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a b s t r a c t

The sudoku completion problem is a special case of the latin square completion problem
andboth problems are known to beNP-complete. However, in the case of a rectangular hole
pattern – i.e. each column (or row) is either full or empty of symbols – it is known that the
latin square completion problem can be solved in polynomial time. Conversely, we prove
in this paper that the same rectangular hole pattern still leaves the sudoku completion
problem NP-complete.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

A latin square of order s is an s × s matrix filled with s different symbols, such that no symbol is repeated in a row or
column.

A partial latin square is a partially filled matrix, with some empty cells, which also satisfies that no symbol is repeated in
a row or column. A problem that has received considerable attention is the latin square completion problem: given a partial
latin square, determine if the empty cells of thematrix can be filled, such that the final matrix is a latin square. This problem
has been shown to be NP-complete [8], and its average computational complexity has also been studied [11,10,3]. Another
line of research focuses on how to construct partial latin squares with guaranteed solution but high average computational
complexity [1] from complete latin squares generated with Markov chain algorithms [12].

A sudoku of order s, with s = nm, is an s×smatrix filledwith s different symbols, partitioned into s rectangular n×m block
regions, such that no symbol is repeated in a row, column or block region. We denote by a region row a set of n block regions
which are horizontally aligned. Analogously, we denote by a region column a set of m block regions which are vertically
aligned. Hence, there are m region rows and n regions columns. The sudoku problem we consider here is a generalization
of the popular number place puzzle, that is a sudoku of order 9 with 3 × 3 block regions. At the same time, a sudoku is a
special case of a gerechte design, in which the matrix of order s is partitioned into s regions, where a region can be any set
of s cells from the matrix. The connections between gerechte designs and design of comparative experiments and coding
theory have been explored in [4]. See also [5] for a more detailed study about the use of gerechte designs in the design of
agricultural experiments.
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Analogously to the case of partial latin squares, one can also study the completion problem for partial sudokus:
determining if a partial sudoku can be completed. Nowadays, this problem has started to receive attention in the artificial
intelligence community [15,14,2].

In this paper, we study the computational complexity of the sudoku completion problem in the particular case where the
filled and empty cells follow a rectangular hole pattern, i.e. where either each row is completely full or completely empty, or
each column is completely full or completely empty. It follows fromHall’s theorem that the latin square completion problem
is polynomially solvable for the case of rectangular hole pattern. By contrast, we prove that, for the sudoku completion
problem, this case still leaves the problemNP-complete. As a proof, we construct a polynomial time reduction from the latin
square completion problem to the sudoku completion problemwith rectangular hole pattern. In fact, without lack of generality,
the reduction is defined for the particular case of column hole pattern, i.e. each column is either full or empty.

The paper is structured as follows. In Section 2wedefine the sudoku completion problem, andwe recall that this problem,
for arbitrary rectangular block regions and arbitrary hole patterns, is NP-complete. This result is used as a starting point for
our main result, given in Section 3. There we present the NP-completeness proof for the case of the column hole pattern,
which extends the approach followed in Section 2. In constructing that reductionwe introduce a special class of latin square,
called canonical zero-diagonal latin square.

2. The general sudoku completion problem

The latin square completion problem was shown to be NP-complete in [8]. Since then, several special cases of the latin
square completion problem have been studied, see for example [6,9] or [13]. Those special cases are defined on howmissing
cells are distributed on the latin square. This distribution is known as the hole pattern, for instance random hole pattern,
balanced hole pattern or rectangular hole pattern. Conversely in sudoku problems, such patterns also have an important
impact on the hardness of problems, as well as the block region shape [2].

It has been shown in [16], that the sudoku completion problem is NP-complete for the particular case of square block
regions (n rows and n columns in each region block). As shown in [2], evenwhen block regions are not square the completion
problem is also NP-complete. That proof is presented below for a better understanding and contextualization of the new
results presented in Section 3. The proof for this case is a generalization of the proof of [16], and provides a reduction from
the latin square completion problem to the sudoku completion problem with rectangular block regions.

Theorem 1. The sudoku completion problem of order s, s = nm, with rectangular block regions (n ≠ m), is NP-complete.

Proof. Given an instance of the latin square completionproblemof ordern, the reduction followsby constructing an instance
of the sudoku completion problem of order s = nm and n < m (rectangular block regions) such that the sudoku completion
problem instance has a solution iff the latin square completion problem instance has a solution. The entries of the latin
square completion problem instance are embedded into the first columns of the regions of the first region row.

More formally, let L be the latin square completion problem instance and S the sudoku completion problem instance,
and let their entries be denoted by

L = (Li,j), 0 ≤ i, j ≤ n − 1;

S = (Sk,li,j ), 0 ≤ i, l ≤ m − 1, 0 ≤ j, k ≤ n − 1,

where Li,j corresponds to the entry of L located at the i-th row and j-th column, and Sk,li,j is the entry of S located at the k-th
row and l-th column inside the i-th region row, j-th region column. Notice that the first row and first column are numbered
as zero.

Then, the reduction maps L into S with entries

Sk,li,j =


(Lk,j, 0), if i = l = 0 and Lk,j ≠⊥

⊥, if i = l = 0 and Lk,j =⊥

(k + j (mod n), i + l (mod m)), otherwise.

where ⊥ denotes that the cell is empty. Notice that when cells are not empty their entries are ordered pairs.
Under this construction, the original entries of the latin square completion problem instance are placed at positions with

i = l = 0. Notice that the contents of the cells in S are not repeated, neither in the same row, column nor rectangular region.
It is straightforward to observe that the sudoku completion problem instance has a solution if and only if the latin square

completion problem instance has a solution. �

3. The sudoku completion problem with column hole pattern

In this section we describe a reduction from the latin square completion problem to the sudoku completion problem
with column hole pattern.

Firstly, in the next subsection, we define and construct canonical zero-diagonal latin squares, which are used in the
reduction as auxiliary designs. Afterwards, Section 3.2 presents in detail the reduction.
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Fig. 1. Example of CZD-LS of order n = 10.

3.1. Construction of canonical zero-diagonal latin squares

A canonical zero-diagonal latin square (CZD-LS) of order n is a latin square L = (Li,j), 0 ≤ i, j ≤ n − 1, with entries in Zn
such that Li,i = 0, Li,0 = i and L0,j = j. As an example, Fig. 1 shows a CZD-LS of order n = 10.

Notice that CZD-LS of orders n = 1, 2 are trivially constructed and for n = 3 such a construction does not exist. In general,
the existence of CZD-LS for n ≥ 4 follows from Lemma 2.3 of [7].

However, since the construction of a CZD-LS of order n ≥ 4 is one of the building steps of our polynomial time reduction
for the NP-completeness proof, we need to guarantee, not only the existence, but also how to obtain a CZD-LS in polynomial
time.

Proposition 2. A CZD-LS of order n ≥ 4 can be constructed in polynomial-time.

Proof. For the construction, we will distinguish between the case n even and n odd.
In the case n even, the entries Li,j of a CZD-LS L can be constructed as follows

Li,j =



0, if i = j,
i + j (mod n), if j ≤ n − i − 1 and i ≠ j,
i + j + 1 (mod n), if n − i − 1 < j < n − 1, i < n − 1

and i ≠ j

2i (mod n), if 0 < i <
n
2
and j = n − 1,

2j (mod n), if i = n − 1 and 0 < j <
n
2
,

2

i −

n
2


+ 1 (mod n), if

n
2

≤ i < n − 1 and j = n − 1,

2

j −

n
2


+ 1 (mod n), if i = n − 1 and

n
2

≤ j < n − 1.

Notice that this matrix is symmetric. Hence, to show that it is a latin square, it is enough to show that the values in each
row are different. We should distinguish between the following three situations:

• Case 0 ≤ i < n/2.
In row i, the values are

i, i + 1, . . . , 2i − 1, 0, 2i + 1, . . . , n − 1, 1, 2, . . . , i − 1, 2i,

hence, they cover all possible values from 0 to n − 1.
• Case n/2 ≤ i < n − 1.

In this case, the values for row i are:

i, i + 1, . . . , n − 1, 1, 2, . . . , 2i, 0, 2i + 2, . . . , i − 1, 2i + 1.

Again, they cover all possible values.
• Case i = n − 1.

In the last row, the values are

n − 1, 2, 4, . . . , n − 2, 1, 3, 5, . . . , n − 3, 0,

so they also are pairwise different.
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Fig. 2. First steps in the construction of a CZD-LS of order n = 11.

Fig. 3. Construction of a CZD-LS of order n = 11.

In the case n odd, consider a CZD-LS L′ of even order n − 1 constructed as shown above. Then, a CZD-LS L of order n can
be obtained from L′ following the steps described below. Figs. 2 and 3 show an example of such a construction using the
CZD-LS of order n − 1 = 10 in Fig. 1 to construct a CZD-LS of order n = 11.

• To obtain L, add to L′ a last column and a last row.
• Then L0,n−1 = n − 1, Ln−1,0 = n − 1 and Ln−1,n−1 = 0.
• Consider the submatrix of L consisting of cells Li,j with 1 ≤ i, j ≤ n−2. In Fig. 2 the submatrix is delimited with a square.
• In such submatrix, consider a latin transversal.1 Such a transversal always exists in this submatrix. One possible choice

would be taking the following entries: L1,n−2, L2,n−4, Li,i−2 for i ∈ {3, . . . , n−3}, and Ln−2,n−3. Followingwith the example,
such entries are the ones typed in bold in Fig. 2.

• Then, the value of each entry in the transversal is placed at the last column and last row, and replaced by value n − 1.
More formally, let k be the value of the latin transversal at row i and column j. Then, Li,n−1 = k, Ln−1,j = k and Li,j = n−1.
Fig. 3 shows the resulting CZD-LS in our example.

Following this construction, it can be easily proven that entries in the same row or in the same column are always
different. �

3.2. NP-completeness proof

In the NP-completeness proof we provide a polynomial time reduction from the latin square completion problem to the
sudoku completion problem with column hole pattern.

1 A transversal array is a set of n cells in an n× n square such that no two come from the same row and no two come from the same column. Then, a latin
transversal is a transversal such that no two cells contain the same element.
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Fig. 4. Detail of the structure of the region columns. By construction we have Sk,00,j = Sk
′,l

l,j and Sk,l0,j = Sk
′,0

l,j .

More precisely, given a latin square completion problem instance L of order n, the reduction follows by constructing a
sudoku completion problem instance S of order n × (n2

+ 1) with column hole pattern. The overall idea of this reduction
is similar to the one used in the proof of Theorem 1. That is, columns in the latin square completion problem instance are
mapped to the first column of each rectangular block region in the first region row. The remaining cells are filled using
a CZD-LS C of order n2

+ 1. Finally, the first column of each region column is emptied, after appropriately swapping the
contents of cells mapped from the original latin square completion problem instance with the contents of appropriate cells
from other columns, to preserve their effect.

We will show that a solution of such sudoku completion problem instance exists if, and only if, a solution of the original
latin square completion problem instance also exists.

We present next in detail the different steps involved in the reduction.
We first describe the construction of S from L and C . Let L be the original partial latin square of size n and C the CZD-LS

of size n2
+ 1. Their entries are denoted by:

L = (Li,j), 0 ≤ i, j ≤ n − 1;

C = (Ci,j), 0 ≤ i, j ≤ n2.

Empty cells in L are assigned the value ⊥. Notice that the first row and column are numbered as zero.
Then the partial sudoku of size n(n2

+ 1) is denoted as

S = (Sk,li,j ), 0 ≤ i, l ≤ n2, 0 ≤ j, k ≤ n − 1,

where Sk,li,j corresponds to the entry located at the i-th region row, j-th region column, and inside such a region it is placed
on the k-th row and l-th column (see Fig. 4). These entries are ordered pairs, defined as follows

Sk,li,j =

(Lk,j, C0,0) = (Lk,j, 0), if i = l = 0,
j + k (mod n), Ci,i


= (j + k (mod n), 0), if i = l ≠ 0,

(i + j + k (mod n), Ci,l), otherwise.

In fact, the first condition is responsible for embedding the information from the partial latin square into the partial sudoku.
When in the partial latin square the cell is empty, it remains also empty in the partial sudoku. Fig. 5 shows an example of
this construction for a partial latin square of size n = 3.

It can easily be seen that this construction is a partial sudoku. This is due to the fact that the second component
corresponds to the cells of the CZD-LS, which is combined with a first component whose values are 0, 1, . . . , n − 1, which
ensures that the contents are different in each row, each column and each region.
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Fig. 5. Example of the reduction for n = 3. Initial embedding of L into the partial sudoku S.
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In the end, the aim of the construction is obtaining a partial sudoku with column hole pattern, that is, where columns
with parameter l = 0 are empty. To this purpose, the construction goes on appropriately swapping the contents of some
cells while still preserving the property of being a partial sudoku. We proceed as follows:

• Consider every non-empty cell Sk,00,j (that is, the ones placed on the first columns of each region in the first region row).
Notice that these cells are the ones that have inherited the information in the partial latin square, Sk,00,j = (Lk,j, 0).

• For each Sk,00,j that is different to ⊥, we will take one of itsmates, that is, another cell in the same row, Sk,l0,j, l ≠ 0, such that

there exists k′ for which it holds that Sk,00,j = Sk
′,l

l,j and Sk,l0,j = Sk
′,0

l,j (the opposite corners of the rectangle defined by these
positions coincide, see Fig. 4). In fact, Proposition 3 shows that there always exist exactly n mates for each non-empty
cell.

• Then, for each Sk,00,j , we take one of its mates, and swap their contents, and we also swap the contents of the cells in the

other two corners of the rectangle (that is Sk
′,0

l,j and Sk
′,l

l,j ). In the case that there exist two cells Sk,00,j and Sk
′,0

0,j′ with the
same value, one should take care in choosing mates with different contents. Propositions 3 and 4 show that it is always
possible.

• Then, in the last step of the construction, the first column of each column region is emptied, namely those positions with
l = 0.

Proposition 3. For every j and k satisfying 0 ≤ j, k ≤ n − 1, every non-empty cell Sk,00,j has exactly n mates.

Proof. Let us fix the values j and k. From the construction of S it follows that Sk,00,j = (Lk,j, 0). Hence, the cells that can be

located at its opposite corner have to be assigned the value 0 in its second component, which are, by construction, Sk
′,l

l,j , for
0 ≤ k′

≤ n − 1 and 1 ≤ l ≤ n2.
Notice that the content of the n cells Sk

′,l
l,j is (j + k′ (mod n), 0), for 0 ≤ k′

≤ n − 1. Hence, Sk,00,j will be equal to Sk
′,l

l,j for
k′

≡ Lk,j − j (mod n).
We are looking for the existence of values for l such that verify that the two other corners coincide, that is Sk

′,0
l,j = Sk,l0,j .

The values of these cells are

Sk
′,0

l,j = (l + j + k′ (mod n), Cl,0) = (l + j + k′ (mod n), l)

Sk,l0,j = (j + k (mod n), C0,l) = (j + k (mod n), l).

So, equality will hold if, and only if,

l + j + k′
≡ j + k (mod n) ⇐⇒ l ≡ k − k′ (mod n) ≡ j + k − Lk,j (mod n).

It straightforwardly follows that there exist n2/n = n values for l that satisfy this condition, which determine the
positions. �

Proposition 4. Let Sk1,00,j1
, Sk2,00,j2

, . . . , Skt ,00,jt be the entries in S corresponding to non-empty cells in L. Then it is possible to choose
mates with pairwise different contents for these entries.

Proof. Firstly, notice that the contents of the possible mates for two different values Sk,00,j ≠ Sk
′,0

0,j′ are disjoint. The first
component of themates contentwill be j+k (mod n) and j′+k′ (mod n), respectively. If these values are different, obviously,
the sets of possiblemates contents will also be. In the case where j+k ≡ j′ +k′ (mod n), the sets of mates will be in columns
l ≡ j + k − Lj,k (mod n) and l′ ≡ j′ + k′

− Lj′,k′ (mod n), respectively, so they will also have disjoint contents.
Hence, the problem could appear for cells with the same value, namely Sk,00,j = Sk

′,0
0,j′ . Again, when j+ k ≢ j′ + k′ (mod n),

the contents of their possible mates will be disjoint. In the case that j+k ≡ j′ +k′ (mod n), their set of mates will be located
at columns l ≡ j+ k+ Lk,j ≡ j′ + k′

+ Lk′,j′ (mod n). In this last case, the repeated value can appear at most n times, but from
Proposition 3 it follows that there are n mates for each value with different contents, so we can select mates with pairwise
different contents for all the occurrences of the same value. �

Finally, the following proposition shows that the latin square completion problem can be reduced to the sudoku
completion problem with column hole pattern.

Theorem 5. Let L be a partial latin square, and let T be the partial sudoku obtained by the previously detailed construction. The
partial latin square L can be completed if, and only if, the partial sudoku T can be completed.

Proof. On the one hand, notice that if a completion of L exists, a completion of T can also be obtained: originally non-empty
cells located at l = 0 can be assigned the values obtained in the construction of T , before emptying the columns, and those
originally empty cells (located at i = l = 0) can be assigned the values of the solution of L, along with second component 0.
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Conversely, if a completion of T exists, each empty cell Lk,j can be assigned the first component of T k,0
0,j . Firstly, notice that

in the completion for any originally non-empty cell T k,0
0,j the only possible content is the one from its chosen mate (since for

all such cells their mates are taken with pairwise different contents). So, a completion of T cannot encode a completion for a
different partial latin square L′. Analogously, for an originally empty cell T k,0

0,j the only possible contents are the values (v, 0)

for v not appearing in row k of L (since these values appear embedded in some cell T k,l′

0,j′ ) and not appearing in column j of L

(since these values appear embedded in some cell T k′,l′
0,j ). So, in a completion of T the contents of the originally empty cells

T k,0
0,j can only encode a completion of the input partial latin square L, if such a completion exists. �

Theorem 6. The sudoku completion problem with column hole pattern is NP-complete.

Proof. From the previous result, it follows thatwe can reduce the latin square completion problem to the sudoku completion
problemwith column hole pattern. Since the reductionworks in polynomial time and given that the latin square completion
problem is NP-complete, the theorem straightforwardly follows. �

3.3. Example of the construction

Finally, to illustrate the construction introduced, consider its application to the particular partial latin square L shown at
the top of Fig. 5, that is:

2 0
1 0
0 1 2

Following the construction of the partial sudoku S, it can be seen that, for instance, the mates of S1,00,1 = (0, 0) will be
located at positions

l ≡ j + k − Lk,j ≡ 1 + 1 − 0 ≡ 2 (mod 3) H⇒ l = 2, 5, 8.

So, the contents of the possible mates are S1,20,1 = (2, 2), S1,50,1 = (2, 5) and S1,80,1 = (2, 8). We take one of its three mates, for
instance the one with l = 5 (depicted in dark gray in Fig. 5). Following the same procedure we can select a mate for each
Sk,00,j ≠⊥.

Proposition 4 shows that the selection can be done such that the contents of themates are pairwise different. For instance,
in the example, the contents of the possible mates of S2,00,0 = (0, 0), S1,00,1 = (0, 0) and S0,00,2 = (0, 0) coincide: (2, 2), (2, 5)
and (2, 8). So, since there are three possibilities, a different one can be taken for each. For instance, the selected mates in
Fig. 5 correspond to S2,20,0 = (2, 2), S1,50,1 = (2, 5) and S0,80,2 = (2, 8) (marked in dark gray in the figure).

Then, the content of each Sk,00,j ≠⊥ can be swapped with the content of its selected mate, while maintaining the property
of being a partial sudoku. Finally, the first column of each column region is emptied as shown in Fig. 6. Since the partial latin
square of this example has no completion, the resulting partial sudoku has also no completion.

Notice that this would not be necessarily true if the contents of the selected mates were not pairwise different. Consider
what happens if for the occurrences of the symbol (0, 0) we have in S1,00,1 and S0,00,2 we take mates with the same content, say
for example mates S1,50,1 = (2, 5) and S0,50,2 = (2, 5). So, after we swap the symbols and we empty the first column of each
region column the symbol (2, 5) disappears from S1,00,1 and S0,00,2 . Then, it turns out that now in a completion we can change
the positions assigned to these two occurrences of (2, 5) to positions which are different from their original ones before
the columns were emptied. In particular, (2, 5) can be assigned to S0,00,1 and S1,00,2 . So, we can finally get a completion that
corresponds to this different partial latin square L′, that has a solution:

2 0
1 0
0 1 2

That is, if the selected mates for the non-empty cells are not taken with pairwise different contents, the resulting partial
sudoku could have solutions that encode solutions for a different partial latin square L′.
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Fig. 6. Example of the reduction for n = 3. Resulting construction after swapping the corresponding cells and finally emptying the first column of each
region column.
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