 1" | ase; is an almost
inner derivation D', determined by a map ¢p with ¢p/(e;) =0 for all i € {1,2,...,n}. This
implies that D’(e;) = 0 for all basis vectors e; and hence D' =0 or D = —ad(v) € Inn(g). O

The next results are two technical lemmas, providing a way to find fixed basis vectors. We
will use the following notation: Let i1,14,...,4, € {1,2,...,n} then

Bivsingesir — Span{ei ‘ i € {ila 19, ..., ZT}}
denotes the vector space spanned by all basis vectors not in the set {e;,, e;,,...,¢e; }.

Lemma 3.7. Assume that 1 < 4,5, k,[,m <n and l # m. Moreover assume that there exist
nonzero scalars o, f € K such that

e;, el —ae € gim

[

[ek‘v 2] ﬁem € 9im
[6]7 gz] = gl m

[er; 8i] € G1m-

Then, for any D € AID(g) determined by a map ¢p, we have that t;(pp(e;)) = ti(¢p(er)).

Proof. Let a = t;(¢p(ej)), b = ti(ppler)) and ¢ = t;(¢p(e; + ex)). Then there exist vectors
v, v, v" € g; such that

vple;) = ae; + v,
@D(ek) = bei —+ U/,
ople; +ex) = ce; +0".

Using these notations we find that

(1) D(ej + ex) = [ej + ek, ce; +0"] = cae; + cfey, +w"

for some w” € g;,,, and on the other hand we have that

(2) D(e;) + D(ex) = [ej, ae; + v] + [ex, be; + '] = ace; + w + bfe,, +w'

for some w,w’ € g;,,. Now, as D is a linear map, the two expressions () and (2) must be
equal, and so by comparing the [-th and m-th coordinate, we find that

ca = aa, cff = bp.
As both « and 3 are nonzero this implies that « = b and hence

ti(QOD(6j)) = tz(SOD(ek))
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Lemma 3.8. Assume that 1 < 1i,7,k, 1 < n. Moreover assume that there exist nonzero scalars
a, B € K such that

[ej, €] — cer € gy
ek, €] — Ber € gy
5, 9i]
[

er, 8i) C g1
Then, for any D € AID(g) determined by a map ¢p, we have that t;(pp(e;)) = ti(epler)).

Proof. Let a = t;(¢p(ej)), b =ti(¢p(er)) and ¢ = t;(¢p(Be; — aey)). Let v,v',v" € g; be such
that

vp(ej) = ae; + v,
epler) = be; + 0
op(fe; — aey) = ce; + 0",

Then we have that

(3) D(Bej — aey) = [Bej — aey, ce; + "] = feae, — acfe, + w"”
for some w” € g;. On the other hand we have that
(4) BD(e;) — aD(ex) = Blej, ae; + v] — alex, be; + V'] = faae, + w — abfe; + w'

for some w,w’" € g;. By comparing the [-th coordinate of (3) and (@) we find that
af(a—b)=0=a=0.

4. 2-STEP NILPOTENT LIE ALGEBRAS DETERMINED BY GRAPHS

Let G(V, E) be a finite simple graph with V' = {xq, 29, ...,2,} its set of vertices and F its
set of edges. If there is an edge between vertex z; and z; with ¢ < 7, we denote this edge by
the symbol y; ;. We let X be the vector space over the field K with basis the elements of V'
and Y be the vector space with basis the edges y; ;. We define a two-step nilpotent Lie algebra
g over K, where as a vector space g = X @Y and where the brackets are given by

B 0, if there is no edge connecting z; with z;

[SCia yj,k] =0 Vo; €V, Vyj,k ek
[yi,jayk,l] =0 Vyz-,j, yp € E

Theorem 4.1. Let g be a 2-step nilpotent Lie algebra determined by a finite simple graph.
Then AID(g) = Inn(g).

Proof. Let s = #F and choose an order py,ps,...ps for the edges. So any p; corresponds to a
unique edge y; ;. Now, we fix the basis {ej, e, ..., e,45} of g given by

€1 =T1,...,6 = Tp, €41 = P1,Epy2 = P2,...,€Ep15 = PDs.

Let D € AID(g) be determined by the map ¢p. We want to apply Corollary 3.6, and hence we
want to show that any basis vector is fixed for D. For e, 1,€,19,..., €. this is obvious, since
these vectors belong to Z(g).
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Now, consider e; with 1 < i < r. If e; € Z(g), i.e., when x; is an isolated vertex, there is
again nothing to show. So assume that e; ¢ Z(g). Then there is at least one e; € Cy(e;) (with
1 < j < n). Hence [ej,e;] = *e; for some [ between r + 1 and r + s. Let o = t;(pp(e;)).
Consider any other basis vector e, & Cy(e;). In order to show that e; is fixed, we must show
that also t;(¢pp(er)) = a. There exists an m € {r + 1,...,7 + s} with [ey, ;] = £e,,. As g is
determined by a graph we have that m # [.

We are in the following situation

lej, e e, =0
ler, el e, =0
[ejv gl] g gl,m
[€k7 gz] g gl,m-

This means that we can apply Lemma [3.7and we find that ¢;(¢p(ex)) = ti(¢p(e;)) = a. Hence
e; is indeed fixed for all 2 and this finishes the proof. O

Corollary 4.2. Let f, 2 be the free 2-step nilpotent Lie algebra on r generators, then
AID(fT72) = Inn(fng).

Proof. This follows immediately from the fact that f,2 is the 2-step nilpotent Lie algebra de-
termined by the complete graph on r vertices. O

5. FREE 3-STEP NILPOTENT LIE ALGEBRAS

Let f,3 be the free 3-step nilpotent Lie algebra on r generators e, es, ..., e,. Having fixed
these generators, we can find a Hall basis of f, 3, which is a basis of f,3 as a vector space and
which is explicitly given by the following collection of vectors:

e, for1 <i<r
Yi; = lei,ej] for 1 <i<j<r
Zijk = leiyju) for 1 <j<k<randl<i<k.
Note that if ¢ > k then
[es, yjk] = les: [e5, ex]]
= —lej lex; €] — lex; [ei, ;1]
= —Zjki T 2kji-
Lemma 5.1. Let x,y € f,3. If v —y & [fr.3, fr3), then

[ZL’, [fT’,?n fT’,3H N [ya [fr,?n fr,?»]] =0.

Proof. 1If either = or y belongs to [f, 3, f~3] there is nothing to show. In case both do not belong
to [fr3, fr3], the condition that x —y ¢ [f, 3, 3], actually means that we can choose a generating
set e, = x, e =¥, es,...,e such that §,3 is the free 3-step nilpotent Lie algebra on that set
of generators. Using the Hall basis introduced above, we see that

[, [fr3: frall = (z1pq [ 1 < p < g <),
[y> [f?“,?n fr,?)]] = <Z2,p,q | 1 S p<gq S T)-
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Note that all of the vectors z;,, and z2,, belong to the Hall set mentioned above and that
the set of basis vectors z,, is disjoint of the set of basis vectors z,,. So we have that the
subspaces spanned by those two sets have only the zero vector in common. O

Theorem 5.2. Let f,3 be the free 3-step nilpotent Lie algebra on r generators. Then

AID(fT73) = Inn(fng) .

Proof. Let D € AID(f,3). Note that D induces an almost inner derivation D on f,3/Z(f.3) =
fr.2. By Corollary we know that D is an inner derivation. Hence, by adjusting D with an
inner derivation, we may assume that D(f,3) C Z(f,.3).

Let e, ea, ..., e, be the generators of f.3. Since we must have that D(e;) € Z(f,3), there exist
vectors v; € [f,3, fr3] such that
D(e;) = le;, vi].
Analogously, there are also vectors w; € [f;.3, 3], for 2 < i <r, with
D(ey + ;) = [er + e, w;l.
By using the equation D(e; + ¢;) = D(ey) + D(e;) we find that
[617?11@'] - [617711] = [eiuvi] - [ez‘ﬂﬂi]-

Now, since the left hand side of the above expression belongs to [es, [f.3, fr3]] and the right
hand side to [e;, [fr.3, fr3]], it follows from Lemma [5.1] that both expressions are zero. Hence we
have

[617 Wy — Ul] = [€i7wi - Ui] = 0.
Since the only elements of [f, 3, f,3] that commute with e;, respectively with e;, are those
belonging to the center Z(f,3), we find that

w; — VU € Z(fng), Ww; —v; € Z(fng).
So v; — vy € Z(f,3). Therefore we can without any problem replace v; with v1, and we find that
D(e;) = [e;,v1]. If we now consider the derivation D' = D + ad(v;), we see that D’(e;) = 0.

But then D’ is a derivation which is zero on the generators, and hence D’ is zero everywhere.
It follows that D = —ad(v;), which was to be shown. O

6. FREE METABELIAN NILPOTENT LIE ALGEBRAS ON TWO GENERATORS

In this section we will show that all almost inner derivations are inner for free metabelian
nilpotent Lie algebras of class ¢ on 2 generators.
Let 2 be the free Lie algebra on two generators, say a and b. Let fgl) = [fo, fol,
for i > 1, and 71 (f2) = fa, Vit1(f2) = [f2, 7% (f2)] for ¢ > 1. Then, the free c-step nilpotent and
metabelian Lie algebra my . is obtained as a quotient

fa

19+ vein ()

So, it is the largest quotient of f, which is both metabelian and c-step nilpotent. Let us use x;
and z, to denote the projection of a and b resp. in my .. We introduce the notation y;* for all
m>2ne{l,...,m—1} by

m
Y, = [1'2,1'1,1'1,1'1, e, X1, T2, T2, T2y - - axd7
A - -

i+1 i i
2 = [ 1

2,c —

g

iy
m — n times n — 1 times
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where for all 21, 20,..., 2, € g, the iterated bracket [[...[[z1, 22], 23], ...], 2] is denoted with
(21, 22, ..., Zn]. So y™ is an m-fold Lie bracket with m —n appearances of 1 and n appearances
of xo. It is well known that z;,zs together with the elements ¢y (1 < n < m < ¢) form
a basis of my,. (E.g. [3, Section 4.7]). In fact, for any ¢ > 1 the projections of the elements
Y -y form a basis of 7:(1a.) /741 (M) S0 Yi(Ma.e) ey 1 (M) i (i — 1)-cimensional
(for i <c¢).

Lemma 6.1. Let 21,29, ...,2, 2 € {x1,20} and k =#{i € {1,...,n—=2} | zi=x2} + 1. Then
we have
[x27x17'z17z27' . '7Zn—2] = y]?

Proof. In a metabelian Lie algebra g, it follows from the Jacobi identity that
Ve, y € g,Vc € (g) : [c,z,y] = [c,y, x].
From this it follows that
(T2, @1, 21, 22, . - ., Zn—2] = [T2, X1, Zo(1)s Z0(2)s - - - » Zo(n—2)]
for any permutation o on n — 2 letters 1,2,...,n — 2. Now, the result follows easily. O]

The lemma easily implies the following identities.

Corollary 6.2. We have

[y 1) =yt and [y, @) =y

Now we can prove the main result of this section.

Proposition 6.3. Let my . be the free c-step nilpotent and metabelian Lie algebra on 2 gener-
ators over an infinite field K. Then AID(my,.) = Inn(my,).

Proof. For ¢ =1 we have that my . is abelian and for ¢ = 2 we have that my . is the Heisenberg
Lie algebra. As these Lie algebras have no non-trivial almost inner derivations the proposition
is valid in this situation.

For general ¢ > 3, we proceed by induction and so we assume the proposition holds up to
c—1. Let D be an almost inner derivation of my .. The space I = (y5, s, ... ,yg_l) =Y.(my.) =
Z(my,) is an ideal of my . and hence D induces an almost inner derivation D on

m2,c/f =My .
By the induction hypothesis, D is an inner derivation of my. ;. This means that we can alter
D by an inner derivation of my . and assume that
D(m2,c) Cl= <yfv ygv SRR yg—1> = VC(mZC)'
Moreover, by the fact that D € AID(my.) we must have that D(z) € [z, my] and hence
D(xl) € <y§a yga cee >y§—2> and D(xQ) € <y§a y?c” cee ay§—1>‘
So there are parameters aq, as, ..., 0e_2, 32,03, ..., Be_1 € C such that
D(x1) = aqyi + aoys + - - + Qeoye_o and D(x2) = Boys + B3ys + -+ - + Le—1Ye ;-

By changing D to D — zauda1 Yo danyS e _pyt—)» WE IMAY assume that all parameters a; = 0

(1 <i<c¢—2)and we are in the situation with

D($1) =0 and D($2) = 52y§ + 53y§ + -t 50_1?;5_1.
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Now let A € K. Then on the one hand we have that

(5) D(Axy + x2) = AD(21) + D(22) = Pays + Bsys + -+ + Bec1yo_s-
On the other hand, we also know that there exist an element vy € my . with

D()\LL’l + LL’Q) = [U)\, >\SL’1 + LL’Q].

Let
Uy = 121 + A9T2 + Z am,ny,’f
1<n<m<c
then
(6) ['U)\a )\1’1 + IQ] = (a2)\ - a'l)y% + Z )\am,ny;n—i_l + Z am,nyzl—:_ll
1<n<m<c—1 1<n<m<c—1

Comparing the coefficients of the basis vectors y¢ of (B) with (6) we get the following system
of equations:
( )\ac—l,l =0

Ae—12+ Q11 = P

Ne13 + Qe12 = B3

)\ac—l,c—2 + Ae—1,c-3 = 50—2
\ Ac—1,c-2 = ﬁc—l-

This leads to

( Aaec—11 =0
Nae_194 Aac—11 = A\ba
Nae_13+ N2ac_19 = N[3

-2 -3 _ -3
¢ ac—l,c—2 + A° ac—l,c—3 = \¢ /80—2
-2 _ -2
\ A¢ Qe—1,c—2 = A¢ /Bc—l-

By taking the alternating sum of all these equations, we find that
)\52 _ )\2&3 4ot (_1)6_2)\0_35c—2 + (_1)0_1)\0_2ﬁc—1 =0.

Since the above equation has to hold for all possible A and K is infinite, we must have that

Br=fo=-r= s = 0.
It follows that D(z3) = 0. Together with the fact that D(z;) = 0 this implies that D = 0,
which means that the original D we started with was an inner derivation. O

7. ALMOST ABELIAN LIE ALGEBRAS AND FILIFORM NILPOTENT LIE ALGEBRAS

From now on we restrict ourselves to the case K = C. Almost abelian Lie algebras have
no unique definition in the literature. A common convention is that a Lie algebra g is almost
abelian if it contains a 1-codimensional abelian ideal. It is enough, however, to require that g
contains a 1-codimensional abelian subalgebra, see [5]. Here we consider almost inner derivations
of complex almost abelian Lie algebras. We may write g = C" x C with C = (e,,+1), and a basis



ALMOST INNER DERIVATIONS 13

e1, €, ..., e, of C", such that with respect to this basis, ad(en+1)cn is expressed in canonical
Jordan form, i.e.,
B, 0 0 --- 0
0 B, 0 --- 0
ad(€n+1>|(C” — 0O 0 By --- 0
0O 0 0 --- By
where each B; is a block matrix of the form
A 10 - 0 O
O N 1T -+ 0 O
0 0 XN 0 O
B; = . .
o 0 0 --- N\ 1
o 0 0 --- 0 XN\

We can apply the lemmas on fixed vectors to prove the following result.

Proposition 7.1. Let ey, es,...,e,, 6,11 be the basis of g = C* x C as described above. Then

for any almost inner deriwvation D : g — g determined by a map ¢p, any basis vector is fized.
It follows that AID(g) = Inn(g).

Proof. Let i € {1,2,...,n}, then all basis vectors ey, es, ..., e, € Cy(e;). Hence e; is fixed by
Lemma So it suffices to show that e, is fixed. Therefore, we need to show that for any
ej,ex & Cylent1) (with 1 < j < k < n) we have that

tnt1(p(€5)) = tuia(pp(er)).

There are three different cases:

Case 1: e; and e are basis vectors for different Jordan blocks. It follows that there exist
A, A € C such that

lent1,€5] = Aej or Nej + €1,

[ent1,ex] = Nep or Ney + ex_1.
The two possibilities for each bracket are necessary for including the cases A =0 or X' =0. In

all of the situations above, we can use Lemma B.7] with [ =j or j —1 and m =k or k — 1, to
conclude that t,11(¢p(e;)) = tns1(ppler)).

Case 2: ej and ey, are basis vectors for the same Jordan block and & — j > 2. In this case we
have exactly the same conclusion as in the previous case.

Case 3: We have k = j+1 and e;;; and e; are basis vectors for the same Jordan block. In this
case there is a A € C such that
[ent1,€j41] = Aej1 + ey,
lent1,€5] = Aej or Aej + ej_1.

If X # 0, then Lemma B8], with [ = j allows us to conclude that ¢,+1(¢p(ej11)) = tat1(pn(e))).
On the other hand, if A = 0, then we must have that [e,11,€;41] = €; and [e,11,€;] = €1,
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because otherwise e; € Cy(e,,+1). In this case, we can again use Lemma 3.7 with [ = j — 1 and
m = j, to conclude that t,1(¢p(ejt1)) = tnr1(enle;)). O

Denote by f, the standard graded filiform nilpotent Lie algebra of dimension n, defined by
the Lie brackets [e1, e;] = e;41 for i = 2,...,n — 1 in the basis (ey,...,e,). Clearly we have
n = C" ! % C with C = (e;) over C. Hence we obtain the following result as a corollary of
Proposition [l

Proposition 7.2. The filiform nilpotent Lie algebra f,, satisfies AID(f,) = CAID(f,) = Inn(f,).

We already have seen in Example 2.7, that filiform nilpotent Lie algebras can have more
interesting almost inner derivations than just inner ones. The algebra gs¢ in this example is
metabelian filiform. It turns out that this example generalizes to all metabelian filiform Lie
algebras of dimension n > 5. It has been shown in [4] that every metabelian filiform Lie algebra
g of dimension n > 3 has an adapted basis (e1, . .., e,) such that

[61,6i] = €i+1, 1 Slﬁn—l
lea, ex] = aaseoyr + -+ Qon_pigen, 3<k<n—2
lei,ex] =0, i,k > 3,

with structure constants {asx | 5 < k < n}. Clearly g = f, if and only if all structure constants
are zero.

Lemma 7.3. Let g be a complex metabelian filiform Lie algebra of dimension n > 3 and let
D € AID(g). Then there exists av € g and a A € C such that

D — adv = )\Emg.
Proof. We proceed by induction on the dimension n. If n < 5, then g is a standard filiform
Lie algebra and all almost inner derivations are inner by Proposition [[.2l So the result holds,
with A = 0. So assume that n > 5 and that the lemma is valid for metabelian filiform Lie
algebras of smaller dimensions. Let D € AID(g). Then D induces an almost inner derivation
D on g/{e,). By induction, we may assume, after changing D up to an inner derivation, that

we have D = pFE,_1, for some p € C. This implies that D(e;) = ae,, for some a € C. Now,
replace D, with D' = D + ad,., ,. Then we have

D'(e1) = D(e1) + [aep—1,e1] = 0,
D'(e;) = D(e;) + [aen_1, €] = D(e;) for i > 2.
In particular, we have that
D'(ey) = D(ey) = pe,_1 + Ae,, for some p, A € C.
From this it follows that
D'(e3) = D'[eq, e5] = [D'(e1), €] + [e1, D'(e2)] = pen,
D'(ey) = D'[ey, e3] = [D'(e1), e3] + [e1, D'(e3)] = 0,
and analogously D’(e;) = 0 for i« > 5. To finish the proof, we have to show that © = 0. So
assume that p # 0.

Since we have D'(e3) = pe, and D" € AID(g), there must exist an element Y " | a;e; € g with
[0, aie;, es] = pe,. This leads to the equation

areq + agles, e3] = ey,
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which expands to
a1eq4 + ag(a275e5 + a2 6€6 + -+ Oég,nen) = Uen.
As we assume that p # 0, this implies

Qo = Qg == Qg p_1 = 0.

As a conclusion thus far, we have found that when p # 0, then the basis vectors e; satisfy

There must also exist an element Y . | bie; € g with D(ey) = [, bie;, €o]. This leads to the
equation

fen—1 + Aep, = bieg — bz pey,.
Since we are assuming that p # 0, this equation does not have a solution, which is a contra-
diction. Hence indeed p = 0, and therefore D’ = AE, ,,, which was to be shown. O]

The lemma now easily implies the following result.

Proposition 7.4. Let g be a metabelian filiform Lie algebra of dimension n > 5, which is
different from f,. Then
AID(g) = CAID(g) = Inn(g) @ (E,2).

Proof. We only have to show that D = E, » is an almost inner derivation. If z = """ | Sie;
with 51 # 0, then D(z) = (e, = [z, %en_l]. Otherwise 5; = 0. Since g is not the standard
graded algebra f,, there exists a minimal index ¢ with 5 < ¢ < n such that ay; # 0. Then, for
k=mn—i+43> 3 we have D(z) = fse, = |z, &ek]. Hence D(z) € [g,z] for all z € g. O

Remark 7.5. There are also filiform nilpotent Lie algebras g with dim(AID(g)/Inn(g)) > 2
for dim(g) > 7; of course with d(g) > 3. The following table shows the dimensions of the
derivations spaces for all complex filiform nilpotent Lie algebras of dimension 7, with Magnin’s
notation [9]. For 97.1.13,) We have A # 0, 1. The two cases A = 0 and A\ = 1 are listed separately.
The last column, when non zero, gives examples of almost inner derivations, which together
with the inner derivations generate AID(g).

Magnin | ¢(g) | d(g) | dim Inn(g) | dim CAID(g) | dim AID(g) | dim Der(g) D

97,01 6 3 6 7 8 10 Eeo + Ers, Ero

97,02 6 2 6 7 7 10 E772

g7.0.3 6 2 6 7 7 11 E772
97,113, | O 3 6 7 8 10 Ee¢o + Eq3, Er o
Oriip) | 6 | 3 6 6 6 10 0
g7,1.1¢,) | 6 2 6 7 7 11 FEro
97.1.13i4) 6 3 6 7 7 11 E79

g7,1.4 6 2 6 7 7 12 E772

g7.1.6 6 2 6 7 7 12 E772

97,23 6 2 6 6 6 13 0
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8. LOW-DIMENSIONAL LIE ALGEBRAS

Complex Lie algebras of dimension n < 4 do not have non-inner almost inner derivations.
This is different in dimension 5. In order to determine the space of almost inner derivations
we will not use a full classification of all 5-dimensional Lie algebras, but rather a description
of the moduli space given in [6]. Here the authors give a natural stratification by orbifolds,
in terms of 24 families of Lie algebras, with up to 4 parameters. This is much better than a
full classification for us, because the determination of almost inner derivations is much more
efficient for the stratification, the list of the full classification being much too long. We already
know from the table after Example 2.7 that every complex nilpotent Lie algebra of dimension
5 having a non-inner almost inner derivation is isomorphic to gs 3 or gs.

The most interesting family of solvable, non-nilpotent Lie algebras in this context is the family
dio(p : q : ) with p = 0 from [6].

Definition 8.1. The family of complex 5-dimensional Lie algebras A(q,r) = di2(0 : ¢ : 1) is
defined by the Lie brackets

€1,€5] = €2,
ez, e5) = (q+1)ez,

It is straightforward to compute the almost inner derivations of this family.

Lemma 8.2. We have

dim Der(A(q.r) = 4 ¥ (@) #(0,0)
8, otherwise
dimInn(A(q,r)) = 4, forallg,reC

4, ifqr#0,q+r#0
5, otherwise

dim AID(A(q,r)) = {

We can determine the Lie algebras A(q,r) with dim AID(A(g,7)) = 5 up to isomorphism.

Lemma 8.3. Every Lie algebra A(q,r) satisfying qr =0 or g+ r = 0 is either isomorphic to
A(1,0), to A(1,—-1) or to A(0,0) = g5 6.

Proof. Note that A(q,r) = A(r,q), see [6]. It is easy to see that A(0,0) is filiform nilpotent
and isomorphic to g5 . So we may assume that (¢,7) # (0,0). Suppose first that gr = 0. Then
we may assume g # 0 and r = 0, and there is an Lie algebra isomorphism ¢: A(q,0) — A(1,0)
given by

¢ 000 0
1-¢2 ¢ 00 O
0 0gq0 0
0001%
0 000 g
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Secondly, let ¢ +r = 0 and ¢ # 0. Then there is an Lie algebra isomorphism ¢: A(q, —q) —
A(1,—1) given by

2 2

1 0 ==t =1 9
24 q
0 ¢ %= 0 0
00 ¢ 0 0
00 0 1 0
00 0 0 g

Finally, A(q,r) is unimodular if and only if ¢ + r = 0. Hence A(1,—1) is unimodular, but
A(1,0) is not. So they cannot be isomorphic. Both A(1,—1) and A(1,0) are solvable and
non-nilpotent, whereas A(0, 0) is nilpotent. O

Proposition 8.4. Every complex Lie algebra of dimension 5 having a non-inner almost inner
derivation is isomorphic to one of the following Lie algebras:

95,37 95,67 A(170)7 A(lu_l)

Proof. We use Table 3 of [6] listing the 24 families of Lie algebras. For each family, or type,
we compute the spaces Der(g), AID(g) and Inn(g) for all possible parameters. The types
dy,ds, ds3, dy, d7, dg, dig, di1, dig, di7, d1g, dqg, dog have no parameters, so that the computation is
easy. Also, the nilpotent algebras are easy, because they correspond to choosing all parameters
equal to zero. Moreover we do know the result already for nilpotent algebras. Note that there
is an error in the Lie brackets of dy in table 3 of [6], where 1{? has to be removed; and also
in the definition on page 429. The hardest cases are the ones with 3 or 4 parameters, namely
the families ds(p : q : 7), di2(p : q : 1), doo(p : g : v : s) and doy(p : ¢ : 7). A long, but
straightforward computation shows that, for non-nilpotent algebras, the only family with non-
inner almost inner derivations is dia(p : ¢ : ), where we need p = 0. More precisely we see that
only for the algebras A(q,r) = d12(0 : ¢ : ) with ¢ =0, or = 0 or g + r = 0 this is the case.
We obtain (see Lemma [8.2))

Inn(A(q, 7)) ® (Ea4) for g =0,7#£0
AID(A(q,7)) = < Inn(A(q, 7)) ® (Eas + qE35) forr=0,g#0
IIlIl(A(q, 7")) @ <7’2E2,1 — E2,4 + TE375 + 7’2E4’5> fOI' q +r= O

O

Remark 8.5. The Lie algebra A(1, —1) arises in a different context, namely in the classification
of Lie algebras admitting a Sasakian structure, see [I]. A Sasakian structure on a Riemannian
manifold is the analogue in odd dimensions of a Kéahler structure. Indeed, a Riemannian mani-
fold M of odd dimension admits a compatible Sasakian structure if and only if the Riemannian
cone M x R* is Kéhler. Left-invariant Sasakian structures on Lie groups can be classified
by Sasakian structures on its Lie algebras. In the classification of 5-dimensional Sasakin Lie
algebras in Theorem 10 of [I], the Sasakian Lie algebra gs is isomorphic to A(1, —1) over the
complex numbers.

Remark 8.6. In dimension 6 we have computed the almost inner derivations only for nilpotent
Lie algebras, using the classification given in [9]. The result is given in the following table:
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Magnin | ¢(g) | d(g) | dimInn(g) | dim CAID(g) | dim AID(g) | dim Der(g) D
96,20 ) 3 ) 5 6 8 E572
96,18 ) 3 ) 5 5 9 0
96,19 ) 2 5) 6 6 9 E672
J6,17 ) 2 5 6 6 10 E672
96,15 4 2 5 5 5 10 0
6,13 4 2 ) 6 6 10 E673
g6 | b | 2 5 5 5 11 0
96,14 4 2 4 4 4 11 0
96,9 3 2 5 5 5 11 0
96,12 4 2 5 5 5 11 0

95,6 e C 4 2 4 5 5 12 E572
G5 | 3 | 2 1 1 1 12 0
g0 | 3 | 2 5 5 5 2 0
J6,11 4 2 ) 6 6 12 E673

GsOC| 4 | 2 1 1 1 13 0
J6,8 3 2 4 6 6 13 E573, E672
goa | 3 | 2 1 1 1 13 0
96,7 3 2 4 6 6 14 EG’Q, E6,3
g2 | 3 | 2 5 5 5 i 0
gs | 3 | 2 1 1 1 15 0

gsa®C| 3 | 2 3 3 3 15 0

gs3®C| 3 | 2 4 5 5 15 Fs

n3 @ ng 2 2 4 4 4 16 0

n®C*| 3 2 3 3 3 17 0
J6,1 2 2 4 6 6 17 E673, E674
g6s | 2 | 2 3 3 3 B 0

G2®C| 2 | 2 3 3 3 19 0

g ®C| 2 | 2 1 1 1 21 0

ny C3 | 2 2 2 2 2 24 0

C°® 1 1 0 0 0 36 0

9. TRIANGULAR LIE ALGEBRAS

In this section we consider the Lie algebra t,(K), resp. n,,(K), of all upper-triangular, resp.
strictly upper-triangular, n x n matrices over a general field K again.

Let e; ; denote the n x n matrix with 0’s everywhere, except a 1 on the (i, j)-th spot. Recall
that

(7) €y €x1] = 0jkeis — Opi€k ;-
Proposition 9.1. For any n > 2 we have that
AID(n,(K)) = Inn(n,(K)).

Proof. The Lie algebra n,(K) has a basis consisting of the matrices e; ; where 1 <1i < j < n.
From (7)) it follows that

[nn(K), ei,j] = <ei,j+17 ei,j+27 <o €im, el,j, 6273', ey ei_17j>.
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We proceed by induction on n. For n = 2 the proposition is trivially true since ny(K) = K is
abelian. So we assume that n > 2 and that the result holds for smaller values of n.

Let D € AID(n,(K)). Note that I = (e19,€13,...,€1,) is an ideal of n,(K). This implies
that D(I) C I. It follows that D induces a derivation D of n,(K)/I = n,_(K). Of course D €
AID(n,,_1(K)) and by induction, we can conclude that D is an inner derivation. Let z € n,(K)
be an element such that D = ad(Z) where Z denotes the projection of  in n,, 1 (K) = n,(K)/I.
By replacing D by D — ad(x) we may assume that D is an almost inner derivation of n, (K)
with D(n,(K)) C I. It follows that there exist elements (3, B4, ..., 3, € K such that

D(€2,3) = 5361,3, D(€3,4) = 5461,4, D(€4,5) = 5561,5, cee 7D(en—1,n) = /Bnel,n-
Let a = B3e192 + Bse13+ -+ -+ Bne1n—1, then for all ¢ with 2 <7 <n — 1 we have that

ad(a)(e;iv1) = [Bser2+ Baers+ -+ Buein_1,€iit1]
[/Bi+161,i7 ei,i-‘,—l]
5i+1€1,z’+1
= D(ei,i—i-l)-
So, by replacing D with D — ad(a), we may assume that
D(€273) = D(€374) == D(en_lm) = 0

Note that ad(a)(I) C I, so that also after modifying D, we still have that D(n,,(K)) C I.
There also exist az,ay,...,q, € K with

D(€172) = 3613 + Q€1 4 + -+ Q€1 n.
For 3 <1i < n we have [e; 2, €;,41] = 0, so that
0= Dlei, €iit+1]
= [D(e12), €ii+1] + €12, D(€s,i41)]

= [aze1 3+ €14+ -+ aperp, €ii41] +0

= 061 5+1-
It follows that «; = 0 for all n > ¢ > 3, so that
D(elg) = Qp€in = ad(—anez,n)(el,z)-

Note that for i > 2 we have ad(—ayez,)(€ii41) = 0. So by finally replacing D with D +
ad(apez,,) we find that

D(6i7i+1) = 0, V1<i<n.
But this implies that D = 0, so that the original D is in Inn(n,,(K)), which was to be shown. [

By exactly the same technique one can also prove the following result:

Proposition 9.2. For any n > 2 we have

AID(t,(K)) = Inn(t,(K)).
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10. NILPOTENT LIE ALGEBRAS WITH ARBITRARY LARGE AlID(g)/Inn(g)

In the previous sections we had many negative results concerning the existence of non-inner
almost inner derivations. We want to show now that it is also possible to construct infinite
families of Lie algebras g having a space AID(g)/Inn(g) of arbitrarily large dimension n, for
any given n € N.

Consider the following family of 2-step nilpotent Lie algebras g, over a general field K of
dimension 4n + 2, with basis

t1, to, 14, a4, Y14, You (1 <3< n)
and non-zero Lie brackets
(t1, 1] = Y1, [t @25 = You, [to, 2ol =y1 (1 <9< n).
So we have g, = K*" x K?, where K" is the subspace spanned by the z,;’s and the y,;’s and
K? is spanned by t; and t,.
Proposition 10.1. For every n > 2 we have
dim(AID(g,)/Inn(g,)) = n.
Proof. Any element x of g, can be written uniquely in the form
T = Q] + agly + v

where v € K* = (1,,;, yps, 1 < p <2, 1 <i <n). Using this notation we define for any
1=1,2,...,n amap

$D; F Bn = Gn 1 T = Q1ly + oty + U —g—?xl,i—Fl’g,i if a; #0.

Now let
D;: gn = gn : x— Di(x) := [z, 0p,(2)].
For oy # 0 we have that

(8}
Di(ayt; + oty +0) = |oaty + asty + v, —Q—Qxl,i + 294)
1

—Qol1; + Q1Yo + Y1
= Q1Y
Also for oy = 0, we have that D;(ait; + asts +v) = 0 = ayy2,;. Hence D; : g, — g, is a

linear map, having its image in the center of g,, and so D; is a derivation. By construction,
D; € AID(g,). We claim that the set of all D; + Inn(g,) (1 < i < n) forms a basis of

AID(g,,)/Inn(g,).

We will first show that this is a linearly independent set. Assume that > | 5;D; € Inn(g,),
then

Z ﬁzDz = ad(oqtl + Oégtg + ’U)
=1
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for some ag, a2 € K, v € K*. As>" | B;D;(x11) = 0, it follows that 0 = [aqt1+aatatv, 21 1] =
a1y1,1, so that oy = 0. Analogously, the fact that > . | 5;D;(z2,1) = 0 now leads to as = 0, so
Sor, BiD; = ad(v) for some v € K*". But then

> Biyai =Y BiDi(tr) = [v, 1],
i=1 i=1

0= Zﬁ,pi(@) = [, t5].

The second equation above shows that v has no components in the z5;’s and thus is [v, t;] = 0.
Using this in the first equation above leads to 1 = 6, =--- =, = 0.

Next we have to verify that the set is generating. Let D € AID(g,). We have to show that
D =Y "pBD;+ad(z)
i=1

for some (1, s, ..., 0, € K and x € g,. Let D be determined by a map ¢p. Many of the basis
vectors turn out to be fixed:

1. As any vector y, , belongs to the center of g, all of these basis vectors are fixed.
2. Also any vector xy; is fixed, since its centralizer is of codimension 1 in g,,, see Lemma 3.3
3. To see that t is fixed, note that the basis vectors not belonging to Cy, (t2) are the vectors
x3,;. When we apply Lemma 3.7 with e; = t5, e; = xa;, er, = 22, € = y1,; and e,, = y; ; we
can deduce that
b, (o (22:)) = i, (0 (22,5))
from which is follows that t, is fixed.
4. To see that t; is fixed, we start with applying Lemma B.7 with e; = 1, ¢; = 1, ex = 715,
e; = y1; and e,, = y1 ;. This gives us that
to, (op(x1;)) =t (pp(x1;)) for all 1 <i,j <n.
Now applying Lemma 3.7 for ¢ # j with with e; = ¢, e; = 21, ex, = 22, & = y1,; and e, = Yo
we find that
ti, (op(r1,4)) =t (ep(z2;)) for all 1 <i,j < n with i # j.
Together with the above (and knowing that n > 2) we can conclude that
tiy (op(@1,)) =ty (0p(215)) = te, (pp(22k)) for all 1 <4, j, k <mn,
showing that t; is fixed.
The only basisvectors which are not fixed are the vectors x5 ;. By applying Lemma [3.5 for every
fixed basis vector, we may now assume that, after changing D up to an inner derivation, we
have for each basis vector = that pp(z) = > " | Bi(x)xs; for some B;(x) € K. By changing D

to D + ad(¢p(t2)), we may suppose that ¢p(ta) = 0, and so D(ts) = [t2, ¢p(t2)] = 0. Let x be
one of the basis vectors z,; or y,;, then also

D(z) = [z, ¢p(2)] = [z, Zﬁi(x)xz,i] =0.
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Finally, we have that

D(ty) = [t1, ¢p(t1)] = [t, Zﬁz(h)xzz] = Zﬁz(tl)y2z

As a conclusion, we find that, after changing D up to an inner derivation, we obtain

1=1

O

Remark 10.2. For n = 1 the basis vector t; is not fixed. Then the algebra g; of the above
family is isomorphic to gg; of Remark [8.6] which is also the algebra of Example () of [7], page
245. For this algebra we know that dim(AID(g;)/Inn(gy)) = 2.
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