

2.5.3 Lie Group Homomorphisms

Let G and H be Lie groups and \mathfrak{g} and \mathfrak{h} be Lie algebras. A **Lie group homomorphism** from G to H is a smooth map $\rho : G \rightarrow H$ that is a group homomorphism. A **Lie group isomorphism** is a bijective Lie group homomorphism whose inverse is also a Lie group homomorphism. A **Lie algebra homomorphism** from \mathfrak{g} to \mathfrak{h} is a linear map that preserves the Lie bracket.

Lemma 2.5.14. *Let G and H be Lie groups and denote their Lie algebras by $\mathfrak{g} := \text{Lie}(G)$ and $\mathfrak{h} := \text{Lie}(H)$. Let $\rho : G \rightarrow H$ be a Lie group homomorphism and denote its derivative at $\mathbb{1} \in G$ by*

$$\dot{\rho} := d\rho(\mathbb{1}) : \mathfrak{g} \rightarrow \mathfrak{h}.$$

Then $\dot{\rho}$ is a Lie algebra homomorphism.

Proof. The proof has three steps.

Step 1. *For all $\xi \in \mathfrak{g}$ and $t \in \mathbb{R}$ we have $\rho(\exp(t\xi)) = \exp(t\dot{\rho}(\xi))$.*

Fix an element $\xi \in \mathfrak{g}$. Then, by Lemma 2.5.9, we have $\exp(t\xi) \in G$ for every $t \in \mathbb{R}$. Thus we can define a map $\gamma : \mathbb{R} \rightarrow H$ by $\gamma(t) := \rho(\exp(t\xi))$. Since ρ is smooth, this is a smooth curve in H and, since ρ is a group homomorphism and the exponential map satisfies (2.5.6), our curve γ satisfies the conditions

$$\gamma(s+t) = \gamma(s)\gamma(t), \quad \gamma(0) = \mathbb{1}, \quad \dot{\gamma}(0) = d\rho(\mathbb{1})\xi = \dot{\rho}(\xi).$$

Hence it follows from Lemma 2.5.10 that $\gamma(t) = \exp(t\dot{\rho}(\xi))$. This proves Step 1.

Step 2. *For all $g \in G$ and $\eta \in \mathfrak{g}$ we have $\dot{\rho}(g\eta g^{-1}) = \rho(g)\dot{\rho}(\eta)\rho(g^{-1})$.*

Define the smooth curve $\gamma : \mathbb{R} \rightarrow G$ by $\gamma(t) := g\exp(t\eta)g^{-1}$. This curve takes values in G by Lemma 2.5.9. By Step 1 we have

$$\rho(\gamma(t)) = \rho(g)\rho(\exp(t\eta))\rho(g)^{-1} = \rho(g)\exp(t\dot{\rho}(\eta))\rho(g)^{-1}$$

for every t . Since $\gamma(0) = \mathbb{1}$ and $\dot{\gamma}(0) = g\eta g^{-1}$ we obtain

$$\begin{aligned} \dot{\rho}(g\eta g^{-1}) &= d\rho(\gamma(0))\dot{\gamma}(0) \\ &= \frac{d}{dt} \bigg|_{t=0} \rho(\gamma(t)) \\ &= \frac{d}{dt} \bigg|_{t=0} \rho(g)\exp(t\dot{\rho}(\eta))\rho(g)^{-1} \\ &= \rho(g)\dot{\rho}(\eta)\rho(g)^{-1}. \end{aligned}$$

This proves Step 2.

Step 3. For all $\xi, \eta \in \mathfrak{g}$ we have

$$\dot{\rho}([\xi, \eta]) = [\dot{\rho}(\xi), \dot{\rho}(\eta)].$$

Define the curve $\eta : \mathbb{R} \rightarrow \mathfrak{g}$ by

$$\eta(t) := \exp(t\xi)\eta \exp(-t\xi)$$

for $t \in \mathbb{R}$. By Lemma 2.5.9 this curve takes values in the Lie algebra of G and

$$\dot{\eta}(0) = [\xi, \eta].$$

Hence

$$\begin{aligned} \dot{\rho}([\xi, \eta]) &= \left. \frac{d}{dt} \right|_{t=0} \dot{\rho}(\exp(t\xi)\eta \exp(-t\xi)) \\ &= \left. \frac{d}{dt} \right|_{t=0} \rho(\exp(t\xi)) \dot{\rho}(\eta) \rho(\exp(-t\xi)) \\ &= \left. \frac{d}{dt} \right|_{t=0} \exp(t\dot{\rho}(\xi)) \dot{\rho}(\eta) \exp(-t\dot{\rho}(\xi)) \\ &= [\dot{\rho}(\xi), \dot{\rho}(\eta)]. \end{aligned}$$

Here the first equation follows from the fact that $\dot{\rho}$ is linear, the second equation follows from Step 2 with $g = \exp(t\xi)$, and the third equation follows from Step 1. This proves Step 3 and Lemma 2.5.14. \square

Example 2.5.15. The complex determinant defines a Lie group homomorphism $\det : \mathrm{U}(n) \rightarrow S^1$. The associated Lie algebra homomorphism is

$$\mathrm{trace} = \det : \mathfrak{u}(n) \rightarrow \mathbf{i}\mathbb{R} = \mathrm{Lie}(S^1).$$

Example 2.5.16 (Unit Quaternions and $\mathrm{SU}(2)$). The Lie group $\mathrm{SU}(2)$ is diffeomorphic to the 3-sphere. Every matrix in $\mathrm{SU}(2)$ can be written as

$$g = \begin{pmatrix} x_0 + \mathbf{i}x_1 & x_2 + \mathbf{i}x_3 \\ -x_2 + \mathbf{i}x_3 & x_0 - \mathbf{i}x_1 \end{pmatrix}, \quad x_0^2 + x_1^2 + x_2^2 + x_3^2 = 1. \quad (2.5.10)$$

Here the x_i are real numbers. They can be interpreted as the coordinates of a unit quaternion $x = x_0 + \mathbf{i}x_1 + \mathbf{j}x_2 + \mathbf{k}x_3 \in \mathrm{Sp}(1)$ (see Example 2.5.6). The reader may verify that the map $\mathrm{Sp}(1) \rightarrow \mathrm{SU}(2) : x \mapsto g$ in (2.5.10) is a Lie group isomorphism.

Exercise 2.5.17 (The double cover of $\mathrm{SO}(3)$). Identify the imaginary part of \mathbb{H} with \mathbb{R}^3 and write a vector $\xi \in \mathbb{R}^3 = \mathrm{Im}(\mathbb{H})$ as a purely imaginary quaternion $\xi = \mathbf{i}\xi_1 + \mathbf{j}\xi_2 + \mathbf{k}\xi_3$. Prove that if $\xi \in \mathrm{Im}(\mathbb{H})$ and $x \in \mathrm{Sp}(1)$ then $x\xi\bar{x} \in \mathrm{Im}(\mathbb{H})$. Define the map $\rho : \mathrm{Sp}(1) \rightarrow \mathrm{SO}(3)$ by

$$\rho(x)\xi := x\xi\bar{x}$$

for $x \in \mathrm{Sp}(1)$ and $\xi \in \mathrm{Im}(\mathbb{H})$. Prove that the linear map $\rho(x) : \mathbb{R}^3 \rightarrow \mathbb{R}^3$ is represented by the 3×3 -matrix

$$\rho(x) = \begin{pmatrix} x_0^2 + x_1^2 - x_2^2 - x_3^2 & 2(x_1x_2 - x_0x_3) & 2(x_1x_3 + x_0x_2) \\ 2(x_1x_2 + x_0x_3) & x_0^2 + x_2^2 - x_3^2 - x_1^2 & 2(x_2x_3 - x_0x_1) \\ 2(x_1x_3 - x_0x_2) & 2(x_2x_3 + x_0x_1) & x_0^2 + x_3^2 - x_1^2 - x_2^2 \end{pmatrix}.$$

Show that ρ is a Lie group homomorphism. Find a formula for the map

$$\dot{\rho} := d\rho(\mathbb{1}) : \mathfrak{sp}(1) \rightarrow \mathfrak{so}(3)$$

and show that it is a Lie algebra isomorphism. For $x, y \in \mathrm{Sp}(1)$ prove that $\rho(x) = \rho(y)$ if and only if $y = \pm x$.

Example 2.5.18. Consider the map

$$\mathrm{GL}(n, \mathbb{R}) \rightarrow \mathrm{Diff}(\mathbb{R}^n) : g \mapsto \phi_g$$

which assigns to every nonsingular matrix $g \in \mathrm{GL}(n, \mathbb{R})$ the linear diffeomorphism $\phi_g : \mathbb{R}^n \rightarrow \mathbb{R}^n$ given by $\phi_g(x) := gx$ for $x \in \mathbb{R}^n$. This map $g \mapsto \phi_g$ is a group homomorphism. The group $\mathrm{Diff}(\mathbb{R}^n)$ is infinite dimensional and thus cannot be a Lie group. However, it has many properties in common with Lie groups. For example one can define what is meant by a smooth path in $\mathrm{Diff}(\mathbb{R}^n)$ and extend formally the notion of a tangent vector (as the derivative of a path through a given element of $\mathrm{Diff}(\mathbb{R}^n)$) to this setting. In particular, the tangent space of $\mathrm{Diff}(\mathbb{R}^n)$ at the identity can then be identified with the space of vector fields

$$T_{\mathrm{id}}\mathrm{Diff}(\mathbb{R}^n) = \mathrm{Vect}(\mathbb{R}^n).$$

Differentiating the map $g \mapsto \phi_g$, one then obtains a linear map

$$\mathfrak{gl}(n, \mathbb{R}) \rightarrow \mathrm{Vect}(\mathbb{R}^n) : \xi \mapsto X_\xi$$

which assigns to every matrix $\xi \in \mathfrak{gl}(n, \mathbb{R})$ the vector field $X_\xi : \mathbb{R}^n \rightarrow \mathbb{R}^n$ given by $X_\xi(x) := \xi x$ for $x \in \mathbb{R}^n$. We have already seen in Remark 2.4.23 that this map is a Lie algebra homomorphism.

Example 2.5.19. Let \mathfrak{g} be a finite dimensional Lie algebra. Then the set

$$\text{Aut}(\mathfrak{g}) := \left\{ \Phi : \mathfrak{g} \rightarrow \mathfrak{g} \mid \begin{array}{l} \Phi \text{ is a bijective linear map,} \\ \Phi[\xi, \eta] = [\Phi\xi, \Phi\eta] \forall \xi, \eta \in \mathfrak{g} \end{array} \right\}$$

of **Lie algebra automorphisms** of \mathfrak{g} is a Lie group. Its Lie algebra is the space of **derivations** on \mathfrak{g} denoted by

$$\text{Der}(\mathfrak{g}) := \left\{ A : \mathfrak{g} \rightarrow \mathfrak{g} \mid \begin{array}{l} A \text{ is a linear map,} \\ A[\xi, \eta] = [A\xi, \eta] + [\xi, A\eta] \forall \xi, \eta \in \mathfrak{g} \end{array} \right\}.$$

Now suppose that $\mathfrak{g} = \text{Lie}(G)$ is the Lie algebra of a Lie group G . Then there is a map

$$\text{ad} : G \rightarrow \text{Aut}(\mathfrak{g}), \quad \text{ad}(g)\eta := g\eta g^{-1}, \quad (2.5.11)$$

for $g \in G$ and $\eta \in \mathfrak{g}$. Lemma 2.5.9 (ii) asserts that $\text{ad}(g)$ is indeed a linear map from \mathfrak{g} to itself for every $g \in G$. The reader may verify that the map

$$\text{ad}(g) : \mathfrak{g} \rightarrow \mathfrak{g}$$

is a Lie algebra automorphism for every $g \in G$ and that the map $\text{ad} : G \rightarrow \text{Aut}(\mathfrak{g})$ is a Lie group homomorphism. The associated Lie algebra homomorphism is the map

$$\text{Ad} : \mathfrak{g} \rightarrow \text{Der}(\mathfrak{g}), \quad \text{Ad}(\xi)\eta := [\xi, \eta], \quad (2.5.12)$$

for $\xi, \eta \in \mathfrak{g}$. To verify the claim $\text{Ad} = \text{ad}$ we compute

$$\text{ad}(\xi)\eta = \frac{d}{dt} \Big|_{t=0} \text{ad}(\exp(t\xi))\eta = \frac{d}{dt} \Big|_{t=0} \exp(t\xi)\eta \exp(-t\xi) = [\xi, \eta].$$

Exercise 2.5.20. Let \mathfrak{g} be any Lie algebra and define the map

$$\text{Ad} : \mathfrak{g} \rightarrow \text{End}(\mathfrak{g})$$

by (2.5.12). Prove that the endomorphism

$$\text{Ad}(\xi) : \mathfrak{g} \rightarrow \mathfrak{g}$$

is a derivation for every $\xi \in \mathfrak{g}$ and that $\text{Ad} : \mathfrak{g} \rightarrow \text{Der}(\mathfrak{g})$ is a Lie algebra homomorphism. If \mathfrak{g} is finite dimensional, prove that $\text{Aut}(\mathfrak{g})$ is a Lie group with Lie algebra $\text{Der}(\mathfrak{g})$.