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2.5.4 Lie Groups and Diffeomorphisms

There is a natural correspondence between Lie groups and Lie algebras on
the one hand and diffeomorphisms and vector fields on the other hand. We
summarize this correspondence in the following table

Lie groups Diffeomorphisms
G c GL(n,R) Diff (M)
g = Lie(G) = TG Vect(M) = TigDiff (M)
exponential map flow of a vector field
t — exp(t€) t— ¢ = “exp(tX)”’
adjoint representation pushforward
€ gég™! X~ 0. X
Lie bracket on g Lie bracket of vector fields
[&,n) =&n—né X, Y]=dX .Y -dY - X.

To understand the correspondence between the exponential map and the
flow of a vector field compare equation (2.4.6) with equation (2.5.5). To un-
derstand the correspondence between the adjoint representation and push-
forward observe that
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where ¥ denotes the flow of Y. To understand the correspondence between
the Lie brackets recall that

d ‘ d

()Y,  [Enl=—

X,Y]= — exp(t exp(—t§),
[X.Y] . g p(t&)n exp(—t§)

dt +=0
where &t denotes the flow of X. We emphasize that the analogy between
Lie groups and Diffeomorphisms only works well when the manifold M is
compact so that every vector field on M is complete. The next exercise gives
another parallel between the Lie bracket on the Lie algebra of a Lie group
and the Lie bracket of two vector fields.

Exercise 2.5.21. Let G ¢ GL(n,R) be a Lie group with Lie algebra g and
let £,n € g. Define the smooth curve v : R — G by

(t) = exp(t§) exp(tn) exp(—t) exp(~tn).
Prove that 4(0) = 0 and %')(O) = [§,n]. Compare this with Lemma 2.4.18.

Exercise 2.5.22. Let G C GL(n,R) be a Lie group with Lie algebra g
and let £, € g. Show that [£,1] = 0 if and only if the exponential maps
commute, i.e. exp(s€)exp(tn) = exp(tn) exp(sg) for all s,t € R. How can
this observation be deduced from Lemma 2.4.267
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2.5.5 Smooth Maps and Algebra Homomorphisms

Let M be a smooth submanifold of R¥. Denote by Z (M) := C*(M,R)
the space of smooth real valued functions f: M — R. Then F#(M) is a
commutative unital algebra. Each p € M determines a unital algebra ho-
momorphism ¢, : (M) — R defined by &,(f) = f(p) for p € M.

Theorem 2.5.23. Every unital algebra homomorphism e : F (M) — R has
the form e = ¢, for some p € M.

Proof. Assume that ¢ : .Z (M) — R is an algebra homomorphism.

Claim. For all f,g € F(M) we have e(g) =0 = &(f) € flg=1(0)).
Indeed, the function f — e(f) - 1 lies in the kernel of ¢ and so the func-
tion h:= (f —e(f) - 1)? 4+ g2 also lies in the kernel of . There must be at
least one point p € M where h(p) = 0 for otherwise 1 = e(h)e(1/h) = 0.
For this point p we have f(p) = e(p) and g(p) = 0, hence p € g~1(0), and
therefore (f) = f(p) € f(g~'(0)). This proves the claim.

The theorem asserts that there exists a p € M such that every f € .7 (M)
satisfies £(f) = f(p). Assume, by contradiction, that this is false. Then for
every p € M there exists a function f € .Z (M) such that f(p) # e(f). Re-
place f by f — (f) to obtain f(p) # 0 = &(f). Now use the axiom of choice
to obtain a family of functions f, € (M), one for every p € M, such
that f,(p) # 0 =¢e(f,) for all p € M. Then the set U, := f, ' (R\ {0}) is
an M-open neighborhood of p for every p € M. Choose a sequence of com-
pact sets K, C M such that K, C intp (K1) for all n and M = L B
Then, for each n, there is a g, € .# (M) (a finite sum of the form >_; fgi) such
that &(gp,) = 0 and gp(q) > 0 for all ¢ € Kj,. If M is compact, this is already
a contradiction because a positive function cannot belong to the kernel of e.
Otherwise, choose f € .Z (M) such that f(g) >n for all ¢ € M \ K, and
all n € N. Then e(f) € f(97'(0)) € f(M \ Kp) C [n,00) by the claim and

so e(f) = n for all n. This is a contradiction and proves Theorem 2.5.23. [J

Now let N be another smooth submanifold (say of RY) and let C*°(M, N)
denote the space of smooth maps from M to N. A homomorphism from
F(N) to .F(M) is a (real) linear map ® : .F(N) — .F (M) that satisfies

o(fg) = 0(f)®(g)y S)=L

An automorphism of the algebra .Z(M) is a bijective homomorphism
d . F(M) - F(M). Let Hom(F(N), F(M)) denote the space of ho-
momorphisms from .Z (N) to .7 (M). The automorphisms of .7 (M) form a
group denoted by Aut(.-Z(M)).
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Corollary 2.5.24. The pullback operation
C®(M,N) = Hom(Z(N), Z(M)) : ¢ ¢

is bijective. In particular, the map Diff(M) — Aut(F(M)) : ¢ = ¢ is an
anti-isomorphism of groups.

Proof. This is an exercise with hint. Let ® : #(N) — .7 (M) be a unital
algebra homomorphism. By Theorem 2.5.23 there exists a map ¢ : M — N
such that &, 0 ® = g4, for all p € M. Prove that foo: M — R is smooth
for every smooth map f : N — R and deduce that ¢ is smooth. O

Remark 2.5.25. The pullback operation is functorial. i.e.
(o) =v 0d",  idy =idzu.

for ¢ € C>®(M,N) and ¢ € C>°(N, P). Here id denotes the identity map
of the space indicated in the subscript. Hence Corollary 2.5.24 may be
summarized by saying that the category of smooth manifolds and smooth
maps is anti-isomorphic to a subcategory of the category of commutative
unital algebras and unital algebra homomorphisms.

Exercise 2.5.26. If M is compact, then there is a slightly different way to
prove Theorem 2.5.23. An ideal in .7 (M) is a linear subspace # C .7 (M)
satisfying the condition f € #(M), g€ # = fg€ #. A maximal
ideal in .Z (M) is an ideal # ¢ .# (M) such that every ideal 7’ C .7 (M)
containing ¢ is equal to #. Prove that, if M is compact and # C .7 (M)
is an ideal with the property that for every p € M there is an f e ¢
with f(p) # 0, then _# = .Z(M). Deduce that each maximal ideal in .7 (M)
has the form _#, := {f € #(M)| f(p) = 0} for some p € M.

Exercise 2.5.27. If M is compact. give another proof of Corollary 2.5.24
as follows. The set @7 1(_#,) is a maximal ideal in F(N) for each p € M.
Use Exercise 2.5.26 to deduce that there is a unique map ¢ : M — N such
that @'(_#p) = Zs(p) for all p € M. Show that ¢ is smooth and ¢* = @.

Exercise 2.5.28. It is a theorem of ring theory that, when I C R is an ideal
in a ring R, the quotient ring R/I is a field if and only if the ideal I is max-
imal. Show that the kernel of the ring homomorphism &, : .# (M) — R of
Theorem 2.5.23 is the ideal _#,, of Exercise 2.5.26. Conclude that M is com-
pact if and only if every maximal ideal # in .Z (M) is of the form ¢# = 7,
for some p € M. Hint: The functions of compact support form an ideal. It
can be shown that if M is not compact and _# is a maximal ideal contain-
ing all functions of compact support then the quotient field .Z#(M)/_# is a
non-Archimedean ordered field which properly contains R.



