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ALMOST INNER DERIVATIONS OF LIE ALGEBRAS

DIETRICH BURDE, KAREL DEKIMPE, AND BERT VERBEKE

Abstract. We study almost inner derivations of Lie algebras, which were introduced by Gor-
don and Wilson in their work on isospectral deformations of compact solvmanifolds. We com-
pute all almost inner derivations for low-dimensional Lie algebras, and introduce the concept
of fixed basis vectors for proving that all almost inner derivations are inner for 2-step nilpotent
Lie algebras determined by graphs, free 2 and 3-step nilpotent Lie algebras, free metabelian
nilpotent Lie algebras on two generators, almost abelian Lie algebras and triangular Lie alge-
bras. On the other hand we also exhibit families of nilpotent Lie algebras having an arbitrary
large space of non-inner almost inner derivations.

1. Introduction

Almost inner automorphisms of Lie groups and almost inner derivations of Lie algebras have
been introduced by Gordon and Wilson [7] in the study of isospectral deformations of compact
solvmanifolds. A classical question going back to Hermann Weyl was whether or not isospectral
manifolds are necessarily isometric. Milnor [10] in 1964 gave a negative answer by constructing
two isospectral nonisometric flat tori in dimension 16. Mark Kac in 1966 gave the question
the popular title “Can One Hear the Shape of a Drum?” The problem in two dimensions re-
mained open until 1992, when Gordon, Webb, and Wolpert constructed, based on the Sunada
method, a pair of regions in the plane that have different shapes but identical eigenspectra. In
1984 however, Gordon and Wilson wanted to construct not only finite families of isospectral
nonisometric manifolds, but rather continuous families. They constructed isospectral but noni-
sometric compact Riemannian manifolds of the form G/Γ, with a simply connected exponential
solvable Lie group G, and a discrete cocompact subgroup Γ of G. For this construction, almost
inner automorphisms and almost inner derivations were crucial.
The concept of “almost inner” automorphisms and derivations, almost homomorphisms, or al-
most conjugate subgroups arises in many contexts in algebra, number theory and geometry.
Another example here is the study on the relation between element-conjugacy and global conju-
gacy for algebraic groups by Larsen [8]. This is, by a theorem of Sunada, closely related to the
question of when a compact group can be the common covering space of a pair of non-isometric
isospectral manifolds.
There are several other studies on related concepts, for example on local derivations [2], which
are a generalization of almost inner derivations.

The goal of our paper is to begin a systematic study of almost inner derivations of Lie algebras.
Gordon and Wilson, and later others have given several examples of solvable and nilpotent Lie
algebras and their almost inner derivations. However, the methods were ad hoc, and many
examples were restricted to 2-step nilpotent Lie algebras.
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The paper is structured as follows. We first introduce almost inner and central almost inner
derivations, and prove basic properties. Then we give examples of Lie algebras in dimension 5
having non-inner almost inner derivations. In section 3 we explain the concept of fixed basis
vectors. This enables us to show, without computing all derivations, that for several kinds of
Lie algebras all almost inner derivations are already inner. This includes 2-step nilpotent Lie
algebras determined by graphs, free 2-and 3-step nilpotent Lie algebras, free metabelian nilpo-
tent Lie algebras on two generators, almost abelian Lie algebras and triangular Lie algebras.
In section 7 we prove that all metabelian filiform Lie algebras of dimension n ≥ 5, except for
the standard graded one, admit a non-inner almost inner derivation. In section 8 we classify
all complex Lie algebras of dimension 5 admitting a non-inner almost inner derivation, and
compute the space of almost inner derivations for all complex nilpotent Lie algebras of dimen-
sion 6. Finally, we construct infinite families of Lie algebras g having a space AID(g)/Inn(g)
of arbitrarily large dimension n, for any given n ∈ N.

2. Preliminaries

Unless otherwise specified all Lie algebras we consider are over a general field K. The
definition of almost inner derivations of Lie algebras in [7] is as follows.

Definition 2.1. A derivation D ∈ Der(g) of a Lie algebra g is said to be almost inner, if
D(x) ∈ [g, x] for all x ∈ g. The space of all almost inner derivations of g is denoted by AID(g).

A derivation is almost inner if and only if it coincides on each one-dimensional subspace with
an inner derivation. In particular, the set of all inner derivations Inn(g) is a subset of AID(g).
Note that it is not enough in general to check the condition D(x) ∈ [g, x] only for basis vectors
of g. We introduce a new subspace of AID(g) as follows.

Definition 2.2. An almost inner derivation D ∈ AID(g) is called central almost inner if there
exists an x ∈ g such that D− ad(x) maps g to the center Z(g). We denote the space of central
almost inner derivations of g by CAID(g).

The subspaces Inn(g),CAID(g) and AID(g) of Der(g) become Lie subalgebras via the Lie
bracket [D,D′] = DD′ −D′D.

Proposition 2.3. We have the following inclusions of Lie subalgebras

Inn(g) ⊆ CAID(g) ⊆ AID(g) ⊆ Der(g).

Proof. Let D,D′ ∈ AID(g) and x ∈ g. Then there exist y, y′ ∈ g such that D(x) = [y, x] and
D′(x) = [y′, x]. Using the derivation rule and the Jacobi identity we obtain

[D,D′](x) = (DD′)(x)− (D′D)(x)

= D([y′, x])−D′([y, x])

= [D(y′), x] + [y′, D(x)]− [D′(y), x]− [y,D′(x)]

= [D(y′), x] + [y′, [y, x]]− [D′(y), x]− [y, [y′, x]]

= [D(y′), x]− [[y, y′], x]− [D′(y), x].

Hence [D,D′](x) = [D(y′)− [y, y′]−D′(y), x] ∈ [g, x] for all x ∈ g, so that [D,D′] ∈ AID(g).
Let C,C ′ ∈ CAID(g). Then there exist y, y′ ∈ g such that C − ad(y) and C ′ − ad(y′) map g to
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Z(g). Using [D, ad(x)] = ad(D(x)) for D ∈ Der(g) we obtain

[C − ad(y), C ′ − ad(y′)] = [C,C ′]− [C, ad(y′)]− [ad(y), C ′] + [ad(y), ad(y′)]

= [C,C ′]− ad(C(y′)) + ad(C ′(y)) + ad([y, y′]),

so that [C,C ′]−ad(C(y′)−C ′(y)− [y, y′]) = [C−ad(y), C ′−ad(y′)] maps g to Z(g), and hence
[C,C ′] ∈ CAID(g). �

Proposition 2.4. The subalgebra CAID(g) is a Lie ideal in AID(g), and Inn(g) is a Lie ideal

in all subalgebras of Der(g) containing it.

Proof. Let C ∈ CAID(g) and D ∈ AID(g). We need to show that [D,C] ∈ CAID(g). We
already know that [D,C] ∈ AID(g). Fix an element x ∈ g such that C ′ := C − ad(x) maps g
to Z(g). Define D′ := [D,C]− ad(D(x)). Then D′ = [D,C ′] because of ad(D(x)) = [D, ad(x)],
and D′ maps g to Z(g), since

D′(y) = [D,C ′](y)

= D(C ′(y))− C ′(D(y))

for all y ∈ g, because C ′ maps g to Z(g) and D maps Z(g) to Z(g).
Finally, [D, ad(x)] = ad(D(x)) is inner for all D ∈ Der(g), so that Inn(g) is an ideal in all
subalgebras of Der(g) containing Inn(g). �

Remark 2.5. We conjecture that AID(g) is always a Lie ideal in Der(g). However, this seems
not to be known, and there is no obvious algebraic argument for it.

As a first example we will compute the almost inner derivations of the Heisenberg Lie algebra
n3(K), given by the Lie brackets [e1, e2] = e3. By this notation we will mean that n3(K) is a
3-dimensional vector space over K with basis vectors e1, e2 and e3. The Lie brackets between
basis vectors which are not specified are assumed to be zero, so [e1, e3] = [e2, e3] = 0.

Example 2.6. For g = n3(K) we have AID(g) = Inn(g).

Indeed, every derivation D of n3(K) is of the form D(e1) = α1e1 + α2e2 + α3e3, D(e2) =
α4e1 + α5e2 + α6e3, and D(e3) = (α1 + α5)e3. Assume that D is almost inner. Then D(e1) ∈
[g, e1] = 〈e3〉, so that α1 = α2 = 0. In the same way D(e2) ∈ [g, e2] = 〈e3〉 implies that
α4 = α5 = 0, and D(e3) ∈ [g, e3] = 0 gives α1 + α5 = 0. It follows that D ∈ Inn(g).

The next examples show that there exist Lie algebras having more interesting almost inner
derivations, i.e., having non-inner almost inner derivations. Let g5,6 be the filiform nilpotent
Lie algebra with basis {e1, . . . , e5} and Lie brackets

[e1, ei] = ei+1, 2 ≤ i ≤ 4,

[e2, e3] = e5.

Let g5,3 be the 3-step nilpotent Lie algebra with basis {e1, . . . , e5} and Lie brackets

[e1, e2] = e4, [e1, e4] = e5, [e2, e3] = e5.

Denote by Eij the matrix with entry 1 at position (i, j) and 0 otherwise. As a linear map, it
maps ek to 0 for k 6= j, and ej to ei.

Example 2.7. For g = g5,6 we have AID(g) = Inn(g) ⊕ 〈E5,2〉, and for g = g5,3 we have

AID(g) = Inn(g)⊕ 〈E5,3〉.
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The proof follows again by a direct computation. The derivation D = E5,2 for g5,6 is not
inner, but almost inner (in fact, central almost inner). The same holds for D = E5,3 for g5,3.
We will see later also examples of Lie algebras g where the inclusion CAID(g) ⊆ AID(g) is
strict.

The following table shows the result of a computation of almost inner derivations for all complex
nilpotent Lie algebras of dimension 5. The classification of such Lie algebras is taken from [9];
c(g) denotes the nilpotency class of g, and d(g) the derived length. If the entry in the last
column is non zero, it gives an example of an almost inner derivation which is not inner.

Magnin c(g) d(g) dim Inn(g) dimCAID(g) dimAID(g) dimDer(g) D
g5,6 4 2 4 5 5 8 E5,2

g5,5 4 2 4 4 4 9 0
g5,3 3 2 4 5 5 10 E5,3

g5,4 3 2 3 3 3 10 0
n4 ⊕ C 3 2 3 3 3 11 0
g5,2 2 2 3 3 3 13 0
g5,1 2 2 4 4 4 15 0

n3 ⊕ C2 2 2 2 2 2 16 0
C

5 1 1 0 0 0 25 0

A further computation shows that 5 is the minimal dimension where we have a complex Lie
algebra admitting a non-inner almost inner derivation:

Proposition 2.8. Let g be a complex Lie algebra of dimension n ≤ 4. Then we have AID(g) =
CAID(g) = Inn(g).

We will conclude this section with a few more easy facts on almost inner derivations. Clearly
Inn(g) = CAID(g) = AID(g) = 0 for abelian Lie algebras. Recall that a Lie algebra g is called
complete, if Z(g) = 0 and Der(g) = Inn(g). Of course we have AID(g) = CAID(g) = Inn(g) in
this case. In particular semisimple Lie algebras, and parabolic subalgebras of semisimple Lie
algebras are complete.

Proposition 2.9. Let g be a Lie algebra. Then the following statements hold.

(1) Let D ∈ AID(g). Then D(g) ⊆ [g, g], D(Z(g)) = 0 and D(I) ⊆ I for every ideal I of g.

(2) For D ∈ CAID(g) there exists an x ∈ g such that D|[g,g] = ad(x)|[g,g].
(3) If g is 2-step nilpotent, then CAID(g) = AID(g).
(4) If Z(g) = 0, then CAID(g) = Inn(g).
(5) If g is nilpotent, then AID(g) is nilpotent and all D ∈ AID(g) are nilpotent.

(6) We have AID(g⊕ g′) = AID(g)⊕ AID(g′) for the direct sum of two Lie algebras.

Proof. By definition, an almost inner derivation maps g into [g, g] and the center Z(g) to 0.
Let x ∈ I. Then we have D(x) ∈ [g, x] ⊆ [g, I] ⊆ I, and (1) follows.
Given D ∈ CAID(g), there exists an x ∈ g such that D′ = D − ad(x) satisfies D′(g) ⊆ Z(g).
Since D′ is also a derivation we have

D′([u, v]) = [D′(u), v] + [u,D′(v)] = 0
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for all u, v ∈ g. This shows (2). If g is 2-step nilpotent then D(g) ⊆ [g, g] ⊆ Z(g) for any
D ∈ AID(g). Hence AID(g) ⊆ CAID(g), and we have equality. This shows (3). Suppose that
Z(g) = 0 and D ∈ CAID(g). Then there exists an x ∈ g such that D(x) − ad(x) = 0. Hence
D is inner. This shows (4). Let D ∈ AID(g) and x ∈ g, then Dk(x) ∈ [g, [g, [. . . , [g, x] . . .]]]
(k times g). If k is higher than the nilpotence class of g, we have that Dk(x) = 0, hence D is
nilpotent. By Engel’s theorem AID(g) is nilpotent, and (5) follows. For the last statement, let
D ∈ AID(g⊕g′). Then the restrictions are again almost inner derivations, i.e.,D|g ∈ AID(g) and
D|g′ ∈ AID(g′). It is easy to see that the map D 7→ D|g⊕D|g′ gives a one-to-one correspondence
between AID(g⊕ g′) and AID(g)⊕AID(g′). �

3. Fixed basis vectors

For the computation of almost inner derivations of a given Lie algebra one does not always
need to know its derivation algebra explicitly. Instead one can use a concept, which we will
call fixed basis vectors. This is very useful, also for proving several results on almost inner
derivations. Unfortunately the definition is not particularly clear, although it is elementary.
We will need to explain it with some examples.

For the rest of this section, g is an n-dimensional Lie algebra over a field K and with chosen

basis {e1, . . . , en}. For x ∈ g we denote the centralizer of x by Cg(x) = {y ∈ g | [x, y] = 0}. Let
D be an almost inner derivation D of g. Then there exists a map ϕD : g → g such that

D(x) = [x, ϕD(x)]

for all x ∈ g. This map is not unique as we may change ϕD(x) to ϕD(x) + y for any y ∈ Cg(x).
It need also not be linear in general. If x =

∑n

j=1 αjej , then we denote by ti(x) = αi the i-th
coordinate of x with respect to the given basis.

Definition 3.1. Let D be an almost inner derivation of g determined by a map ϕD : g → g.
We will say that a basis vector ei is a fixed vector for D with fixed value α ∈ K if and only if
for all j ∈ {1, 2, . . . n} :

if ej 6∈ Cg(ei) then ti(ϕD(ej)) = α.

Note that the α must be the same for all j where this condition applies. As an example,
consider the Heisenberg Lie algebra n3(K) with basis {e1, e2, e3} and Lie bracket [e1, e2] = e3.

Example 3.2. Let g = n3(K), and D an almost inner derivation of g given by a map ϕD : g →
g. Then every basis vector ei is fixed.

For i = 1 we have Cg(e1) = 〈e1, e3〉, and the condition just applies for j = 2: since e2 6∈ Cg(e1),
we must have t1(ϕD(e2)) = α. Certainly this is true, with the α given by the map ϕD. The
same holds for i = 2, where we have Cg(e2) = 〈e2, e3〉. For i = 3 we have Cg(e3) = g, so that
the condition is vacuously true.

The importance of finding fixed vectors comes from the following fact. If each basis vector
for every almost inner derivations is fixed, then we have AID(g) = Inn(g). We will prove this
result in Corollary 3.6. Often we can show that every basis vector is fixed without knowing the
structure of Der(g). A trivial example is the following lemma.

Lemma 3.3. Let g be a Lie algebra with given basis {e1, . . . , en}, such that for given i, the

number of basis vectors in Cg(xi) is equal to dim(g) or dim(g)− 1. Then the basis vector ei is
fixed.
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Proof. In this case the condition for a fixed basis vector is vacuously true, or can be satisfied
uniquely by the α given by the map ϕD. �

We already saw this argument for i = 1, 2, 3 in the example of g = n3(K) above.
We also want to present an example, where not every basis vector is fixed. For the Lie algebra
g5,6 of Example 2.7 we will show that there is an almost inner derivation D determined by a
map ϕD such that not every basis vector is fixed.

Example 3.4. For g = g5,6 and the almost inner derivation D = E5,2 the basis vector e3 is not

fixed.

We need to find a map ϕD representing D. Let x = α1e1 + . . . + α5e5 ∈ g. Define ϕD as
follows:

(1) If α1 6= 0, then ϕD(x) =
α2

α1

e4.

(2) If α1 = 0, then ϕD(x) = e3.

It is easy to see that D(x) = [x, ϕD(x)] for all x ∈ g. Definition 3.1 for this ϕD and i = 3 says:
for all j ∈ {1, . . . , 5}, if ej 6∈ Cg(e3) = 〈e3, e4, e5〉, then t3(ϕD(ej)) = α, each time for the same
fixed α. This applies for j = 1, 2, and we have ϕD(e1) = 0, ϕD(e2) = e3, so that

t3(ϕD(e2)) = t3(e3) = 1,

t3(ϕD(e1)) = t3(0) = 0.

So there is no fixed α, and e3 is not fixed.

Lemma 3.5. Let D : g → g be an almost inner derivation determined by a map ϕD : g → g. If

ei is a fixed basis vector with fixed value α, then D′ = D+ad(αei) is an almost inner derivation

which is determined by a map ϕD′ : g → g such that for all j, k ∈ {1, 2, . . . , n} :

tj(ϕD′(ek)) = tj(ϕD(ek)) for i 6= j

ti(ϕD′(ek)) = 0.

Proof. Clearly D′ is an almost inner derivation, and we have that

(D + ad(αei))(x) = [x, ϕD(x)] + [αei, x] = [x, ϕD(x)− αei].

So D′ is determined by the map ϕ̃D′ : g → g : x 7→ ϕD(x)− αei.

Now define the map

ϕD′ : g → g : x 7→

{
ϕD(x)− αei if x 6∈ {e1, e2, . . . , en},
ϕD(x)− ti(ϕD(x))ei if x ∈ {e1, e2, . . . , en}.

We claim that D′ is also determined by this new map ϕD′. Indeed, for all non basis vectors
we have ϕD′(x) = ϕ̃D′(x), so we only have to consider basis vectors. Let ej be a basis vector.
Then there are two possibilities:

Case 1: ej ∈ Cg(ei). Then we have

D′(ej) = D(ej) = [ej , ϕD(ej)] = [ej , ϕD(ej)− ti(ϕD(x))ei] = [ej , ϕD′(ej)].

Case 2: ej 6∈ Cg(ei). Then ti(ϕD(ej)) = α, from which it follows that ϕ̃D′(ej) = ϕD′(ej).

Hence D′ is determined by ϕD′. By definition of ϕD′ it is also easy to see that the requirements
tj(ϕD′(ek)) = tj(ϕD(ek)), for j 6= i, and ti(ϕD′(ek)) = 0 hold. �
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As an immediate consequence we obtain the following result.

Corollary 3.6. Let D ∈ AID(g) be determined by a map ϕD. If each basis vector is fixed, then

D ∈ Inn(g).

Proof. Let αi denote the fixed value of ei. Then by iteratively applying Lemma 3.5, we find
that D + ad(α1e1) + ad(α2e2) + · · ·+ ad(αnen) = D + ad(v), with v =

∑n

i=1 αiei is an almost
inner derivation D′, determined by a map ϕD′ with ϕD′(ei) = 0 for all i ∈ {1, 2, . . . , n}. This
implies that D′(ei) = 0 for all basis vectors ei and hence D′ = 0 or D = −ad(v) ∈ Inn(g). �

The next results are two technical lemmas, providing a way to find fixed basis vectors. We
will use the following notation: Let i1, i2, . . . , ir ∈ {1, 2, . . . , n} then

gi1,i2,...,ir = span{ei | i 6∈ {i1, i2, . . . , ir}}

denotes the vector space spanned by all basis vectors not in the set {ei1 , ei2 , . . . , eir}.

Lemma 3.7. Assume that 1 ≤ i, j, k, l,m ≤ n and l 6= m. Moreover assume that there exist

nonzero scalars α, β ∈ K such that

[ej , ei]− αel ∈ gl,m
[ek, ei]− βem ∈ gl,m
[ej , gi] ⊆ gl,m
[ek, gi] ⊆ gl,m.

Then, for any D ∈ AID(g) determined by a map ϕD, we have that ti(ϕD(ej)) = ti(ϕD(ek)).

Proof. Let a = ti(ϕD(ej)), b = ti(ϕD(ek)) and c = ti(ϕD(ej + ek)). Then there exist vectors
v, v′, v′′ ∈ gi such that

ϕD(ej) = aei + v,

ϕD(ek) = bei + v′,

ϕD(ej + ek) = cei + v′′.

Using these notations we find that

(1) D(ej + ek) = [ej + ek, cei + v′′] = cαel + cβem + w′′

for some w′′ ∈ gl,m, and on the other hand we have that

(2) D(ej) +D(ek) = [ej , aei + v] + [ek, bei + v′] = aαel + w + bβem + w′

for some w,w′ ∈ gl,m. Now, as D is a linear map, the two expressions (1) and (2) must be
equal, and so by comparing the l-th and m-th coordinate, we find that

cα = aα, cβ = bβ.

As both α and β are nonzero this implies that a = b and hence

ti(ϕD(ej)) = ti(ϕD(ek)).

�
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Lemma 3.8. Assume that 1 ≤ i, j, k, l ≤ n. Moreover assume that there exist nonzero scalars

α, β ∈ K such that
[ej , ei]− αel ∈ gl
[ek, ei]− βel ∈ gl
[ej , gi] ⊆ gl
[ek, gi] ⊆ gl.

Then, for any D ∈ AID(g) determined by a map ϕD, we have that ti(ϕD(ej)) = ti(ϕD(ek)).

Proof. Let a = ti(ϕD(ej)), b = ti(ϕD(ek)) and c = ti(ϕD(βej − αek)). Let v, v
′, v′′ ∈ gi be such

that

ϕD(ej) = aei + v,

ϕD(ek) = bei + v′

ϕD(βej − αek) = cei + v′′.

Then we have that

(3) D(βej − αek) = [βej − αek, cei + v′′] = βcαel − αcβel + w′′

for some w′′ ∈ gl. On the other hand we have that

(4) βD(ej)− αD(ek) = β[ej , aei + v]− α[ek, bei + v′] = βaαel + w − αbβel + w′

for some w,w′ ∈ gl. By comparing the l-th coordinate of (3) and (4) we find that

αβ(a− b) = 0 ⇒ a = b.

�

4. 2-step nilpotent Lie algebras determined by graphs

Let G(V,E) be a finite simple graph with V = {x1, x2, . . . , xr} its set of vertices and E its
set of edges. If there is an edge between vertex xi and xj with i < j, we denote this edge by
the symbol yi,j. We let X be the vector space over the field K with basis the elements of V
and Y be the vector space with basis the edges yi,j. We define a two-step nilpotent Lie algebra
g over K, where as a vector space g = X ⊕ Y and where the brackets are given by

[xi, xj ] =

{

yi,j, if yi,j ∈ E

0, if there is no edge connecting xi with xj

[xi, yj,k] = 0 ∀xi ∈ V, ∀yj,k ∈ E

[yi,j, yk,l] = 0 ∀yi,j, yk,l ∈ E

Theorem 4.1. Let g be a 2-step nilpotent Lie algebra determined by a finite simple graph.

Then AID(g) = Inn(g).

Proof. Let s = #E and choose an order p1, p2, . . . ps for the edges. So any pt corresponds to a
unique edge yi,j. Now, we fix the basis {e1, e2, . . . , er+s} of g given by

e1 = x1, . . . , er = xr, er+1 = p1, er+2 = p2, . . . , er+s = ps.

Let D ∈ AID(g) be determined by the map ϕD. We want to apply Corollary 3.6, and hence we
want to show that any basis vector is fixed for D. For er+1, er+2, . . . , er+s this is obvious, since
these vectors belong to Z(g).
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Now, consider ei with 1 ≤ i ≤ r. If ei ∈ Z(g), i.e., when xi is an isolated vertex, there is
again nothing to show. So assume that ei 6∈ Z(g). Then there is at least one ej 6∈ Cg(ei) (with
1 ≤ j ≤ n). Hence [ej , ei] = ±el for some l between r + 1 and r + s. Let α = ti(ϕD(ej)).
Consider any other basis vector ek 6∈ Cg(ei). In order to show that ei is fixed, we must show
that also ti(ϕD(ek)) = α. There exists an m ∈ {r + 1, . . . , r + s} with [ek, ei] = ±em. As g is
determined by a graph we have that m 6= l.

We are in the following situation

[ej , ei]± el = 0
[ek, ei]± em = 0
[ej , gi] ⊆ gl,m
[ek, gi] ⊆ gl,m.

This means that we can apply Lemma 3.7 and we find that ti(ϕD(ek)) = ti(ϕD(ej)) = α. Hence
ei is indeed fixed for all i and this finishes the proof. �

Corollary 4.2. Let fr,2 be the free 2-step nilpotent Lie algebra on r generators, then

AID(fr,2) = Inn(fr,2).

Proof. This follows immediately from the fact that fr,2 is the 2-step nilpotent Lie algebra de-
termined by the complete graph on r vertices. �

5. Free 3-step nilpotent Lie algebras

Let fr,3 be the free 3-step nilpotent Lie algebra on r generators e1, e2, . . . , er. Having fixed
these generators, we can find a Hall basis of fr,3, which is a basis of fr,3 as a vector space and
which is explicitly given by the following collection of vectors:

ei for 1 ≤ i ≤ r

yi,j = [ei, ej ] for 1 ≤ i < j ≤ r

zi,j,k = [ei, yj,k] for 1 ≤ j < k ≤ r and 1 ≤ i ≤ k.

Note that if i > k then

[ei, yj,k] = [ei, [ej , ek]]

= −[ej , [ek, ei]]− [ek, [ei, ej]]

= −zj,k,i + zk,j,i.

Lemma 5.1. Let x, y ∈ fr,3. If x− y 6∈ [fr,3, fr,3], then

[x, [fr,3, fr,3]] ∩ [y, [fr,3, fr,3]] = 0.

Proof. If either x or y belongs to [fr,3, fr,3] there is nothing to show. In case both do not belong
to [fr,3, fr,3], the condition that x−y 6∈ [fr,3, fr,3], actually means that we can choose a generating
set e1 = x, e2 = y, e3, . . . , er such that fr,3 is the free 3-step nilpotent Lie algebra on that set
of generators. Using the Hall basis introduced above, we see that

[x, [fr,3, fr,3]] = 〈z1,p,q | 1 ≤ p < q ≤ r〉,

[y, [fr,3, fr,3]] = 〈z2,p,q | 1 ≤ p < q ≤ r〉.
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Note that all of the vectors z1,p,q and z2,p,q belong to the Hall set mentioned above and that
the set of basis vectors z1,p,q is disjoint of the set of basis vectors z2,p,q. So we have that the
subspaces spanned by those two sets have only the zero vector in common. �

Theorem 5.2. Let fr,3 be the free 3-step nilpotent Lie algebra on r generators. Then

AID(fr,3) = Inn(fr,3).

Proof. Let D ∈ AID(fr,3). Note that D induces an almost inner derivation D̄ on fr,3/Z(fr,3) ∼=
fr,2. By Corollary 4.2 we know that D̄ is an inner derivation. Hence, by adjusting D with an
inner derivation, we may assume that D(fr,3) ⊆ Z(fr,3).

Let e1, e2, . . . , er be the generators of fr,3. Since we must have that D(ei) ∈ Z(fr,3), there exist
vectors vi ∈ [fr,3, fr,3] such that

D(ei) = [ei, vi].

Analogously, there are also vectors wi ∈ [fr,3, fr,3], for 2 ≤ i ≤ r, with

D(e1 + ei) = [e1 + ei, wi].

By using the equation D(e1 + ei) = D(e1) +D(ei) we find that

[e1, wi]− [e1, v1] = [ei, vi]− [ei, wi].

Now, since the left hand side of the above expression belongs to [e1, [fr,3, fr,3]] and the right
hand side to [ei, [fr,3, fr,3]], it follows from Lemma 5.1 that both expressions are zero. Hence we
have

[e1, wi − v1] = [ei, wi − vi] = 0.

Since the only elements of [fr,3, fr,3] that commute with e1, respectively with ei, are those
belonging to the center Z(fr,3), we find that

wi − v1 ∈ Z(fr,3), wi − vi ∈ Z(fr,3).

So vi−v1 ∈ Z(fr,3). Therefore we can without any problem replace vi with v1, and we find that
D(ei) = [ei, v1]. If we now consider the derivation D′ = D + ad(v1), we see that D′(ei) = 0.
But then D′ is a derivation which is zero on the generators, and hence D′ is zero everywhere.
It follows that D = −ad(v1), which was to be shown. �

6. Free metabelian nilpotent Lie algebras on two generators

In this section we will show that all almost inner derivations are inner for free metabelian
nilpotent Lie algebras of class c on 2 generators.

Let f2 be the free Lie algebra on two generators, say a and b. Let f
(1)
2 = [f2, f2], f

(i+1)
2 = [f

(i)
2 , f

(i)
2 ]

for i ≥ 1, and γ1(f2) = f2, γi+1(f2) = [f2, γi(f2)] for i ≥ 1. Then, the free c-step nilpotent and
metabelian Lie algebra m2,c is obtained as a quotient

m2,c =
f2

f
(2)
2 + γc+1(f2)

.

So, it is the largest quotient of f2 which is both metabelian and c–step nilpotent. Let us use x1
and x2 to denote the projection of a and b resp. in m2,c. We introduce the notation ymn for all
m ≥ 2, n ∈ {1, . . . , m− 1} by

ymn = [x2, x1, x1, x1, . . . , x1
︸ ︷︷ ︸

m− n times

, x2, x2, x2, . . . , x2
︸ ︷︷ ︸

n− 1 times

],
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where for all z1, z2, . . . , zn ∈ g, the iterated bracket [[. . . [[z1, z2], z3], . . . ], zn] is denoted with
[z1, z2, . . . , zn]. So y

m
n is an m-fold Lie bracket with m−n appearances of x1 and n appearances

of x2. It is well known that x1, x2 together with the elements ymn (1 ≤ n < m ≤ c) form
a basis of m2,c (E.g. [3, Section 4.7]). In fact, for any i > 1 the projections of the elements
yi1, y

i
2, . . . , y

i
i−1 form a basis of γi(m2,c)/γi+1(m2,c). So γi(m2,c)/γi+1(m2,c) is (i− 1)-dimensional

(for i ≤ c).

Lemma 6.1. Let z1, z2, . . . , zn−2 ∈ {x1, x2} and k = #{i ∈ {1, . . . , n− 2} | zi = x2}+1. Then
we have

[x2, x1, z1, z2, . . . , zn−2] = ynk .

Proof. In a metabelian Lie algebra g, it follows from the Jacobi identity that

∀x, y ∈ g, ∀c ∈ γ2(g) : [c, x, y] = [c, y, x].

From this it follows that

[x2, x1, z1, z2, . . . , zn−2] = [x2, x1, zσ(1), zσ(2), . . . , zσ(n−2)]

for any permutation σ on n− 2 letters 1, 2, . . . , n− 2. Now, the result follows easily. �

The lemma easily implies the following identities.

Corollary 6.2. We have

[ymn , x1] = ym+1
n and [ymn , x2] = ym+1

n+1 .

Now we can prove the main result of this section.

Proposition 6.3. Let m2,c be the free c-step nilpotent and metabelian Lie algebra on 2 gener-

ators over an infinite field K. Then AID(m2,c) = Inn(m2,c).

Proof. For c = 1 we have that m2,c is abelian and for c = 2 we have that m2,c is the Heisenberg
Lie algebra. As these Lie algebras have no non-trivial almost inner derivations the proposition
is valid in this situation.

For general c ≥ 3, we proceed by induction and so we assume the proposition holds up to
c−1. Let D be an almost inner derivation of m2,c. The space I = 〈yc1, y

c
2, . . . , y

c
c−1〉 = γc(m2,c) =

Z(m2,c) is an ideal of m2,c and hence D induces an almost inner derivation D̄ on

m2,c/I ∼= m2,c−1.

By the induction hypothesis, D̄ is an inner derivation of m2,c−1. This means that we can alter
D by an inner derivation of m2,c and assume that

D(m2,c) ⊆ I = 〈yc1, y
c
2, . . . , y

c
c−1〉 = γc(m2,c).

Moreover, by the fact that D ∈ AID(m2,c) we must have that D(x) ∈ [x,m2,c] and hence

D(x1) ∈ 〈yc1, y
c
2, . . . , y

c
c−2〉 and D(x2) ∈ 〈yc2, y

c
3, . . . , y

c
c−1〉.

So there are parameters α1, α2, . . . , αc−2, β2, β3, . . . , βc−1 ∈ C such that

D(x1) = α1y
c
1 + α2y

c
2 + · · ·+ αc−2y

c
c−2 and D(x2) = β2y

c
2 + β3y

c
3 + · · ·+ βc−1y

c
c−1.

By changing D to D−adα1y
c−1

1
+α2y

c−1

2
+···+αc−2y

c−1

c−2

, we may assume that all parameters αi = 0

(1 ≤ i ≤ c− 2) and we are in the situation with

D(x1) = 0 and D(x2) = β2y
c
2 + β3y

c
3 + · · ·+ βc−1y

c
c−1.
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Now let λ ∈ K. Then on the one hand we have that

(5) D(λx1 + x2) = λD(x1) +D(x2) = β2y
c
2 + β3y

c
3 + · · ·+ βc−1y

c
c−1.

On the other hand, we also know that there exist an element vλ ∈ m2,c with

D(λx1 + x2) = [vλ, λx1 + x2].

Let

vλ = a1x1 + a2x2 +
∑

1≤n<m≤c

am,ny
m
n

then

(6) [vλ, λx1 + x2] = (a2λ− a1)y
2
1 +

∑

1≤n<m≤c−1

λam,ny
m+1
n +

∑

1≤n<m≤c−1

am,ny
m+1
n+1

Comparing the coefficients of the basis vectors yci of (5) with (6) we get the following system
of equations:







λac−1,1 = 0
λac−1,2 + ac−1,1 = β2
λac−1,3 + ac−1,2 = β3

...
λac−1,c−2 + ac−1,c−3 = βc−2

ac−1,c−2 = βc−1.

This leads to






λac−1,1 = 0
λ2ac−1,2 + λac−1,1 = λβ2
λ3ac−1,3 + λ2ac−1,2 = λ2β3

...
λc−2ac−1,c−2 + λc−3ac−1,c−3 = λc−3βc−2

λc−2ac−1,c−2 = λc−2βc−1.

By taking the alternating sum of all these equations, we find that

λβ2 − λ2β3 + · · ·+ (−1)c−2λc−3βc−2 + (−1)c−1λc−2βc−1 = 0.

Since the above equation has to hold for all possible λ and K is infinite, we must have that

β2 = β3 = · · · = βc−1 = 0.

It follows that D(x2) = 0. Together with the fact that D(x1) = 0 this implies that D = 0,
which means that the original D we started with was an inner derivation. �

7. Almost abelian Lie algebras and filiform nilpotent Lie algebras

From now on we restrict ourselves to the case K = C. Almost abelian Lie algebras have
no unique definition in the literature. A common convention is that a Lie algebra g is almost

abelian if it contains a 1-codimensional abelian ideal. It is enough, however, to require that g
contains a 1-codimensional abelian subalgebra, see [5]. Here we consider almost inner derivations
of complex almost abelian Lie algebras. We may write g = Cn⋊C with C = 〈en+1〉, and a basis
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e1, e2, . . . , en of Cn, such that with respect to this basis, ad(en+1)|Cn is expressed in canonical
Jordan form, i.e.,

ad(en+1)|Cn =









B1 0 0 · · · 0
0 B2 0 · · · 0
0 0 B3 · · · 0
...

...
...

. . .
...

0 0 0 · · · Bk









where each Bi is a block matrix of the form

Bi =











λi 1 0 · · · 0 0
0 λi 1 · · · 0 0
0 0 λi · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · λi 1
0 0 0 · · · 0 λi











We can apply the lemmas on fixed vectors to prove the following result.

Proposition 7.1. Let e1, e2, . . . , en, en+1 be the basis of g = Cn ⋊ C as described above. Then

for any almost inner derivation D : g → g determined by a map ϕD, any basis vector is fixed.

It follows that AID(g) = Inn(g).

Proof. Let i ∈ {1, 2, . . . , n}, then all basis vectors e1, e2, . . . , en ∈ Cg(ei). Hence ei is fixed by
Lemma 3.3. So it suffices to show that en+1 is fixed. Therefore, we need to show that for any
ej , ek 6∈ Cg(en+1) (with 1 ≤ j < k ≤ n) we have that

tn+1(ϕD(ej)) = tn+1(ϕD(ek)).

There are three different cases:

Case 1: ej and ek are basis vectors for different Jordan blocks. It follows that there exist
λ, λ′ ∈ C such that

[en+1, ej ] = λej or λej + ej−1,

[en+1, ek] = λ′ek or λ′ek + ek−1.

The two possibilities for each bracket are necessary for including the cases λ = 0 or λ′ = 0. In
all of the situations above, we can use Lemma 3.7, with l = j or j − 1 and m = k or k − 1, to
conclude that tn+1(ϕD(ej)) = tn+1(ϕD(ek)).

Case 2: ej and ek are basis vectors for the same Jordan block and k − j ≥ 2. In this case we
have exactly the same conclusion as in the previous case.

Case 3: We have k = j+1 and ej+1 and ej are basis vectors for the same Jordan block. In this
case there is a λ ∈ C such that

[en+1, ej+1] = λej+1 + ej ,

[en+1, ej] = λej or λej + ej−1.

If λ 6= 0, then Lemma 3.8, with l = j allows us to conclude that tn+1(ϕD(ej+1)) = tn+1(ϕD(ej)).
On the other hand, if λ = 0, then we must have that [en+1, ej+1] = ej and [en+1, ej ] = ej−1,
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because otherwise ej ∈ Cg(en+1). In this case, we can again use Lemma 3.7, with l = j − 1 and
m = j, to conclude that tn+1(ϕD(ej+1)) = tn+1(ϕD(ej)). �

Denote by fn the standard graded filiform nilpotent Lie algebra of dimension n, defined by
the Lie brackets [e1, ei] = ei+1 for i = 2, . . . , n − 1 in the basis (e1, . . . , en). Clearly we have
fn ∼= Cn−1 ⋊ C with C = 〈e1〉 over C. Hence we obtain the following result as a corollary of
Proposition 7.1.

Proposition 7.2. The filiform nilpotent Lie algebra fn satisfies AID(fn) = CAID(fn) = Inn(fn).

We already have seen in Example 2.7, that filiform nilpotent Lie algebras can have more
interesting almost inner derivations than just inner ones. The algebra g5,6 in this example is
metabelian filiform. It turns out that this example generalizes to all metabelian filiform Lie
algebras of dimension n ≥ 5. It has been shown in [4] that every metabelian filiform Lie algebra
g of dimension n ≥ 3 has an adapted basis (e1, . . . , en) such that

[e1, ei] = ei+1, 1 ≤ i ≤ n− 1

[e2, ek] = α2,5e2+k + · · ·+ α2,n−k+3en, 3 ≤ k ≤ n− 2

[ei, ek] = 0, i, k ≥ 3,

with structure constants {α2,k | 5 ≤ k ≤ n}. Clearly g ∼= fn if and only if all structure constants
are zero.

Lemma 7.3. Let g be a complex metabelian filiform Lie algebra of dimension n ≥ 3 and let

D ∈ AID(g). Then there exists a v ∈ g and a λ ∈ C such that

D − adv = λEn,2.

Proof. We proceed by induction on the dimension n. If n < 5, then g is a standard filiform
Lie algebra and all almost inner derivations are inner by Proposition 7.2. So the result holds,
with λ = 0. So assume that n ≥ 5 and that the lemma is valid for metabelian filiform Lie
algebras of smaller dimensions. Let D ∈ AID(g). Then D induces an almost inner derivation
D̄ on g/〈en〉. By induction, we may assume, after changing D up to an inner derivation, that
we have D̄ = µEn−1,2 for some µ ∈ C. This implies that D(e1) = aen for some a ∈ C. Now,
replace D, with D′ = D + ada en−1

. Then we have

D′(e1) = D(e1) + [aen−1, e1] = 0,

D′(ei) = D(ei) + [aen−1, ei] = D(ei) for i ≥ 2.

In particular, we have that

D′(e2) = D(e2) = µen−1 + λen for some µ, λ ∈ C.

From this it follows that

D′(e3) = D′[e1, e2] = [D′(e1), e2] + [e1, D
′(e2)] = µen,

D′(e4) = D′[e1, e3] = [D′(e1), e3] + [e1, D
′(e3)] = 0,

and analogously D′(ei) = 0 for i ≥ 5. To finish the proof, we have to show that µ = 0. So
assume that µ 6= 0.
Since we have D′(e3) = µen and D′ ∈ AID(g), there must exist an element

∑n

i=1 aiei ∈ g with
[
∑n

i=1 aiei, e3] = µen. This leads to the equation

a1e4 + a2[e2, e3] = µen,
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which expands to
a1e4 + a2(α2,5e5 + α2,6e6 + · · ·+ α2,nen) = µen.

As we assume that µ 6= 0, this implies

α2,5 = α2,6 = · · · = α2,n−1 = 0.

As a conclusion thus far, we have found that when µ 6= 0, then the basis vectors ei satisfy

[e1, ei] = ei+1, 2 ≤ i ≤ n− 1

[e2, e3] = α2,nen

[e2, ei] = 0, 4 ≤ i ≤ n

[ei, ej] = 0, i, j ≥ 3.

There must also exist an element
∑n

i=1 biei ∈ g with D(e2) = [
∑n

i=1 biei, e2]. This leads to the
equation

µen−1 + λen = b1e3 − b3α2,nen.

Since we are assuming that µ 6= 0, this equation does not have a solution, which is a contra-
diction. Hence indeed µ = 0, and therefore D′ = λE2,n, which was to be shown. �

The lemma now easily implies the following result.

Proposition 7.4. Let g be a metabelian filiform Lie algebra of dimension n ≥ 5, which is

different from fn. Then

AID(g) = CAID(g) = Inn(g)⊕ 〈En,2〉.

Proof. We only have to show that D = En,2 is an almost inner derivation. If x =
∑n

i=1 βiei
with β1 6= 0, then D(x) = β2en = [x, β2

β1

en−1]. Otherwise β1 = 0. Since g is not the standard

graded algebra fn, there exists a minimal index i with 5 ≤ i ≤ n such that α2,i 6= 0. Then, for
k = n− i+ 3 ≥ 3 we have D(x) = β2en = [x, 1

α2,i
ek]. Hence D(x) ∈ [g, x] for all x ∈ g. �

Remark 7.5. There are also filiform nilpotent Lie algebras g with dim(AID(g)/Inn(g)) ≥ 2
for dim(g) ≥ 7; of course with d(g) ≥ 3. The following table shows the dimensions of the
derivations spaces for all complex filiform nilpotent Lie algebras of dimension 7, with Magnin’s
notation [9]. For g7,1.1(iλ) we have λ 6= 0, 1. The two cases λ = 0 and λ = 1 are listed separately.
The last column, when non zero, gives examples of almost inner derivations, which together
with the inner derivations generate AID(g).

Magnin c(g) d(g) dim Inn(g) dimCAID(g) dimAID(g) dimDer(g) D
g7,0.1 6 3 6 7 8 10 E6,2 + E7,3, E7,2

g7,0.2 6 2 6 7 7 10 E7,2

g7,0.3 6 2 6 7 7 11 E7,2

g7,1.1(iλ) 6 3 6 7 8 10 E6,2 + E7,3, E7,2

g7,1.1(i0) 6 3 6 6 6 10 0
g7,1.1(i1) 6 2 6 7 7 11 E7,2

g7,1.1(ii) 6 3 6 7 7 11 E7,2

g7,1.4 6 2 6 7 7 12 E7,2

g7,1.6 6 2 6 7 7 12 E7,2

g7,2.3 6 2 6 6 6 13 0
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8. Low-dimensional Lie algebras

Complex Lie algebras of dimension n ≤ 4 do not have non-inner almost inner derivations.
This is different in dimension 5. In order to determine the space of almost inner derivations
we will not use a full classification of all 5-dimensional Lie algebras, but rather a description
of the moduli space given in [6]. Here the authors give a natural stratification by orbifolds,
in terms of 24 families of Lie algebras, with up to 4 parameters. This is much better than a
full classification for us, because the determination of almost inner derivations is much more
efficient for the stratification, the list of the full classification being much too long. We already
know from the table after Example 2.7 that every complex nilpotent Lie algebra of dimension
5 having a non-inner almost inner derivation is isomorphic to g5,3 or g5,6.
The most interesting family of solvable, non-nilpotent Lie algebras in this context is the family
d12(p : q : r) with p = 0 from [6].

Definition 8.1. The family of complex 5-dimensional Lie algebras A(q, r) = d12(0 : q : r) is
defined by the Lie brackets

[e1, e5] = e2,

[e2, e5] = (q + r)e2,

[e3, e4] = e2,

[e3, e5] = e1 + qe3,

[e4, e5] = e3 + re4.

It is straightforward to compute the almost inner derivations of this family.

Lemma 8.2. We have

dimDer(A(q, r)) =

{

7, if (q, r) 6= (0, 0)

8, otherwise

dim Inn(A(q, r)) = 4, for all q, r ∈ C

dimAID(A(q, r)) =

{

4, if qr 6= 0, q + r 6= 0

5, otherwise

We can determine the Lie algebras A(q, r) with dimAID(A(q, r)) = 5 up to isomorphism.

Lemma 8.3. Every Lie algebra A(q, r) satisfying qr = 0 or q + r = 0 is either isomorphic to

A(1, 0), to A(1,−1) or to A(0, 0) ∼= g5,6.

Proof. Note that A(q, r) ∼= A(r, q), see [6]. It is easy to see that A(0, 0) is filiform nilpotent
and isomorphic to g5,6. So we may assume that (q, r) 6= (0, 0). Suppose first that qr = 0. Then
we may assume q 6= 0 and r = 0, and there is an Lie algebra isomorphism ϕ : A(q, 0) → A(1, 0)
given by









q2 0 0 0 0
1− q2 q 0 0 0

0 0 q 0 0

0 0 0 1 1−q2

q

0 0 0 0 q









.
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Secondly, let q + r = 0 and q 6= 0. Then there is an Lie algebra isomorphism ϕ : A(q,−q) →
A(1,−1) given by










1 0 q2−1
q

q2−1
q2

0

0 q q2−1
q

0 0

0 0 q 0 0
0 0 0 1 0
0 0 0 0 q










.

Finally, A(q, r) is unimodular if and only if q + r = 0. Hence A(1,−1) is unimodular, but
A(1, 0) is not. So they cannot be isomorphic. Both A(1,−1) and A(1, 0) are solvable and
non-nilpotent, whereas A(0, 0) is nilpotent. �

Proposition 8.4. Every complex Lie algebra of dimension 5 having a non-inner almost inner

derivation is isomorphic to one of the following Lie algebras:

g5,3, g5,6, A(1, 0), A(1,−1).

Proof. We use Table 3 of [6] listing the 24 families of Lie algebras. For each family, or type,
we compute the spaces Der(g), AID(g) and Inn(g) for all possible parameters. The types
d1, d2, d3, d4, d7, d8, d10, d11, d16, d17, d18, d19, d24 have no parameters, so that the computation is
easy. Also, the nilpotent algebras are easy, because they correspond to choosing all parameters
equal to zero. Moreover we do know the result already for nilpotent algebras. Note that there
is an error in the Lie brackets of d2 in table 3 of [6], where ψ12

1 has to be removed; and also
in the definition on page 429. The hardest cases are the ones with 3 or 4 parameters, namely
the families d5(p : q : r), d12(p : q : r), d20(p : q : r : s) and d21(p : q : r). A long, but
straightforward computation shows that, for non-nilpotent algebras, the only family with non-
inner almost inner derivations is d12(p : q : r), where we need p = 0. More precisely we see that
only for the algebras A(q, r) = d12(0 : q : r) with q = 0, or r = 0 or q + r = 0 this is the case.
We obtain (see Lemma 8.2)

AID(A(q, r)) =







Inn(A(q, r))⊕ 〈E2,4〉 for q = 0, r 6= 0

Inn(A(q, r))⊕ 〈E2,4 + qE3,5〉 for r = 0, q 6= 0

Inn(A(q, r))⊕ 〈r2E2,1 − E2,4 + rE3,5 + r2E4,5〉 for q + r = 0

�

Remark 8.5. The Lie algebra A(1,−1) arises in a different context, namely in the classification
of Lie algebras admitting a Sasakian structure, see [1]. A Sasakian structure on a Riemannian
manifold is the analogue in odd dimensions of a Kähler structure. Indeed, a Riemannian mani-
foldM of odd dimension admits a compatible Sasakian structure if and only if the Riemannian
cone M × R+ is Kähler. Left-invariant Sasakian structures on Lie groups can be classified
by Sasakian structures on its Lie algebras. In the classification of 5-dimensional Sasakin Lie
algebras in Theorem 10 of [1], the Sasakian Lie algebra g3 is isomorphic to A(1,−1) over the
complex numbers.

Remark 8.6. In dimension 6 we have computed the almost inner derivations only for nilpotent
Lie algebras, using the classification given in [9]. The result is given in the following table:
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Magnin c(g) d(g) dim Inn(g) dimCAID(g) dimAID(g) dimDer(g) D
g6,20 5 3 5 5 6 8 E5,2

g6,18 5 3 5 5 5 9 0
g6,19 5 2 5 6 6 9 E6,2

g6,17 5 2 5 6 6 10 E6,2

g6,15 4 2 5 5 5 10 0
g6,13 4 2 5 6 6 10 E6,3

g6,16 5 2 5 5 5 11 0
g6,14 4 2 4 4 4 11 0
g6,9 3 2 5 5 5 11 0
g6,12 4 2 5 5 5 11 0

g5,6 ⊕ C 4 2 4 5 5 12 E5,2

g6,5 3 2 4 4 4 12 0
g6,10 3 2 5 5 5 12 0
g6,11 4 2 5 6 6 12 E6,3

g5,5 ⊕ C 4 2 4 4 4 13 0
g6,8 3 2 4 6 6 13 E5,3, E6,2

g6,4 3 2 4 4 4 13 0
g6,7 3 2 4 6 6 14 E6,2, E6,3

g6,2 3 2 5 5 5 14 0
g6,6 3 2 4 4 4 15 0

g5,4 ⊕ C 3 2 3 3 3 15 0
g5,3 ⊕ C 3 2 4 5 5 15 E5,3

n3 ⊕ n3 2 2 4 4 4 16 0
n4 ⊕ C2 3 2 3 3 3 17 0
g6,1 2 2 4 6 6 17 E6,3, E6,4

g6,3 2 2 3 3 3 18 0
g5,2 ⊕ C 2 2 3 3 3 19 0
g5,1 ⊕ C 2 2 4 4 4 21 0
n3 ⊕ C3 2 2 2 2 2 24 0

C6 1 1 0 0 0 36 0

9. Triangular Lie algebras

In this section we consider the Lie algebra tn(K), resp. nn(K), of all upper-triangular, resp.
strictly upper-triangular, n× n matrices over a general field K again.

Let ei,j denote the n× n matrix with 0’s everywhere, except a 1 on the (i, j)-th spot. Recall
that

(7) [ei,j, ek,l] = δj,kei,l − δl,iek,j.

Proposition 9.1. For any n ≥ 2 we have that

AID(nn(K)) = Inn(nn(K)).

Proof. The Lie algebra nn(K) has a basis consisting of the matrices ei,j where 1 ≤ i < j ≤ n.
From (7) it follows that

[nn(K), ei,j] = 〈ei,j+1, ei,j+2, . . . , ei,n, e1,j , e2,j, . . . , ei−1,j〉.
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We proceed by induction on n. For n = 2 the proposition is trivially true since n2(K) ∼= K is
abelian. So we assume that n > 2 and that the result holds for smaller values of n.

Let D ∈ AID(nn(K)). Note that I = 〈e1,2, e1,3, . . . , e1,n〉 is an ideal of nn(K). This implies
that D(I) ⊆ I. It follows that D induces a derivation D̄ of nn(K)/I ∼= nn−1(K). Of course D̄ ∈
AID(nn−1(K)) and by induction, we can conclude that D̄ is an inner derivation. Let x ∈ nn(K)
be an element such that D̄ = ad(x̄) where x̄ denotes the projection of x in nn−1(K) ∼= nn(K)/I.
By replacing D by D − ad(x) we may assume that D is an almost inner derivation of nn(K)
with D(nn(K)) ⊆ I. It follows that there exist elements β3, β4, . . . , βn ∈ K such that

D(e2,3) = β3e1,3, D(e3,4) = β4e1,4, D(e4,5) = β5e1,5, . . . , D(en−1,n) = βne1,n.

Let a = β3e1,2 + β4e1,3 + · · ·+ βne1,n−1, then for all i with 2 ≤ i ≤ n− 1 we have that

ad(a)(ei,i+1) = [β3e1,2 + β4e1,3 + · · ·+ βne1,n−1, ei,i+1]

= [βi+1e1,i, ei,i+1]

= βi+1e1,i+1

= D(ei,i+1).

So, by replacing D with D − ad(a), we may assume that

D(e2,3) = D(e3,4) = · · · = D(en−1,n) = 0.

Note that ad(a)(I) ⊆ I, so that also after modifying D, we still have that D(nn(K)) ⊆ I.
There also exist α3, α4, . . . , αn ∈ K with

D(e1,2) = α3e1,3 + α4e1,4 + · · ·+ αne1,n.

For 3 ≤ i < n we have [e1,2, ei,i+1] = 0, so that

0 = D[e1,2, ei,i+1]

= [D(e1,2), ei,i+1] + [e1,2, D(ei,i+1)]

= [α3e1,3 + α4e1,4 + · · ·+ αne1,n, ei,i+1] + 0

= αie1,i+1.

It follows that αi = 0 for all n > i ≥ 3, so that

D(e1,2) = αne1,n = ad(−αne2,n)(e1,2).

Note that for i ≥ 2 we have ad(−αne2,n)(ei,i+1) = 0. So by finally replacing D with D +
ad(αne2,n) we find that

D(ei,i+1) = 0, ∀1 ≤ i < n.

But this implies thatD = 0, so that the originalD is in Inn(nn(K)), which was to be shown. �

By exactly the same technique one can also prove the following result:

Proposition 9.2. For any n ≥ 2 we have

AID(tn(K)) = Inn(tn(K)).
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10. Nilpotent Lie algebras with arbitrary large AID(g)/Inn(g)

In the previous sections we had many negative results concerning the existence of non-inner
almost inner derivations. We want to show now that it is also possible to construct infinite
families of Lie algebras g having a space AID(g)/Inn(g) of arbitrarily large dimension n, for
any given n ∈ N.

Consider the following family of 2-step nilpotent Lie algebras gn over a general field K of
dimension 4n+ 2, with basis

t1, t2, x1,i, x2,i, y1,i, y2,i (1 ≤ i ≤ n)

and non-zero Lie brackets

[t1, x1,i] = y1,i, [t1, x2,i] = y2,i, [t2, x2,i] = y1,i (1 ≤ i ≤ n).

So we have gn = K4n ⋊K2, where K4n is the subspace spanned by the xp,i’s and the yp,i’s and
K2 is spanned by t1 and t2.

Proposition 10.1. For every n ≥ 2 we have

dim(AID(gn)/Inn(gn)) = n.

Proof. Any element x of gn can be written uniquely in the form

x = α1t1 + α2t2 + v

where v ∈ K4n = 〈xp,i, yp,i, 1 ≤ p ≤ 2, 1 ≤ i ≤ n〉. Using this notation we define for any
i = 1, 2, . . . , n a map

ϕDi
: gn → gn : x = α1t1 + α2t2 + v 7→

{
0 if α1 = 0
−α2

α1

x1,i + x2,i if α1 6= 0.

Now let

Di : gn → gn : x 7→ Di(x) := [x, ϕDi
(x)].

For α1 6= 0 we have that

Di(α1t1 + α2t2 + v) = [α1t1 + α2t2 + v,−
α2

α1
x1,i + x2,i]

= −α2y1,i + α1y2,i + α2y1,i

= α1y2,i

Also for α1 = 0, we have that Di(α1t1 + α2t2 + v) = 0 = α1y2,i. Hence Di : gn → gn is a
linear map, having its image in the center of gn, and so Di is a derivation. By construction,
Di ∈ AID(gn). We claim that the set of all Di + Inn(gn) (1 ≤ i ≤ n) forms a basis of
AID(gn)/Inn(gn).

We will first show that this is a linearly independent set. Assume that
∑n

i=1 βiDi ∈ Inn(gn),
then

n∑

i=1

βiDi = ad(α1t1 + α2t2 + v)
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for some α1, α2 ∈ K, v ∈ K4n. As
∑n

i=1 βiDi(x1,1) = 0, it follows that 0 = [α1t1+α2t2+v, x1,1] =
α1y1,1, so that α1 = 0. Analogously, the fact that

∑n

i=1 βiDi(x2,1) = 0 now leads to α2 = 0, so
∑n

i=1 βiDi = ad(v) for some v ∈ K4n. But then

n∑

i=1

βiy2,i =

n∑

i=1

βiDi(t1) = [v, t1],

0 =

n∑

i=1

βiDi(t2) = [v, t2].

The second equation above shows that v has no components in the x2,i’s and thus is [v, t1] = 0.
Using this in the first equation above leads to β1 = β2 = · · · = βn = 0.

Next we have to verify that the set is generating. Let D ∈ AID(gn). We have to show that

D =

n∑

i=1

βiDi + ad(x)

for some β1, β2, . . . , βn ∈ K and x ∈ gn. Let D be determined by a map ϕD. Many of the basis
vectors turn out to be fixed:

1. As any vector yp,q belongs to the center of gn, all of these basis vectors are fixed.

2. Also any vector x1,i is fixed, since its centralizer is of codimension 1 in gn, see Lemma 3.3.

3. To see that t2 is fixed, note that the basis vectors not belonging to Cgn(t2) are the vectors
x2,i. When we apply Lemma 3.7 with ei = t2, ej = x2,i, ek = x2,j , el = y1,i and em = y1,j we
can deduce that

tt2(ϕD(x2,i)) = tt2(ϕD(x2,j))

from which is follows that t2 is fixed.

4. To see that t1 is fixed, we start with applying Lemma 3.7 with ei = t1, ej = x1,i, ek = x1,j ,
el = y1,i and em = y1,j. This gives us that

tt1(ϕD(x1,i)) = tt1(ϕD(x1,j)) for all 1 ≤ i, j ≤ n.

Now applying Lemma 3.7 for i 6= j with with ei = t1, ej = x1,i, ek = x2,j , el = y1,i and em = y2,j
we find that

tt1(ϕD(x1,i)) = tt1(ϕD(x2,j)) for all 1 ≤ i, j ≤ n with i 6= j.

Together with the above (and knowing that n ≥ 2) we can conclude that

tt1(ϕD(x1,i)) = tt1(ϕD(x1,j)) = tt1(ϕD(x2,k)) for all 1 ≤ i, j, k ≤ n,

showing that t1 is fixed.

The only basisvectors which are not fixed are the vectors x2,i. By applying Lemma 3.5 for every
fixed basis vector, we may now assume that, after changing D up to an inner derivation, we
have for each basis vector x that ϕD(x) =

∑n

i=1 βi(x)x2,i for some βi(x) ∈ K. By changing D
to D + ad(ϕD(t2)), we may suppose that ϕD(t2) = 0, and so D(t2) = [t2, ϕD(t2)] = 0. Let x be
one of the basis vectors xp,i or yp,i, then also

D(x) = [x, ϕD(x)] = [x,

n∑

i=1

βi(x)x2,i] = 0.
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Finally, we have that

D(t1) = [t1, ϕD(t1)] = [t1,

n∑

i=1

βi(t1)x2,i] =

n∑

i=1

βi(t1)y2,i.

As a conclusion, we find that, after changing D up to an inner derivation, we obtain

D =
n∑

i=1

βi(t1)Di.

�

Remark 10.2. For n = 1 the basis vector t1 is not fixed. Then the algebra g1 of the above
family is isomorphic to g6,1 of Remark 8.6, which is also the algebra of Example (i) of [7], page
245. For this algebra we know that dim(AID(g1)/Inn(g1)) = 2.
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