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2.5.3 Lie Group Homomorphisms

Let G and H be Lie groups and g and § be Lie algebras. A Lie group
homomorphism from G to H is a smooth map p : G — H that is a
group homomorphism. A Lie group isomorphism is a bijective Lie group
homomorphism whose inverse is also a Lie group homomorphism. A Lie
algebra homomorphism from g to b is a linear map that preserves the
Lie bracket.

Lemma 2.5.14. Let G and H be Lie groups and denote their Lie algebras
by g :=Lie(G) and § := Lie(H). Let p: G — H be a Lie group homomor-
phism and denote its deriwative at 1 € G by

o :=dp(l) : g —b.
Then p is a Lie algebra homomorphism.
Proof. The proof has three steps.
Step 1. For all £ € g and t € R we have p(exp(t€)) = exp(tp(§)).

Fix an element § € g. Then, by Lemma 2.5.9, we have exp(t§) € G for
every t € R. Thus we can define a map v : R — H by ~(t) := p(exp(t€)).
Since p is smooth, this is a smooth curve in H and, since p is a group ho-
momorphism and the exponential map satisfies (2.5.6), our curve v satisfies
the conditions

s+t =7(s)@), ~0) =1,  4(0) =dp(1)¢ = p(¢).
Hence it follows from Lemma 2.5.10 that v(¢t) = exp(¢p(€)). This proves
Step 1.
Step 2. For all g € G and n € g we have p(gng=*) = p(g)p(n)p(g~1).
Define the smooth curve v : R — G by 7(t) := gexp(tn)g~'. This curve
takes values in G by Lemma 2.5.9. By Step 1 we have

p(v(t)) = p(g)plexp(tn))p(g) " = p(g) exp(tp(n))p(g) ™"

for every ¢t. Since v(0) = 1 and 4(0) = gng~' we obtain

plang™) = dp(v(0))%(0)

d
g t:Op(v(t))

&, p(g) exp(tp(n))p(g™")

= p(9)p(mp(g™).

This proves Step 2.
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Step 3. For all §,n € g we have

AUE ) = [A(£), A(n)].
Define the curve n: R — g by

1(t) := exp(t&)n exp(—t§)

for t € R. By Lemma 2.5.9 this curve takes values in the Lie algebra of G
and

7(0) = [§,n].
Hence
plE.ml) = %L_Op(exp(té)nexp(—fﬁ))
= tzop(exp(tf)) p(n)p (exp(—t€))
= | exp(tp(E)) p(n) exp (=tp(€))
t=0
= [p(€),p(n)].

Here the first equation follows from the fact that p is linear, the second
equation follows from Step 2 with g = exp(t£), and the third equation
follows from Step 1. This proves Step 3 and Lemma 2.5.14. O

Example 2.5.15. The complex determinant defines a Lie group homomor-
phism det : U(n) — S!. The associated Lie algebra homomorphism is

trace = det : u(n) — iR = Lie(S').

Example 2.5.16 (Unit Quaternions and SU(2)). The Lie group SU(2)
is diffeomorphic to the 3-sphere. Every matrix in SU(2) can be written as

B To+iry o +irs 2, .2, .2, 2 _
g= ( oy tizs g iz, ) ; o+ +o;+a5=1. (2.5.10)
Here the z; are real numbers. They can be interpreted as the coordinates
of a unit quaternion z = zg + iz + jrg + kas € Sp(1) (see Example 2.5.6).
The reader may verify that the map Sp(1) — SU(2) : = g in (2.5.10) is a
Lie group isomorphism.
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Exercise 2.5.17 (The double cover of SO(3)). Identify the imaginary
part of H with R?* and write a vector ¢ € R? = Im(H) as a purely imagi-
nary quaternion § = i§; + j&; + k&;. Prove that if £ € Im(H) and = € Sp(1)
then £z € Im(H). Define the map p : Sp(1) — SO(3) by

p(z)§ == z€T

for z € Sp(1) and £ € Im(H). Prove that the linear map p(x) : R? — R? is
represented by the 3 x 3-matrix

.’l?g + 1’% — x% - :vg 2(x1xo — wo3y) 2(z13 + wow2)
plx) = 2(w1wp + wow3)  xf+ a3 —ad—a?  2(waw3 — wowy)
2(z173 — Toxa)  2(xoxs + Toz1) T2 +xE— 122 — 22

Show that p is a Lie group homomorphism. Find a formula for the map
p:=dp(1):sp(l) — s0(3)

and show that it is a Lie algebra isomorphism. For z,y € Sp(1) prove
that p(z) = p(y) if and only if y = %

Example 2.5.18. Consider the map
GL(n,R) — Diff(R") : g — ¢,

which assigns to every nonsingular matrix g € GL(n,R) the linear diffeo-
morphism ¢4 : R" — R" given by ¢4(x) := gz for z € R". This map g o}
is a group homomorphism. The group Diff(R") is infinite dimensional and
thus cannot be a Lie group. However, it has many properties in common
with Lie groups. For example one can define what is meant by a smooth
path in Diff(R") and extend formally the notion of a tangent vector (as
the derivative of a path through a given element of Diff(R")) to this set-
ting. In particular, the tangent space of Diff (R") at the identity can then
be identified with the space of vector fields

T:qDiff(R™) = Vect(R™).
Differentiating the map g — ¢4, one then obtains a linear map
gl(n, R) = Vect(R") : £ — X¢
which assigns to every matrix £ € gl(n,R) the vector field X : R* — R”?

given by X¢(x) := &x for x € R”. We have already seen in Remark 2.4.23
that this map is a Lie algebra homomorphism.
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Example 2.5.19. Let g be a finite dimensional Lie algebra. Then the set

d is a bijective linear map, }
¢, n] = [®¢, By VEneg

of Lie algebra automorphisms of g is a Lie group. Its Lie algebra is the
space of derivations on g denoted by

Aut(g) = {(I’ 1g— g!

Der(g) := {A tg— g} A is a linear map, } |

Al,n] = [AE )+ €, An]VEneg

Now suppose that g = Lie(G) is the Lie algebra of a Lie group G. Then
there is a map

ad : G — Aut(g), ad(g)n := gng~", (2.5.11)

for g € G and n € g. Lemma 2.5.9 (ii) asserts that ad(g) is indeed a linear
map from g to itself for every g € G. The reader may verify that the map

ad(g) :g — g

is a Lie algebra automorphism for every g € G and that the map ad : G —
Aut(g) is a Lie group homomorphism. The associated Lie algebra homo-
morphism is the map

Ad: g — Der(g). Ad(&)n := [, 7], (2.5.12)

for £, € g. To verify the claim Ad = ad we compute

d

ey = G| odlespte)n= G| expltemesn(—t6) = c.1]

Exercise 2.5.20. Let g be any Lie algebra and define the map
Ad: g — End(g)
by (2.5.12). Prove that the endomorphism
Ad(§):g—g

is a derivation for every § € g and that Ad: g — Der(g) is a Lie algebra
homomorphism. If g is finite dimensional, prove that Aut(g) is a Lie group
with Lie algebra Der(g).



