C;‘».i 1 e},@c‘w\ Lf-7, /k(p

1 CHAPTER 1. WHAT IS DIFFERENTIAL GEOMETRY?

dual of a vector space V', but when K is a field like R or C the notation K*
is sometimes used for the multiplicative group K\ {0}. The terms smooth,
infinitely differentiable, and C® are all synonymous.

1.2 Coordinates

The rest of this chapter defines category of smooth manifolds and smooth
maps between them. Before giving the precise definitions we will introduce
some terminology and give some examples.

Definition 1.2.1. A chart on a set M is a pair (¢, U) where U is a subset
of M and ¢ : U — o(U) is a bijection' from U to an open set o(U) in R™.
An atlas on M is a collection &/ = {(¢a,Un)}aca of charts such that the
domains U, cover M, i.e.

M=) U

acA

The idea is that if o(p) = (z1(p),...,xm(p)) for p € U then the func-
tions w; form a system of local coordinates defined on the subset U of M.
The dimension of M should be m since it takes m numbers to uniquely spec-
ify a point of U. We will soon impose conditions on charts (¢, U), however
for the moment we are assuming nothing about the maps ¢ (other than that
they are bijective).

Example 1.2.2. Every open subset U C R has an atlas consisting of a
single chart, namely (¢, U) = (idy, U) where idy denotes the identity map
of U.

Example 1.2.3. Assume that W C R" and V' C R" are open sets, that M
is a subset of the product R™ x R” = R™*", and f: W — V is a map whose
graph is a eubeet of M, ie.

graph(f) :={(z,y) e Wx V|z e W, y=h(z)} C M.

Let U = (W N V)N graph(f) and let ¢(z,y) = = be the projection of U
onto W. Then the pair (¢,U) is a chart on M. The inverse map is given

by ¢~Y(z) = (z, f(x))).
Example 1.2.4. The m-sphere

S™ = {p= (20, &m) ER™ 2B+ .- 422 =1}

! See Appendix A.1 for a discussion of the terms injective, surjective, bijective.
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has an atlas consisting of the 2m+2 charts ¢;+ : Ui+ — D™ where D™ is the
open unit disk in R™, Ujx = {p € S™| £ z; > 0}, and ¢;+ is the projection
which discards the ith coordinate. (See Example 2.1.13 below.)

Example 1.2.5. Let A = AT € R(m+Dx(m+1) 1o 5 symmetric matrix and
define a quadratic form F : R™*! - R by

F(p):= z Az, p= (0, . Tm).

After a linear change of coordinates the function F' has the form

F(p):x%+--~+wi—w%+1 — =g
(Here 7 is the rank of the matrix A.) The set M = F71(1) has an atlas
of 2m + 1 charts by the same construction as in Example 1.2.4, in fact
Sm+1 is the special case where A = 1,,, the n x n identity matrix. (See
Example 2.1.12 below for another way to construct charts.)

Figure 1.3 enumerates the familiar quadric surfaces in R®. When
W =R? and V =R the paraboloids are examples of graphs as in Exam-
ple 1.2.3 and the ellipsoid and the two hyperboloids are instances of the
quadric surfaces defined in Example 1.2.5. The sphere is an instance of the
ellipsoid (a = b = ¢ = 1) and the cylinder is a linit (as ¢ — o0) of the
hyperbolic paraboloid. The pictures were generated by computer using the
parameterizations

x = acos(t)sin(s), y = bsin(t) sin(s), z = ccos(s)
for the ellipsoid,
x = acos(t)sinh(s),  y = bsin(t)sinh(s),  » = ccosh(s)
for the hyperbolic paraboloid, and
x = acosh(t) sinh(s), y = bsinh(¢) sinh(s), z = ccosh(s)

for the elliptic paraboloid. These quadric surfaces will be often used in the
sequel to illustrate important concepts.

In the following two examples K denotes either the field R of real numbers
or the field C of complex numbers, K* := {\ € K|\ # 0} denote the
corresponding multiplicative group, and V' denotes a vector space over K.
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Example 1.2.6. The projective space of V' is the set of lines (through
the origin) in V. In other words,

P(V)={tcV|lisa l-dimensional K-linear subspace}

When K = R and V = R™*! this is denoted by RP™ and when K = C and
C = R™*! this is denoted by CP™. For our purposes we can identify the
spaces C™*! and R?™*2 but the projective spaces CP™ and RP?™ are very
different. The various lines £ € P(V) intersect in the origin, however, after
the harmless identification

P(V)={l] [veV\{0}, [v]:=K"v=Kov\{0}

the elements of P(V') become digjoint, i.e. P(V') is the set of equivalence
classes of an equivalence relation on the open set V'\ {0}. Assume that

V =KK™ ! and define an atlas on P{V) as follows. For each i =0,1,...,m
let U; = {[v]|,v = (xg,...,2m) z; # 0} and define a bijection ¢ : U; — K™

by the formula

s:([0]) = <"L_°i:i‘““‘_>

T T X T
This atlas consists of m + 1 charts.
Example 1.2.7. For each positive integer k the set
Gi(V) :={€ C V|{is a k-dimensional K-linear subspace}

is called the Grassmann manifold of k-planes in V. Thus G1(V) = P(V).
Assume that V' = K" and define an atlas on G (V') as follows. Let ey, ..., e,
be the standard basis for K", i.e. e; is the ith column of the n x n identity
matrix 1,. Each partition {1,2,...,n} = TUJ, I = {i; < -+ < ig},
J =1 <+ < jp_p of the first the first » natural numbers determines a
direct sum decomposition

K'=vV=ViaV,

via the formulas Vi = Ke;; + -+ + Ke;, and Vy = Kej, +--- +Ke;, _,.
Let Uy denote the set of £ € G(V) which are transverse to Vj, i.e. such
that £NV; = {0}. The elements of U are precisely those k-planes of form
¢ = graph(A) where A : V; — V; is a linear map. Define ¢; : U; — Kkx(n=k)

by the formula
n—k

01([) = (a'r's)a 4461} = Zasrejs-
s=1
Exercise 1.2.8. Prove that the set of all pairs (¢7, Uy) as I ranges over the
subsets of {1,..., n} of cardinality k form an atlas.



