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In this work, we investigate the structure of Leibniz algebras whose associated Lie
algebra is a direct sum of sl, and the solvable radical. In particular, we obtain the
description of such algebras when: the ideal generated by the squares of elements of a
Leibniz algebra is irveducible over sl, and when the dimension of the radical is equal
to two.
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1. INTRODUCTION

The notion of Leibniz algebra was introduced in 1993 by J.-L. Loday [6] as a
generalization of Lie algebras. In the last 20 years, the theory of Leibniz algebras
has been actively studied, and many results of the theory of Lie algebras have been
extended to Leibniz algebras.

From the theory of Lie algebras it is known that every finite dimensional
Lie algebra is decomposed into a semidirect sum of a semisimple subalgebra and
solvable radical (Levi’s Theorem) [5]. Moreover, thanks to Mal’cev’s results [7] the
study of solvable Lie algebras is reduced to the study of nilpotent algebras.

Recently, Barnes proved an analogue of Levi’s Theorem for Leibniz algebras
[4]. Namely, a Leibniz algebra is decomposed into a semidirect sum of its solvable
radical and a semisimple Lie algebra.

Recall, an algebra L over a field F is called Leibniz algebra if for any elements
X,¥,2 € L the Leibniz identity holds:

[x, [y, 2] = [[x, ¥, 2] = [[x. 2], 31,

where [—, —] is multiplication of L.
Let L be a Leibniz algebra and I = ideal < [x, x]| x € L > be the ideal of L
generated by all squares. Then [ is the minimal ideal with respect to the property
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that L/I is a Lie algebra. The natural epimorphism ¢ : L — L/I determines the
associated Lie algebra L/I of the Leibniz algebra L.

The inherent properties of non-Lie Leibniz algebras imply that the subspace
spanned by the squares of elements of the algebra is a nontrivial ideal (further
denoted by 7). Moreover, the ideal I is abelian and hence, it belongs to the solvable
radical.

Due to the existence of the non-trivial ideal /7 in non-Lie Leibniz algebra we
can not consider the notion of simplicity in ordinary sense. In [1], the adaptation of
simplicity for Leibniz algebras was proposed. Namely, a Leibniz algebra L is said
to be simple if it only has the following ideals: {0}, I, L and [L, L] # I. Obviously,
this definition agrees with the definition of a simple Lie algebra.

In fact, Abdykassymova and Dzhumadil’daev in [2] suggested the following
construction of Leibniz algebras.

Let G be a simple Lie algebra and M be an irreducible skew-symmetric G-
module (i.e., [x, m] =0 for all x € G, m € M). Then the vector space Q =G+ M
equipped with the multiplication

[x+m,y+n] =[x, y] + [m. ],

where m,n € M, x,y € G is a simple Leibniz algebra.

From the analogue of Levi’s decomposition for Leibniz algebras (see [4]),
we conclude that the above construction is universal for a simple Leibniz algebra
assuming G := L/I, M :=1, Q := L, that is, any simple Leibniz algebra is realized
by this construction.

According to [5], in any three-dimensional simple Lie algebra there exits a
basis {e, f, h} such that the table of multiplication has the form

[e,h] =2e,  [f.h]==2f, [e.fl=h,
[h, e] = —2e, [h, f]=2f, [f,e]=—h.

This Lie algebra is denoted by sl,, and the basis {e, f, h} is called the canonical basis.

Theorem 1.1 ([5]). For each integer m=0,1,2,..., there exists one, up to
isomorphism, irreducible sl,-module M of dimension m + 1. The module M has a basis
{xg, x5 ..., X,,} such that the representing transformations E, F, and H corresponding

to the canonical basis {e, f, h} are given by

H(x;) = (m — 2k)x;, 0<k<m,
F(x,) =0, F(x;) = x4, O0<k<m-—1,
E(xy) =0, E(xy) = —k(m+1—k)x,_;, 1<k=<m.

In [8], the authors described the complex finite-dimensional Leibniz algebras
whose associated Lie algebra is isomorphic to sl,. The crucial role in that
classification is played by Theorem 1.1. Taking a similar approach, a property of
Leibniz algebras with an associated Lie algebra sl,+R, where R is a solvable radical,
is obtained. In addition, in this article, we present the classification of such algebras
for a two-dimensional radical R.
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Throughout the article, we consider finite-dimensional algebras over the field
of complex numbers. Moreover, in the multiplication table of an algebra we omit
the null products.

2. COMPLEX LEIBNIZ ALGEBRAS WHOSE ASSOCIATED LIE ALGEBRAS
ARE ISOMORPHIC TO s/,+R.

In this section, we consider the Leibniz algebra L for which its corresponding
Lie algebra is a semidirect sum of s/, and a two-dimensional solvable ideal R. In
addition, we shall assume that / is a right irreducible module over si,.

Let L be a Leibniz algebra such that L/I >~ si, & R, where R is a solvable Lie

algebra and {e, h, f}, {xg, X, ... x,,}» {37, 75, ..., ¥,} are the bases of s/,, I, and R,
respectively.
Let {e, i, f, Xg, X5 - - s X,p» V1> Yas - - -» ¥, } D€ @ basis of the algebra L such that

ple)=2  oh)y=h  eH=f  eO)=¥y. 1<i<n

Then taking into account the Theorem 1.1, we have

[e, h] =2e+ 3 alpx;, [ 1=2f + X ayx;. e fl=h+3 alx;
j=0 j=0 =0
[h,e] = —2e+ Zaiexj [f, k] = =2f + Zajfhx_,‘: [f.e]=—h+ Zajpexj,
J=0 =0 j=0
[e’yz Zau j fyt Zﬁl} j’ h yl Zylj j’
[x;, k] = (m 2k)x;, 0<k=<m,
[xe> [l = X1 0<k<m-—1,

[xpe]=—k(m+1—-Kk)x,_,, 1<k<m,

where 1 <i <n.
Similar as in the proof of Proposition 3.1 of the [8], one can get

[e,h]:Ze, [h,f]:Zf, [E,f]:h,
[h,e] = —2e [f.h]==2f, [f.e]=—
[e.e] =0 [f. f1=0, [h, h] = 0.

Let us denote the following vector spaces:

sl;1 =<e,h, f>, R7! =< Y, Vo e Yy >

Proposition 2.1. Let L be a Leibniz algebra whose quotient L/1 = sl, ® R, where R
is a solvable ideal and I is a right irreducible module over sl, with diml # 3. Then
[s.;', R =0.

Proof. 1t is clearly sufficient to prove the equality for the basic elements of si;!
and R~!. Consider the Leibniz identity

le, [e, yi]l = [[e. el. ;] = [[e, yi, e] = —[le, yi]. e]

= _Zaij[xj’ el = Z(—m] + 0 — 1))aijxj71’ l<i<n
Jj=0

j=1
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On the other hand, we have that [e, [e, y;]] = [e, X go:x;] =0 for 1 <i < n.

J=0 ij7J
Comparing the coefficients of the basic elements, we obtain o;; = 0 for 1 < j <

m. Thus, [e, y;,] = o; gxo with 1 <i <n.
Consider the equalities

Zﬁ,, x;] = le, [fs ]l = [le. f1, yi] = [le. yi], /]
= [h, yi] - ai,O[XO’ f1=1hy]- & 0X1-

Then we have that [k, y;] = o; x; with 1 <i < n.
From the equalities

0 =[e, [, yill = [[e, k], y,] = [le, y;], h] = 2[e, yi] — a0 x0, ]
= 20, 0Xg — Moy gXo = o (2 — m)xq,
it follows that o;y = 0 for 1 <i < n. Taking into account that m # 2 (because of

diml # 3), we get [e, y;] = [h, ;] =0 with 1 <i <n.
From the equalities

0 =[f.[e, vl = [[fs el, yi] = [[f> yi)> el = [h, v, = [f> vils el = =[[f> vi] el
= —Zﬁ,,[xpe Z(—mJ+J(J — D))Bx;_1,

j=0

we derive f; ; = 0 for 1 < j < m. Consequently, [f, y;] = B, ox,, forall 1 <i <n.
Similarly, from

= [£ ULyl =15 AL vl = [ vl A= 111 vil A
= B ol X5 f1= Bioxis

we obtain [f,y;]=0forall 1 <i<n.
Thus, we obtain [e, y;] = [f, ;)] = [k, y;] = 0 with 1 <i < n. We complete the
proof of the proposition. O

3. COMPLEX LEIBNIZ ALGEBRAS WHOSE ASSOCIATED LIE ALGEBRA IS
ISOMORPHIC TO sl,+R, dimR =2

In this section, we consider the case when R is a two-dimensional solvable
radical. From the classification of two-dimensional Lie algebras (see [5]) we know
that in R there exists a basis {y;, ¥,} in which the following table of multiplication
of R has this form:

owl=y.  Downl=-m
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In the case when diml #3 and I a right irreducible module over si,,
summarizing the results of the Proposition 2.1, we get the following table of

multiplication:
[e, ] = 2e, (7, f] = 2f, le, fl=h
[h’ e] _26’ [f’ h] = _2f7 [f, e] = -
[x¢, 7] = (m — 2k)x;, 0<k<m,
[xes ST = Xps1s O0<k<m-1,
[xk,e]:—k(m—f—l—k)xk 1, 1 <k<m,
[yl’e] Zaze ]’ 15152,
(i f Zal,»x,, 1<i<2,
(1)
[yi. Za,hx, l<is<2,
xk’yl]—za,j i 0<k<m, 1<i<?2,
Do 22l =, +Zb{2xr [y2 1] = =1,
j=0
1> 3] Zb Xjs [ ] Zb Xjs
where {e, h, f, xg, X;, ..., X,;» 1> Yo} 1S @ basis of L.

Let us present the following theorem which describes the Leibniz algebras with
the condition L/I = sl, @ R, where diml # 3, dimR =2, and I a right irreducible

module over si,.

Theorem 3.1. Let L be a Leibniz algebra whose quotient L/I = sl, @& R, where R is

a two-dimensional solvable radical and I is a right irreducible module over sl, (diml #

3). Then there exists a basis {e, h, f, xy, X, - - .

s Xs Y1s Yo} Of L such that the table of

multiplication in L has the following form:

[e, h] = 2e,

[h, e] = —2e,

[x¢, h] = (m — 2k)x,,
[xes [ = X1
[
[
[

=

X el =—k(m+1—k)x,_,,
Vs Y2l —)’1’

[h, f1=2f,

[fs h] = =2f,
0<k<m,
0<k<m-—1,

1 <k<m,

2 vl = =1
0<k<m, aeC.

Proof. Let L be an algebra satisfying the conditions of the theorem, then we get

the table of multiplication (1).
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We consider the chain of the equalities
0 = [x;, [h i1 = [[xi, Al il = [[xi ] ] = (m = 20)[x;, 1] Zalk Xpo b
= (m—2i)> dyx,— Y. al,(m—2k)x, =Y al,(m—2i— (m—2k))x,
k=0 k=0 k=0

= 32, (k - i),

k=0

from which we have aj, =0 with 0 <i < m and i # k. Thus,
[x, y]=d}x; = a;;x;  with 0 <i <m.

1

Similarly,
0 = [x;, [h, y:21] = [[x;, k], y2] = [[x:5 321, B] = (m — 20)[x;, y,] — ZGkal’h

= (m—2i)) ayx;— Y as(m—2k)x, =Y dy(m—2i — (m — 2k))x,
k=0

k=0 k=0
m .
= Z2a’2k(k — )X,
k=0

we get [x;, y,] = djx; with 0 < i < m.
From the identity [x;, [y, y,]] = [[xi> v1 ], y2] = [[xi> 2] y1 ], we deduce

|:xi’ y+ Z blfzxk:| = aiu[xn »l - agi[-xi’ ]

k=0

i P
=[x, »] = ayayx; — aya),x, =0,

and we have [x;, y;] =0 with 0 < i < m, that is, [I, y;] = 0.
We consider the Leibniz identity

[xi, [y, ell = [[x15 y2). €] = [[x;, €], y,], for 0 <i <m.
Then,
0= a;i[xi’ e] — (—=mi+i(i — 1))[x;_y, y2]
= aéi(_mi +i(i — D)x;_y — aé,i—l (=mi+i(i — 1))x,_,
= —(—mi+i(i — 1))(6131' - a;,i—l)xi—l’

which leads to @), = a), |, that is, we get [x;, y,] = ax; with 0 <i < m and some

aeC.
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Thus, we have obtained the product [1, R™'].
Verifying that

0= |:y1, Za{ij:| = [y v, A = e v A = s o] = e s f]

Jj=0

m—1

m
= Zb{[xj’f] = Z b'{xj+1’
=0 =0

we obtain b/ =0 for 0 < j <m— 1, ie., [y, ] =b"x
The equalities

me

0= [yl’ [yl’ h]] = [[yl’ yl]’ h] - [[yl’ h]’ yl] = [[yh yl]? h] = a;n[xm’ h] = _maflnxm’

deduce 5" = 0, hence [y;, y;] =0.
From the identities

0 = [y, [y1, &1l = [[y2> 711, £l = [[y25 h]s 311 = —[>15 A,
0 = [y,, [yi» f1l = [[y2> »1 1> A1 = 25 f1. 11 = =y £l

0= [y,, > ell = [[y2, w1, el = [[y2s el ] = =y, el

we obtain [y, h] = [y}, f] = [y, e] = 0.
Using the above obtained products and

0 = [y, v, [l = [y 3205 A1 = (D15 f1s 321 = [ 3215 A

m m m—1
= |:)’1 + Z blfzxk’ f:| = Z bllcz[xkv fl= Z b]fzxkﬂv
k=0 k=0

k=0

we get bl, =0with0 <i<m-—1.
Now from

0= [y, [y, 21l = [[>1> 3.1, 2] = [[y15 AL, 321 = (315 321, 2]

= [y, + b5x,,, h] = —mblyx

m?

we get b}, = 0. Consequently, b4 =0 for all 0 <i <m, ie., [y, y,] =y
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Thus, we obtain the following table of multiplication:

[e, h] = 2e, (A, f] =21, le. f1="h

[h, e] = —2e, [f, h] = =2f, [fie]=—

[x¢, B] = (m = 2k)x,, 0<k<m,

[xes f1 = X1 0<k=<m-—1,

[xp, e] = —k(m+1—k)x,_,, 1<k<m

(2, €] = Zaéng’ [v2, f1= ZQZ/”X/’ [v2, h] = Zaéhxj’
j=0 j=0

V1> Y2 = ¥ 2> y1] = =1 [v2 »2] = Zbéxj’

j=0
[xXe> y2] = axy, 0<k=<m.

In order to complete the proof of the theorem, we need to prove that [y,, y,] =
0, and [R7', s1;'] = 0.
Consider two cases.

Case 1. Let a # 0 be. Then taking the change of the basic element

m b/
»=ym- Z —Xj
=0 4
we get
m .]

s 3= |:)’2 Za i% i|

j=0 J=

=0
= [y2, ;] — |: :| ibx] be—O

Jj=0 Jj=0

which leads to [y,, y,] = 0.
Consider

0 = [y,, [y, 21l = [[¥25 ¥21s ] = [[¥25 A1), y2] = ([, 2], -]

m . m X
== Z aéh[xj’ »l=- Z aéhaxj’
j=0 =0

which gives aj, = 0 for 0 < j < m.
Similarly, from the equalities

0 = [y2, [v2> f1] = [[y2> Y21, f1 = [[)2> f] Zaﬂ[x/’ 2] Zazfax

0 = [y2, [y2» ell = [[y2> y21, el = [[v2, €] Z aZe[x]’ ] Zazeax

we get agf =a}, =0 for 0 < j < m. Hence, [R™", sI;'] = 0.
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Thus, we proved the theorem for the case of a # 0.

Case 2. Let a = 0 be. Then, we consider the identity

V25 [v2s A1l = (25 3215 £1 = [[325 f15 31,

and we derive

m m—1
0= Zblz[xi’ 1= Z b5xiy,
j=0 j=0
=b=00<i<m-1, ie.,
[y2: 2] = b5'x,,,.
From the chain of the equalities
0 = [y, [y2, Al = [[y2, 3215 B] = [[y2, 2], 2] = BY'[x,,, B] = —mbY'x,,,

we obtain b5 = 0, that is, [y,, y,] = 0.
Let us take the change of the basic element in the form

m
)’2,2)’2_2

T ve——
omj+ =1

j—1
e

Then

m Jj—1

[y, €] = [y, €] = 3 ——2

—————x;. ]
oomi+ G-

m Jj—1

=Dl =Y ——=

iz tii= D
o mmj+ (- 1)( mj+ j(j = 1)x;

m . m . 1
_ i j—
=) Ay Xj > ab, Xj-1
J=0 j=1

m—1

m
= ZaJZe ] Z a2e'xj = a2e m:*
j=0
Thus, we can assume that
m X m X
el = abx,, [ hl=) ayx;, [y fl=) ajx;.
i=0 j=0
We have

Lo 1) = (D3 . B = (D33 ) €] = g ] = Xyl

= —may,x,, — Za2h( mj+ j(j — 1)x;_;.
Jj=0
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On the other hand, [y,, [e, h]] = 2[y, ] = 24}, x,,.

Comparing the coefficients at the basic elements, we get ay, = 0 and @}, = 0,
where 1 < j < m. Hence,

[v2, €] =0, [, fl1= Z aﬁij, [v2, h] = agth'
j=0
Consider
[y2: [es A1l = [[yas €l /1= [y [l el = =D @b [x;. ]
j=0

==Y}, (mj+ j(j — 1)x;_,
j=0

= may.x,— Y as,(mj+ j(j — 1)x;_,.
j=2

On the other hand,
[y, [e, A1 = 32, h] = a3, x,.
Comparing the coefficients, we obtain a3, = maj, and a}, = 0 for 2 < j < m.

Then, we have the product [y, f] = a3,x, + a}x,.
Now, we consider the equalities

=2[y,, f1 = [2, [fs Al = [[32, f1s h] = [[y2, B), f] = [a(z)fxo + a;fxl’ h] — ma;f[xos /1
and we have
—2agfx0 - 2a£fx1 = magfxo + aéf(m —2)x; — maéfxl = agf =0.

Therefore, [y,, f] = aéfxl and [y,, h] = maéfxo.
Taking the change y," = y, — a},x,, we obtain

[, fl1= [y, h] = 0.
Thus, we have [R™!, sI;'] = 0, which completes the proof of the theorem. O

Remark 3.2. From the description of Theorem 3.1, we conclude that L = (sl, &
R)-+1. Moreover, if L/I = sl, ® R with diml # 3 and there exist two element x, y
of the finite-dimensional solvable radical R such that [x, y] = —[y, X] = X, then in a
similar way to the proof of Theorem 3.1, one can prove that the restriction of the
operator of right multiplication on an element y to ideal 7 is « - id and the restriction
of the operator of right multiplication on an element x is trivial.
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When the dimension of the ideal 7 is equal to three, we have the family of
Leibniz algebras with the following table of multiplication:

[e, h] = 2e,

[h, e] = —2e,
[x), e] = —2x,,
[x1, f1 = x5,
[e, yi] = 2xq,
le, y,] = uxo,
V1> y2] = ¥
[X0, ¥2] = ax,
[yZ’ e] = bx17

[h, f1=2f,
[f. h] = =2f,
[x,, e] = —2x,,
[x0, 2] = 2x¢,

1
[fiy] = Eixz,

1
[f7 y2] = EIU"XZ’

Y2, 1] = =1
[x), y2] = ax,,
[v2, h] = bx,.

le. f]1= h,

[f’ e] = _ha
[x0, 1= xy,
[x5, h] = —2x,,
[7, yi] = Axy,
[, y,] = uxy,

ab
[y2, y2] = _73(2’

[x2, ¥2] = ax,,

Verifying the Leibniz identity of the above family of algebras and using the
program in software Mathematica (see in [3]), we derive the condition A(1 — a) = 0.
Taking the change of the basic element in the form y," =y, + %’xz, we obtain

)y el = [y, k] = [y)', »,'1 = 0.

Thus, we have the family of algebras L(4, u, a):

[e, h] = 2e,

[A, e] = —2e,
[x), €] = —2x,,
[x1, fT= x5,
[e, y1] = 4xo,
[e’ y2] = :ux()’
[x0, ¥2] = ax,
1> y21 =y,

with the condition A(1 —a) = 0.

[h’ f] = 2f9
[f’ h] = _2f’
[x5, €] = —2x,,
[x0, h] = 2x,
1,
[fs ] = 54x,,
Lfsy] = Eﬂxz’
[x1, ¥2] = ax,,
[Y2s 1] = —1»

[e’ f] = h,

[f. e] = —h,
[x0, f1 = x1,
[x2, h] = —2x;,
(2, 1] = 24xy,
[h’ y2] = :uxl?

[x2, ¥2] = ax,,

Theorem 3.3. Let L be a Leibniz algebra such that L/1 = sl, ® R, where R is a two-
dimensional solvable ideal and I is a three-dimensional right irreducible module over
sly. Then, L is isomorphic to one of the following pairwise non isomorphic algebras:

L(1,0,1);

L(0, 1, a);

L(0,0, a),

with a € F.

Proof. We shall consider the equality (1 — a) = 0.
Let 4 # 0. Then a = 1. Making the basis transformation

W=-y, w=-%
1 ll, 2

1
A

i+,
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we deduce that

eowl=x  [fwl=g0  Dowl=x.  leyl=1iw]=[hy1=0
and the rest products of the family of algebra L(4, u, a) are not changed.

Thus, we can assume that A=1 and u=0. Hence, we get the algebra
L(1,0,1).

If 2 = 0, then for u # 0 by a suitable scaling of the basic elements of I, we can
suppose that ¢ = 1. Thus, we obtain the algebra L(0, 1, a).

If 1 =0, then for u = 0 we get the algebra L(0, 0, a).

Using a program in software Mathematica, we conclude that these algebras
are nonisomorphic. This program establishes when two algebras are isomorphic;
moreover, we have added some subroutines to know if two algebras are isomorphic
or not, when one of them is an uniparameter family. It returns the value of the
parameter for which it would be isomorphic. The implementation of this program is
presented for low and fixed dimension. Then we will formulate the generalizations,
proving by induction the results for arbitrary fixed dimension. Finally, to point
out that the algorithmic method of these programs is presented with a step-by-step
explanation in the following web site: http://personal.us.es/jrgomez.

Thus the theorem is proved. O
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