

Elementary Analysis Math 140B—Winter 2007
Celebrity Theorem 1—Abel's Theorem

THEOREM (Abel's Theorem) Let $\sum_{n=0}^{\infty} a_n x^n$ have radius of convergence R , $0 < R < \infty$ and suppose that the series $\sum_{n=0}^{\infty} a_n R^n$ converges. Then the series $\sum_{n=0}^{\infty} a_n x^n$ converges uniformly on $[0, R]$.

PROOF¹: It suffices to prove the theorem in the case $R = 1$. (See Ross, page 198, Case 2)

For $\epsilon > 0$, pick N such that $|\sum_{k=m}^n a_k| < \epsilon$ for all $n \geq m > N = N(\epsilon)$ (Cauchy condition for the convergent series $\sum_{k=0}^{\infty} a_k$)

For notation's sake, let $B_{m,n} := \sum_{k=m}^n a_k$, so that $a_k = B_{k,n} - B_{k+1,n}$.

Now suppose $0 \leq x < 1$. Then for $n \geq m$,

$$\begin{aligned} \sum_{k=m}^n a_k x^k &= a_m x^m + a_{m+1} x^{m+1} + \cdots + a_{n-1} x^{n-1} + a_n x^n \\ &= (B_{m,n} - B_{m+1,n})x^m + (B_{m+1,n} - B_{m+2,n})x^{m+1} + \cdots + (B_{n-1,n} - B_{n,n})x^{n-1} + B_{n,n} x^n \\ &= B_{m,n} x^m + B_{m+1,n} (x^{m+1} - x^m) + B_{m+2,n} (x^{m+2} - x^{m+1}) + \cdots \\ &\quad \cdots + B_{n-1,n} (x^{n-1} - x^{n-2}) + B_{n,n} (x^n - x^{n-1}) \\ &= B_{m,n} x^m + (x-1)x^m [B_{m+1,n} + B_{m+2,n}x + \cdots + B_{n-1,n}x^{n-m-2}] + B_{n,n} x^{n-m-1} \end{aligned}$$

Therefore², since $|x^m| \leq 1$,

$$\begin{aligned} \left| \sum_{k=m}^n a_k x^k \right| &\leq \epsilon x^m + (1-x)x^m [\epsilon + \epsilon x + \cdots + \epsilon x^{n-m-1}] \\ &\leq \epsilon + \epsilon(1-x) \frac{1-x^{n-m}}{1-x} < 2\epsilon. \end{aligned}$$

Thus, by the uniform Cauchy condition for series of functions (Theorem 25.6), the series $\sum_{k=0}^{\infty} a_k x^k$ converges uniformly on $[0, 1]$. Since it is given that the series converges for $x = 1$, the convergence is uniform on $[0, 1]$. \square

¹Buck: Advanced Calculus, page 279

²the cancellation of $1 - x$ in the last step is the key point of this proof