

Elementary Analysis Math 140B—Winter 2007
The Chain Rule

THEOREM Let g be a real valued function defined on an open interval containing $a \in \mathbf{R}$ and suppose that g is differentiable at a with derivative $g'(a)$. Let f be a real valued function defined on an open interval containing $g(a)$ and suppose that f is differentiable at $g(a)$ with derivative $f'(g(a))$. Then $f \circ g$ is differentiable at a with derivative

$$(f \circ g)'(a) = f'(g(a)) g'(a). \quad (1)$$

PROOF:

Step 1. $g'(a)$ exists Hence $\forall \epsilon' > 0, \exists \delta' > 0$ such that

$$|g(x) - g(a) - g'(a)(x - a)| < \epsilon' |x - a| \quad \text{if } |x - a| < \delta'. \quad (2)$$

Step 2. $f'(g(a))$ exists Hence $\forall \epsilon'' > 0, \exists \delta'' > 0$ such that

$$|f(y) - f(g(a)) - f'(g(a))(y - g(a))| < \epsilon'' |y - g(a)| \quad \text{if } |y - g(a)| < \delta''. \quad (3)$$

Step 3. Wish to show $\forall \epsilon > 0, \exists \delta > 0$ such that

$$|f(g(x)) - f(g(a)) - f'(g(a))g'(a)(x - a)| < \epsilon |x - a| \quad \text{if } |x - a| < \delta. \quad (4)$$

Step 4. g is continuous at a Hence $\exists \delta_c > 0$ such that

$$|g(x) - g(a)| < \delta'' \text{ if } |x - a| < \delta_c. \quad (5)$$

Step 5. Substitute Step 4 in Step 2 Using (5), replace y in (3) by $g(x)$ to obtain

$$|f(g(x)) - f(g(a)) - f'(g(a))(g(x) - g(a))| < \epsilon'' |g(x) - g(a)| \quad \text{if } |x - a| < \delta_c. \quad (6)$$

Step 6. Rewrite Step 1 Set $\eta(x) := g(x) - g(a) - g'(a)(x - a)$ so that

$$g(x) - g(a) = g'(a)(x - a) + \eta(x) \quad (7)$$

and by (2),

$$|\eta(x)| < \epsilon' |x - a| \quad \text{if } |x - a| < \delta'. \quad (8)$$

Step 7. Substitute Step 6 in Step 5 Putting (7) into (6) (in two places!) and setting

$$A(x) := f(g(x)) - f(g(a)) - f'(g(a))[g'(a)(x - a) + \eta(x)] \quad (9)$$

we obtain from (6)

$$|A(x)| < \epsilon'' |g'(a)(x - a) + \eta(x)| \quad \text{if } |x - a| < \delta_c. \quad (10)$$

Step 8. Prove Step 3 Given ϵ , choose ϵ' and ϵ'' such that

$$\epsilon'' \epsilon' + \epsilon'' |g'(a)| + |f'(g(a))| \epsilon' < \epsilon. \quad (11)$$

Then choose δ' , δ'' , and δ_c as in Steps 1, 2 and 4, and set $\delta = \min(\delta_c, \delta')$. If $|x - a| < \delta$, we have,

$$\begin{aligned} & |f(g(x)) - f(g(a)) - f'(g(a))g'(a)(x - a)| \\ &= |A(x) + f'(g(a))\eta(x)| \quad (\text{by (9)}) \\ &\leq |A(x)| + |f'(g(a))\eta(x)| \\ &\leq \epsilon'' |g'(a)| |x - a| + \epsilon'' |\eta(x)| + |f'(g(a))| |\eta(x)| \quad (\text{by (10)}) \\ &\leq [\epsilon'' |g'(a)| + \epsilon'' \epsilon' + |f'(g(a))| \epsilon'] |x - a| \quad (\text{by (8)}) \\ &< \epsilon |x - a| \quad (\text{by (11)}). \end{aligned}$$

This proves (4). □