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Preface

The development of Discrete Mathematics has gained momentum in the second
half of the 20th century with the introduction of computers. Today, it is one of
the most vivid mathematical disciplines, amustfor every mathematician/computer
scientist of the 21st century.

The objective of the course is to provide an overview of the main topics and
techniques of Discrete Mathematics. The emphasis will be on the investigation of
the most fundamental combinatorial structures. In this course we address some of
the most importand topics in Discrete Mathematics:

• Elementary combinatorial configurations (permutations and variations) and
basic counting;

• Systems of distinct representatives and latin squares;

• Combinatorial designs and finite geometries;

• Eulerian and Hamiltonian graphs and NP-hard problems;

• Planarity and the Four Colour Problem.

These lecture notes have been compiled during my stay at the Institute of Al-
gebra of the Johannes Kepler University in Linz, Austria, where I gave a course on
Discrete Mathematics in the Winter Semester of the academic year 2005/6.

I would like to express my deepest gratitute to Prof. Dr. Günter Pilz, the Head
of the Institute of Algebra and Vice-Rector of the Johannes Kepler University in
Linz, and Dr. Erhard Aichinger from the Institute of Algebra. None of this would
have been possible without their help, support and friendship.
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Chapter 1

Words and Sets

This chapter confronts us with the most basic abstract structures:

• words (or strings), which represent the simplestorderedstructures, and

• sets (or collections), which represent the simplestunorderedstructures.

As we shall see, apermutationis nothing but a word over an appropriately chosen
alphabet, while acombinationis just a subset of a finite set. It is natural to ask
why should one invent so complicated names for such simple objects. The answer
is simple. In the dark past of Discrete Mathematics the terminology used to be as
obscure as the ages that gave birth to it. Since the introduction of the names such as
permutationandcombinationmathematics has gone a long way and brought many
simplifications, both in terminology and understanding of the phenomena.

Throughout the course we shall use the followin notation

N= {1,2,3, . . .} for the set of positive integers,

N0 = {0,1,2,3, . . .} for the set of nonnegative integers, and

N∞
0 = {0,1,2,3, . . .}∪{∞}.

The setN∞
0 is a usual extension ofN0 with the greatest element∞: x+∞ = ∞+x=

x ·∞ = ∞ · x = ∞ for all x ∈ N∞
0 , andx < ∞ for all x ∈ N0. Also, we define the

factorial of an integern∈ N0 as usual:

0! = 1

n! = 1·2· . . . ·n, for n > 1.

1



2 CHAPTER 1. WORDS AND SETS

1.1 Words

An alphabetis any finite nonempty set. Elements of an alphabetA will be referred
to asletters, and aword inA is a string of symbols fromA. More precisely, aword
of lengthk over an alphabetA is any tuple fromAk. We follow a simple convention
to omit commas and parentheses when writing words.

Example 1.1 Here are some words over an alphabetA = {a,b,n}: banana, abba,
aa, or simplyn. The first of the words has six letters, then comes a four-letter word,
a two-letter word and finaly a word with only one letter.

We also alow words with no letters. On any alphabet there is precisely one
such word called theempty wordand denoted byε. It is a word with length0. It
is important to note that words we deal with in this course areformal words, that
is, strings of symbols to which no meaning is attached. So, from this point of view
nbbaaais just as good a word asbanana. We shall leave the meaning of words to
other branches of science and treat words just as plain and simple strings of letters.

Let w be a word over an alphabetA. The length ofw will be denoted by|w|.
For a lettera∈ A, by |w|a we denote the number of occurences ofa in w.

Example 1.2 Let A = {a,b,c,n} and letw = bananabe a word overA. Then
|w|= 6, |w|a = 3, |w|b = 1, |w|c = 0 and|w|n = 2.

There is not much structural theory behind so simple objects such as words.
The most exciting thing we can do at the moment is to try to count them.

Problem 1.3 Let A = {a1,a2, . . . ,an} be an alphabet withn > 1 letters and let
k∈ N0 be arbitrary.

(a) How many words withk letters overA are there?
(b) How many words withk letters overA have the property that all the letters

in the word are distinct?
(c) How many words overA have the property that every letter fromA appears

precisely once in the word?

Solution. (a) The set of all words of lengthk over A is just Ak. Therefore, there
are precisely|Ak|= |A| · . . . · |A|︸ ︷︷ ︸

k

= nk such words. There is a less formal, but more

useful way to see this. A word withk letters looks line this:

. . .

1st 2nd 3rd kth



1.1. WORDS 3

There aren candidates for the first position,n candidates for the second position,
. . . ,n candidates for thekth position:

. . .

1st 2nd 3rd kth

n · n n n· · ·

Alltogether, there aren·n· . . . ·n︸ ︷︷ ︸
k

= nk possibilites.

(b) Let us again take the informal point of view. Firstly, there aren candidates
for the first position, but onlyn−1 candidates for the second position, since the
letter used on the first position is not allowed to appear on the second position.
Then, there aren− 2 candidates for the third position since the two letters used
on the first two positions are a no-no, and so on. Finally, there will ben− (k−1)
candidates for the last position:

. . .

1st 2nd 3rd kth

n n−1 n−2 n− (k−1)

and putting it all together we getn· (n−1) · . . . · (n−k+1) =
n!

(n−k)!
possibilites.

Of course, this reasoning is valid as long ask 6 n. If k > n no such word exists.
(c) If every letter fromA is required to appear precisely once in the word, then

the length of the word isn and all the letters have to be distinct. This is a special
case of(b) wherek = n and there aren! such words. ¤

Words where letters are not allowed to repeat are calledpermutations of sets.
Words where letters can appear more than once are other kind of permutations —
permutations of multisets — and we shall consider them in a separate section.

Definition 1.4 A permutation of a setA is a word overA where every letter from
the alphabet appears precisely once in the word. Ak-permutation of a setA, where
k 6 |A|, is a word overA of lengthk where each letter from the alphabet is allowed
to appear at most once (and therefore, all the letters in the word are distinct).

At the end, we apply counting techniques discussed above to determine the
number of all the subsets of a finite set. For a setA let P(A) denote thepower-set
of A, that is, the set of all the subsets ofA:

P(A) = {X : X ⊆ A}.
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Let |A|= n andA = {a1, . . . ,an}. Then every subsetB of A can be represented by
a stringχ(B) of 0’s and 1’s as follows:

χ(B) = p1 . . . pn, where pi =

{
0, ai /∈ B,

1, ai ∈ B.

The wordχ(B) is called thecharacteristic vectorof B.

Example 1.5 Let A = {a,b,c,d,e, f} and B = {b,d,e}. Then χ(B) = 010110
sincea /∈ B, b∈ B, c /∈ B etc. Clearly,χ(∅) = 000000andχ(A) = 111111:

a b c d e f
∅ 0 0 0 0 0 0
B 0 1 0 1 1 0
A 1 1 1 1 1 1

Theorem 1.6 Let A be a finite set withn elements. Then|P(A)|= 2n.

Proof. The mappingχ : P(A) → {0,1}n that takes a subset ofA onto its char-
acteristic vector is a bijection, so|P(A)| and |{0,1}n| have the same number of
elements. Therefore,|P(A)| equals the number of all words over{0,1} whose
length isn, so|P(A)|= 2n. ¤

The proof of Theorem 1.6 is based on an obvious but important fact we shall
use on many occasions in this course:

The Bijection Principle: Whenever there is a bijection between two sets,
they have the same number of elements.

Words over two-element alphabets will be particularly useful in the sequel. So,
we give them a name: a01-wordis a word over{0,1}.

1.2 Sets

One of the most basic things one can do with a set is to count its elements. Clearly,

The Product Principle: If A1, . . . ,An are finite sets, then
|A1× . . .×An|= |A1| · . . . · |An|.

It is also easy to see that

The Sum Principle: If A1, . . . ,An are mutually disjoint finite sets, then
|A1∪ . . .∪An|= |A1|+ . . .+ |An|.
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A1 A2

A3

A2A1

A3

A2A1

|A1|+ |A2|+ |A3| |A1|+ |A2|+ |A3|−

A3

−|A1∩A2|− |A1∩A3|− |A2∩A3|

−|A1∩A2|− |A1∩A3|− |A2∩A3|+
|A1|+ |A2|+ |A3|−

+|A1∩A2∩A3|

Figure 1.1: The cardinality ofA1∪A2∪A3

But, what happens ifA1, . . . , An are not mutually disjoint? In case ofn = 2 we
know from the elementary school that

|A1∪A2|= |A1|+ |A2|− |A1∩A2|,

and it is also easy to see that in casen = 3 (see Fig. 1.1):

|A1∪A2∪A3|= |A1|+ |A2|+ |A3|− |A1∩A2|− |A1∩A3|−
−|A2∩A3|+ |A1∩A2∩A3|.
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Theorem 1.7 (The Principle of Inclusion-Exclusion)LetA1, . . . ,An be finite sets.
Then

|A1∪ . . .∪An|= |A1|+ . . .+ |An|
− |A1∩A2|− |A1∩A3|− . . .−|An−1∩An|
+ |A1∩A2∩A3|+ |A1∩A2∩A4|+ . . .+ |An−2∩An−1∩An|
− . . .

+(−1)n−1|A1∩A2∩ . . .∩An|
Proof. The proof is by induction onn. In casen = 1 the formula is trivial and we
have already seen that the formula is true in casen= 2 or n= 3. Therefore, assume
that the formula is true in case ofn finite sets and let us consider the untion ofn+1
finite sets. Using the formula for the cardinality of the union of two sets:

|A1∪ . . .∪An∪An+1|= |(A1∪ . . .∪An)∪An+1|
= |A1∪ . . .∪An|+ |An+1|− |(A1∪ . . .∪An)∩An+1|
= |A1∪ . . .∪An|+ |An+1|− |(A1∩An+1)∪ . . .∪ (An∩An+1)|.

the proof follows straightforwardly by applying the induction hypothesis twice.
The calculations are given in Fig. 1.2. ¤

Corollary 1.8 Let A1, . . . ,An be finite sets such that|Ai1 ∩ . . .∩Aik|= |A j1 ∩ . . .∩
A jk| wheneveri1, . . . , ik arek distinct indices andj1, . . . , jk arek distinct indices,
k∈ {1, . . . ,n}. Then

|A1∪ . . .∪An|=
(

n
1

)
|A1|−

(
n
2

)
|A1∩A2|+

(
n
3

)
|A1∩A2∩A3|− . . .

+(−1)n−1
(

n
n

)
|A1∩A2∩ . . .∩An|

1.3 Subsets

For historical reasons, ak-element subset of ann-element set is called ak-combination
of a set. The number ofk-combinations of ann-element set is denoted by

(
n
k

)
[read: “n choosek”] .

The pronounciation comes from the fact that this is the number of ways to choose
k objects from a pool ofn identical objects.
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Theorem 1.9 Let n,k > 0. If n > k then
(

n
k

)
=

n!
k!(n−k)!

. Otherwise,
(

n
k

)
= 0.

Proof. Let n > k. Although sets seem to be simpler than words due to the lack
of structure, ordered structures (words in this case) are always easier to count. A
k-element set gives rise tok! different words, e.g.

{a,b,c,d}→ abcd bacd cabd dabc
abdc badc cadb dacb
acbd bcad cbad dbac
acdb bcda cbda dbca
adbc bdac cdab dcab
adcb bdca cdba dcba

whence immediately follows

Number of
k-element sets

=
1
k!
· Number of

k-permutations

Since the number ofk-permutations of ann-element set is n!
(n−k)! , we finaly obtain

that (
n
k

)
=

1
k!
· n!
(n−k)!

.

On the other hand, ifk> n then trivially
(n

k

)
= 0 since ann-element set cannot have

a subset with more thann elements. ¤

Problem 1.10 How many 01-words of lengthm+n are there if they are required
to have preciselymzeros and preciselyn ones?

Solution.Consider a setA= {a1,a2, . . . ,am+n}with m+n elements. Then each 01-
word of lengthm+n with m zeros andn ones corresponds to ann-element subset
of A. Therefore, the number of such 01-words equals the number ofn-element
subsets ofA, which is (

m+n
n

)
.

Here is the other way to see this. Consider a string ofm+n empty boxes which are
to be filled bymzeros andn ones:

. . .

1st 2nd 3rd (m+n)th
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We can choosemboxes in which to write zeros in
(m+n

m

)
ways. Then the remaining

n boxes have to be filled by ones. ¤

Theorem 1.11 (a)
(

n
k

)
=

(
n

n−k

)
for all n > k > 0;

(b)
(

n
k

)
=

(
n−1
k−1

)
+

(
n−1

k

)
for all n > k > 1 (Pascal’s identity).

Proof. (a) This follows by an easy calculation:
(

n
n−k

)
=

n!
(n−k)!(n− (n−k))!

=
n!

(n−k)!k!
=

(
n
k

)
.

Such proofs are usually calledalgebraic proofs.
Most combinatorial identities can be proven in another way: we find an ap-

propriate collection of objects and then count the elements of the collection in two
different ways. The resulting expressions have to be equal because the collection
is the same. Such proofs are usually calledcombinatorial proofs.

Let us provide a combinatorial proof of the same identity. Consider 01-words

of lengthn with preciselyk zeros. There are

(
n
k

)
ways to choosek places out

of n in which to write zeros, so the number of the words under consideration is(
n
k

)
. On the other hand, we can first choosen− k places in which to write ones

in

(
n

n−k

)
ways, so the number of the words under consideration is

(
n

n−k

)
.

Therefore,

(
n
k

)
=

(
n

n−k

)
.

(b) The algebraic proof of the Pascal’s identity is easy:
(

n−1
k−1

)
+

(
n−1

k

)
=

(n−1)!
(k−1)!(n−k)!

+
(n−1)!

k!(n−k−1)!

=
(n−1)!

(k−1)!(n−k−1)!

(
1

n−k
+

1
k

)

=
(n−1)!

(k−1)!(n−k−1)!
· n
k(n−k)

=
(

n
k

)

For the combinatorial proof, letS= {1,2, . . . ,n} be ann-element set and let

us countk-element subsets ofS. Clearly, the number ofk-element subsets is

(
n
k

)
.
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On the other hand, allk-element subsets ofS split into two classes: those that
contain 1, and those that do not. The number ofk-element subsets ofSthat contain

1 is

(
n−1
k−1

)
since we have to choosek− 1 elements from an(n− 1)-element

set S′ = {2, . . . ,n}. The number ofk-element subsets ofS that do not contain

1 is

(
n

k−1

)
since now we have to choose allk elements fromS′. Therefore,

(
n
k

)
=

(
n−1
k−1

)
+

(
n−1

k

)
. ¤

Theorem 1.12 (Newton’s binomial formula) For alln∈ N0 we have

(a+b)n =
n

∑
k=0

(
n
k

)
an−kbk.

Proof. The proof proceeds by induction onn. The first few cases are trivial:

(a+b)0 = 1 =
(

0
0

)

(a+b)1 = a+b =
(

1
0

)
a+

(
1
1

)
b

(a+b)2 = a2 +2ab+b2 =
(

2
0

)
a2 +

(
2
1

)
ab+

(
2
2

)
b2

Assume that the claim is true forn and let us compute(a+b)n+1. By the induction
hypothesis:

(a+b)n+1 = (a+b) · (a+b)n = (a+b) ·
n

∑
k=0

(
n
k

)
an−kbk.

After distributing the sum and multiplying we obtain:

(a+b)n+1 =
n

∑
k=0

(
n
k

)
an−k+1bk +

n

∑
k=0

(
n
k

)
an−kbk+1.

Next, we take out the first summand in the first sum and the last summand in the
second sum to obtain:

(a+b)n+1 = an+1 +
n

∑
k=1

(
n
k

)
an−k+1bk +

n−1

∑
k=0

(
n
k

)
an−kbk+1 +bn+1
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and reindex the second sum, which is a standard trick:

(a+b)n+1 = an+1 +
n

∑
k=1

(
n
k

)
an−k+1bk +

n

∑
m=1

(
n

m−1

)
an−m+1bm+bn+1.

Putting the two sums together we obtain:

(a+b)n+1 = an+1 +
n

∑
k=1

((
n
k

)
+

(
n

k−1

))
an−k+1bk +bn+1.

Finally, we apply the Pascal’s identity and wrap it up:

(a+b)n+1 = an+1 +
n

∑
k=1

(
n+1

k

)
an−k+1bk +bn+1 =

n+1

∑
k=0

(
n+1

k

)
an−k+1bk.

The combinatorial proof of the Newton’s binomial formula is based on a simple
observation. Clearly,

(a+b)n = (a+b) · (a+b) · . . . · (a+b)︸ ︷︷ ︸
n times

so if one multiplies out and writes down the summands as words of lengthn (that
is, without the usuall abbreviations such asa ·a ·a = a3), one obtains all possible
words od lengthn in lettersa andb. For example,

(a+b)4 = aaaa+aaab+aaba+aabb+abaa+abab+abba+abbb

+baaa+baab+baba+babb+bbaa+bbab+bbba+bbbb.

There are

(
n
k

)
words that abbreviate toan−kbk since this is the number of ways we

can choosek places forb (Problem 1.10). Therefore,an−kbk appears

(
n
k

)
times in

the sum, whence(a+b)n =
n

∑
k=0

(
n
k

)
an−kbk. ¤

Combinatorial proofs in Theorem 1.11 are just two instances of another simple
but nevertheless very useful fact:

Double Counting: If the same set is counted in two different ways, the
answers are the same.

We use it again in the proof of the following theorem:
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Theorem 1.13
(

n
0

)
+

(
n
1

)
+

(
n
2

)
+ . . .+

(
n
n

)
= 2n.

Proof. For the algebraic proof, just note that

2n = (1+1)n =
n

∑
k=0

(
n
k

)
1n−k1k =

n

∑
k=0

(
n
k

)

by the Newton’s binomial formula. The combinatorial proof is also not very com-
plicated. LetA be an arbitratyn-element set and let us count the number of subsets
of A. According to Theorem 1.6 this number is2n. On the other hand, let us split
P(A) into disjoint collectionsS0, S1, . . . , Sn so thatSk contains allk-element
subsets ofA. Clearly

|P(A)|= |S0|+ |S1|+ . . .+ |Sn|.

But, |Sk|=
(

n
k

)
according to Theorem 1.9. This concludes the proof. ¤

1.4 Multisets

Two sets are equal if their elements are the same, or more precisely:

A = B if and only if ∀x(x∈ A⇔ x∈ B).

As a consequence,{b,a,n,a,n,a}= {a,b,n}. We usually say that “in a set one can
omit repeating elements”. But what if wewish to put several copies of an object
into a set? Well, we have to invent a new type of mathematical object.

Definition 1.14 Let A = {a1,a2, . . . ,an} be a finite set. Amultiset over Ais any
mappingα : A→ N∞

0 .

The idea behind this definition is simple:α(ak) tells us how many copies of
ak we have in the multisetα. This is whyα is sometimes called themultiplicity
function, andα(ak) is themultiplicity of ak. In particular,α(ak) = 0 means thatak

does not belong to the multiset, whileα(ak) = ∞ means that we have an unlimited
supply of copies ofak.

A multisetα : A→ N∞
0 can be compactly represented as

α =
(

a1 a2 . . . an

m1 m2 . . . mn

)
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or, even more conveniently, as

{m1 ·a1,m2 ·a2, . . . ,mn ·an},
wheremj = α(a j), j ∈ {1,2, . . . ,n}.

Definition 1.15 A multisetα = {m1 ·a1,m2 ·a2, . . . ,mn ·an} is emptyif m1 = . . . =
mn = 0. The multisetα is finite if m1, . . . ,mn < ∞. The number of elements ofα is
denoted by|α| and we define it by|α|= ∑

a∈A
α(a).

A multisetα = {m1 ·a1,m2 ·a2, . . . ,mn ·an} is asubmultisetof a multisetβ =
{k1 ·a1,k2 ·a2, . . . ,kn ·an} if mj 6 k j for all j.

Example 1.16 Let A = {a,b,c}. Thenα = {3 ·a,2 ·b,1 · c} andβ = {0 ·a,5 ·b,
∞ ·c} are two multisets overA. Clearlyα is a finite multiset with 6 elements, while
β is infinite and|β |= ∞. Bothα andβ are submultisets ofγ = {∞ ·a,5 ·b,∞ ·c}.
Also, β is a submultiset ofδ = {1·a,∞ ·b,∞ ·c}, while α is not.

A word over a multisetα = {m1 ·a1,m2 ·a2, . . . ,mn ·an} is any wordw over
A = {a1, . . . ,an} such that|w|a j 6 mj for all j.

Example 1.17 Let α = {3 ·a,2 ·b,2 ·n}. The following are some words overα:
banana, abba, aa, but abbbais not. As another example, takeβ = {1 ·a,∞ ·b}.
Then all these are words overβ : a, ab, abb, abbb, and so on.

Problem 1.18 Let α = {m1 ·a1,m2 ·a2, . . . ,mn ·an} be a multiset and letk∈N0 be
arbitrary.

(a) Supposem1 = m2 = . . . = mn = ∞. How many words withk letters overα
are there?

(b) Supposeα is finite. How many wordsw over α have the property that
|w|a j = mj for all j?

Solution.(a) Since each letter comes in more than sufficiently many copies, it turns
out that the number of such words isnk. Compare with Problem 1.3(a).

(b) Let N = |α| = m1 + . . . + mn. Then the words we are interested are of
lengthN:

1st 2nd 3rd Nth

and each lettera j occurs preciselymj times. Let us now distribute the letters
from α. Out of N free places we can choosem1 places to put the copies ofa1

in

(
N
m1

)
ways:
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1st 2nd 3rd Nth

a a a

Out of N−m1 remaining free places we can choosem2 places to put the copies of

a2 in

(
N−m1

m2

)
ways:

1st 2nd 3rd Nth

a a ab

Out of N−m1−m2 remaining free places we can choosem3 places to put the

copies ofa3 in

(
N−m1−m2

m3

)
ways, and so on. At the end, out ofN−m1−m2−

. . .−mn−1 remaining free places we can choosemn places to put the copies ofan

in

(
N−m1−m2− . . .−mn−1

mn

)
ways:

1st 2nd 3rd Nth

a a ab n n

Therefore, the number fo words we are interested in is given by
(

N
m1

)
·
(

N−m1

m2

)
·
(

N−m1−m2

m3

)
· . . . ·

(
N−m1−m2− . . .−mn−1

mn

)
=

=
N!

m1!(N−m1)!
· (N−m1)!
m2!(N−m1−m2)!

· . . . · (N−m1−m2− . . .−mn−1)!
mn!(N−m1−m2− . . .−mn)!

=

=
N!

m1! ·m2! · . . . ·mn!
,

where at the end we use the fact thatN = m1 +m2 + . . .+mn. ¤

A permutation of a finite multisetα = {m1 ·a1,m2 ·a2, . . . ,mn ·an} is any word
w over α such that|w|a j = mj for all j. As we have just seen, the number of
permutations over a finite multisetα is

(
N

m1,m2, . . . ,mn

)
=

N!
m1! ·m2! · . . . ·mn!

whereN = m1 +m2 + . . .+mn. Finding the number ofk-letter words for arbitrary
k and over an arbitrary multiset is aterribly complicated problem and shall not be
discussed here.
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We shall now prove an analogon on the Newton’s binomial formula in case a
sum of more than two expressions is raised to a certain power.

Theorem 1.19 (Multinomial formula) For alln > 0 we have

(a1 +a2 + . . .+ak)n = ∑
l1,l2,...,lk∈N0

l1+l2+...+lk=n

(
n

l1, l2, . . . , lk

)
al1

1 al2
2 . . .alk

k

Proof. The proof proceeds by induction onk. In casek= 2 this is just the Newton’s
binomial formula given in Theorem 1.12, see Homework 1.9. Suppose the theorem
holds whenever there are less thank summands whose sum we wish to raise to the
n-th power and consider the case withk summands. Then by the Newton’s binomial
formula

(a1 +a2 + . . .+ak)n = (a1 +(a2 + . . .+ak))n =
n

∑
l1=0

(
n
l1

)
al1

1 (a2 + . . .+ak)n−l1.

The induction hypothesis now yields

(a1 +a2 + . . .+ak)n =
n

∑
l1=0

(
n
l1

)
al1

1 ∑
l2,...,lk∈N0

l2+...+lk=n−l1

(
n− l1

l2, . . . , lk

)
al2

2 . . .alk
k

=
n

∑
l1=0

∑
l2,...,lk∈N0

l2+...+lk=n−l1

(
n
l1

)(
n− l1

l2, . . . , lk

)
al1

1 al2
2 . . .alk

k

=
n

∑
l1=0

∑
l2,...,lk∈N0

l2+...+lk=n−l1

(
n

l1, l2, . . . , lk

)
al1

1 al2
2 . . .alk

k

= ∑
l1,l2,...,lk∈N0

l1+l2+...+lk=n

(
n

l1, l2, . . . , lk

)
al1

1 al2
2 . . .alk

k .

The combinatorial proof is analogous to the combinatorial proof of Theorem 1.12.¤

Problem 1.20 Let α = {∞ ·a1,∞ ·a2, . . . ,∞ ·an} be a multiset and letk ∈ N0 be
arbitrary. How manyk-element submultisets doesα have?

Solution. If β = {x1 ·a1,x2 ·a2, . . . ,xn ·an} is a k-element submultiset ofα, then
x1 + x2 + . . .+ xn = k. Becauseα has an infinite supply of each of its letters, one
easily comes to the following conclusion:

Number ofk-element
subsets ofα

=
Number of solutions of
x1 +x2 + . . .+xn = k in N0
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So, we have reduced the problem to counting nonnegative integer solutions of an
equation inn unknowns. Although not at all straightforward, this problem is rather
easy to solve. Let

S = {(x1,x2, . . . ,xn) ∈ (N0)n : x1 +x2 + . . .+xn = k}
be the set of all the solutions of the above equation inn unknowns and let

W = {w∈ {0,1}k+n−1 : |w|0 = k and|w|1 = n−1}
be the set of all 01-words of lengthk+n−1 with preciselyk zeros andn−1 ones.
Now defineϕ : S →W as follows:

ϕ(x1,x2, . . . ,xn) = 00. . .0︸ ︷︷ ︸
x1

1 00. . .0︸ ︷︷ ︸
x2

1 . . . 1 00. . .0︸ ︷︷ ︸
xn

.

It is easy to see thatϕ is well defined and bijective. Therefore,|S | = |W |, and

we know from Problem 1.10 that|W |=
(

k+n−1
k

)
. This is at the same time the

number ofk-element subsets ofα. ¤

A k-combination of a finite multisetα is any k-element subset ofα. It is
againterribly complicated to find a number ofk-combinations of an arbitrary mul-
tiset, but as we have just seen, ifα = {∞ · a1,∞ · a2, . . . ,∞ · an}, the number of

k-combinations is given by

(
k+n−1

k

)
.

Homework

1.1. For a real numberx, by bxc we denote the greatest integer6 x. E.g,
b1.99c= 1, b4c= 4, b0.65c= 0, while b−1.02c=−2.

Let n be an integer andp a prime. Show that the greatestk such thatpk | n!
is given by

k =
⌊

n
p

⌋
+

⌊
n
p2

⌋
+

⌊
n
p3

⌋
+ . . .

The number1000!ends with a lot of zeros. How many?

1.2. Show thatχ in proof of Theorem 1.6 is a bijection.

1.3. Let A be a set of all 01-wordsw of length 2005 with the property that
|w|0 = |w|1 + 1, and letB be a set of all 01-wordsw of length 2005 with
the property that|w|1 = |w|0 + 1. Show that|A| = |B|. (Hint: use the
Bijection Principle.)
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1.4. For n ∈ N, let τ(n) denote the number of positive divisors ofn. E.g,
τ(12) = 6 since 1, 2, 3, 4, 6 and 12 are all positive divisors of 12. Let
n= pk1

1 · pk2
2 · . . . · pks

s be the factorisation ofn, where1< p1 < p2 < .. . < ps

are primes. Prove that

τ(n) = (1+k1)(1+k2) . . .(1+ks).

(Hint: note that ifm| n thenm= pl1
1 · pl2

2 · . . . · pls
s where06 l i 6 ki for all i.)

1.5. Prove Corollary 1.8.

1.6. Show thatϕ defined in the solution to Problem 1.20 is a bijection.

†1.7. What do you think, how do “usual” sets fit into the theory of multisets?

†1.8. Define the notion of union and intersection for multisets. (Note that there
are several possibilities; choose any one you like). Pick a few of your
favourite set-theory identities such as

α ∩α = α α ∪α = α
α ∩∅=∅ α ∪∅= α
α ∩β = β ∩α α ∪β = β ∪α
(α ∩β )∩ γ = α ∩ (β ∩ γ) (α ∪β )∪ γ = α ∪ (β ∪ γ)
(α ∩β )∪ γ = (α ∪ γ)∩ (β ∪ γ) (α ∪β )∩ γ = (α ∩ γ)∪ (β ∩ γ)

and show that they hold for operations you have defined.

1.9. (a) Explain the relationship between

(
n
k

)
and

(
n

k,n−k

)
.

(b) Show that

(
n

k,n−k

)
=

(
n−1

k−1,n−k

)
+

(
n−1

k,n−k−1

)
(Hint: this is

the Pascal’s identity in disguise.)

1.10. Let m1, . . . ,mn ∈ N be positive integers and letN = m1 + . . .+mn. Show
that

(
N

m1,m2, . . . ,mn

)
=

(
N−1

m1−1,m2, . . . ,mn

)
+

(
N−1

m1,m2−1, . . . ,mn

)
+ . . .

. . .+
(

N−1
m1,m2, . . . ,mn−1

)
.

1.11. Provide a combinatorial proof of Theorem 1.19.
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Exercises

1.12. How much memory can address a processor whose address bus is 32 bits
wide?

1.13. FORTRAN IV, being one of the oldest programming languages, had many
limitations. One of them concerned identifiers (words used to name vari-
ables and procedures). An identifier in FORTRAN IV consists of at most
6 symbols, where each symbol is a figure (0, 1, . . . , 9) or an uppercase
letter of the English alphabet (A, B, . . . , Z), with the exception that the
first symbol is obliged to be a letter. How many different identifiers can
one declare in FORTRAN IV?

1.14. Two rooks on a chess board are said to be independent if they do not attack
each other. In how many different ways can one arrangen> 1 independent
identical rooks onto ann×n chess board?

1.15. In how many different ways can one arrangek > 1 independent identical
rooks onto ann×mchess board, wheren,m> k?

1.16. In how many ways cann students form a queue in front of a mensa so that
studentsA andB

(a) are next to each other in the queue?

(b) arenot next to each other in the queue?

†1.17. In how many ways cann boysB1, . . . , Bn andn girls G1, . . . , Gn form a
queue in front of a mensa so thatB1 is next toG1 in the queue,B2 is next
to G2 in the queue, . . . ,Bn is next toGn in the queue?

1.18. The round table has entered combinatorial practice at the time of King
Arthur and his Knights of the Round Table and has remained an important
combinatorial object ever since. Since there is no throne, the trick with the
round table is that two arrangements are indistinguishable if it is possible
get one of them by rotating the other. For example, the following three
arrangements are indistinguishable:

a

c

b e

d

a c

b

e

d a

c

b

e d

In how many ways cann people be seated around a round table withn
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seats?

1.19. Theinteger gridconsists of all points in the plane with integer coordinates,
which we refer to asinteger points.

An increasing pathin the integer grid
is a sequence of integer points(x1,y1),
(x2,y2), . . . , (xk,yk) such that for each
i ∈ {1, . . . ,k−1} we have:

• eitherxi+1 = xi +1 andyi+1 = yi ,

• or xi+1 = xi andyi+1 = yi +1.

Find the number of increasing paths in
the integer grid that start at(0,0) and
end at(p,q), wherep,q∈ N.

y

x

1.20. Show that

(a)
(

n
k

)
=

n
k

(
n−1
k−1

)
for all n > k > 1;

(b)
(

n
m

)(
m
k

)
=

(
n
k

)(
n−k
m−k

)
for all n > m> k > 0;

(c)
(

n
0

)(
m
k

)
+

(
n
1

)(
m

k−1

)
+

(
n
2

)(
m

k−2

)
+. . .+

(
n
k

)(
m
0

)
=

(
n+m

k

)

for all n,m> k > 0.

(d)
(

n
0

)2

+
(

n
1

)2

+
(

n
2

)2

+ . . .+
(

n
n

)2

=
(

2n
n

)
for all n > 0.

(e)
(

k
0

)
+

(
k+1

1

)
+

(
k+2

2

)
+ . . .+

(
k+ j

j

)
=

(
k+ j +1

j

)

for all k, j > 0. (Hint: use mathematical induction onj and(b).)

1.21. Find the number of 01-words of length2n which have the following prop-
erty: the number of zeroes on the firstn places equals the number of zeros
on the lastn places.

1.22. (a) Using the fact that two points determine precisely one straingt line, find
the greatest number of straignt lines that can be drawn throughn points in
a plane.

(b) Find the greatest number of diagonals a convex polygon withn vertices
can have.
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(c) Let A1, . . . , An be n points on a circle,n > 4, and draw all the line
segmentsAiA j , i 6= j. Find the greatest possible number of intersection
points of these line segments.

1.23. Find the number of integer solutions of the equationx1 +x2 + . . .+xn = k
in n unknownsx1, x2, . . . ,xn wherexi > 1 for all i.

1.24. Find the number of integer solutions of the inequalityx1+x2+ . . .+xn 6 k
in n unknownsx1, x2, . . . , xn wherexi > 0 for all i. (Hint: Sincek ∈ N0,
this inequality is equivalent to

x1 +x2 + . . .+xn = 0 or x1 +x2 + . . .+xn = 1 or . . .

. . . or x1 +x2 + . . .+xn = k.

Find the number of solutions of each of thesek+1 equations and then sum
up using 1.20( f ).)

1.25. A sequence of numbersx1, x2, . . . ,xn is nondecreasing ifx1 6 x2 6 . . . 6
xn. Find the number of nondecreasing sequencesx1, x2, . . . , xn where
xi ∈ {1, . . . ,k} for all i.

1.26. Show that ∑
l1,l2,...,lk∈N0

l1+l2+...+lk=n

(
n

l1, l2, . . . , lk

)
= kn.



Chapter 2

Blocks and Cycles

The simplest way to introduce a structure onto a set is to split it into blocks. In this
chapter we consider two such possibilities:

• partitions, where a set is divided into disjoint subsets, and

• permutations (again), which partition a set into cycles.

Counting partitions and permutations leads to Stirling numbers of the second and
the first kind, respectively. Stirling numbers of the second kind show up more often
than those of the first kind, so we shall consider last things first.

Stirling numbers of the second kind are usually denoted bySk
n or

{
n
k

}
, while

Stirling numbers of the first kind are usually denoted bysk
n or

[
n
k

]
. The notation

with braces and brackets, in analogy to the binomial coefficients, was introduced
in 1935 by Jovan Karamata, a famous Serbian mathematician, and promoted later
by Donald Knuth. It is referred to asKaramata notation. Following Knuth, we

verbalise

{
n
k

}
as “n blockk” and

[
n
k

]
as “n cyclek”.

2.1 Partitions

A partition of a finite setA is every finite set{B1, . . . ,Bk} of subsets ofA which
fulfills the following:

• Bi 6=∅ for all i,

• Bi ∩B j =∅ wheneveri 6= j, and

• B1∪ . . .∪Bk = A.

21
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SetsBi are referred to as theblocksof the partition.

Example 2.1 Let A = {1,2,3,4,5,6,7}. Then
{{1,3,5},{2,6},{4}} is a parti-

tion of A into three blocks. Instead of
{{1,3,5},{2,6},{4}} we can also write

135|26|4, although this notation is not always convenient.

Let

{
n
k

}
denote the number of ways to partition ann-element set intok blocks.

The number

{
n
k

}
is called theStirling number of the second kind.

Example 2.2 For example,

{
5
3

}
= 25:

1|2|345 2|3|145 3|4|125 4|5|123 1|23|45 2|13|45 3|12|45 4|12|35
1|3|245 2|4|135 3|5|124 1|24|35 2|14|35 3|14|25 4|13|25
1|4|235 2|5|124 1|25|34 2|15|34 3|15|24 4|15|23
1|5|234

Theorem 2.3 Stirling numbers of the second kind fulfill the following:{
n
1

}
=

{
n
n

}
= 1 and

{
n
k

}
=

{
n−1
k−1

}
+k

{
n−1

k

}
.

Proof. The only way to partition a set so that in the end we get only one block is

to put everything in that block, therefore,

{
n
1

}
= 1. Similarly, the only way to

partition ann-element set inton blocks is to put every element in a separate block,

so

{
n
n

}
= 1.

an

an

A partition wherean is alone in its block

A partition wherean has some company

Figure 2.1: Proof of Theorem 2.3 – two types of partitions

Now, let Pk
n denote the set of all partitions of a fixedn-element set, say

{a1,a2,a3, . . . ,an}, into k blocks, so that

{
n
k

}
= |Pk

n|. Consideran and note
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that all partitions fromPk
n fall into two disjoint categories: those wherean is the

only element of its block, and those wherean is not the only element of its block,
Fig. 2.1. LetS1 ⊆ Pk

n be the set of all partitions wherean is the only element
of its block, and letS2 ⊆Pk

n be the set of all partitions wherean is not the only
element of its block. ClearlyS1∩S2 =∅ andS1∪S2 = Pk

n, i.e.{S1,S2} is a
partition ofPk

n.

an

an

an

Figure 2.2: Proof of Theorem 2.3 – the second case

For each partition fromS1 the blocks that do not containan form a partition of

{a1, . . . ,an−1} into k−1 blocks, so|S1|=
{

n−1
k−1

}
. Now, take any partition from

S2 and removean. What remains is a partition of{a1, . . . ,an−1} into k blocks. On
the other hand, each partition of{a1, . . . ,an−1} into k blocks determinesk different
partitions of{a1, . . . ,an−1,an} into k blocks since we can put the missingan into

each of thek blocks, Fig. 2.2. Therefore,|S2| = k

{
n−1

k

}
, and finally

{
n
k

}
=

|Pk
n|= |S1|+ |S2|=

{
n−1
k−1

}
+k

{
n−1

k

}
. ¤

Theorem 2.4 Forn > k > 1,
{

n
k

}
=

1
k!

k

∑
j=0

(−1) j
(

k
j

)
(k− j)n.

Proof. We shall count surjective mappings from{1, . . . ,n} onto{1, . . . ,k} in two
different ways. First, note that every mappingf : A→B determines an equivalence
relation∼ f onA as follows:

a∼ f b if and only if f (a) = f (b),

which is usually referred to as thekernel of f . This equivalence relation then
determines a partition ofA in the usual way: blocks in the partition are equivalence
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B1 B2 B3 . . . Bk

k k−1 k−2 . . . 1
choiceschoices choices choice

Figure 2.3: Counting surjective mappings

classes of∼ f . So, for every surjectivef : {1, . . . ,n} → {1, . . . ,k} the partition of
{1, . . . ,n} that corresponds to∼ f has preciselyk blocks.

Let us now take a look at a somewhat different problem: given a partition
{B1, . . . ,Bk} of {1, . . . ,n}, how many surjective mappingsf : {1, . . . ,n}→{1, . . . ,k}
have the property that∼ f partitions{1, . . . ,n} into {B1, . . . ,Bk}? We can choose
f (B1) in k different ways, f (B2) in k− 1 different ways, sincef (Bi) and f (B j)
have to be distinct wheneveri 6= j, f (B3) in k−2 different ways, and so on upto
f (Bk) for which only one choice remains, Fig. 2.3. Therefore, given a partition
{B1, . . . ,Bk}, there arek! surjective mappingsf : {1, . . . ,n}→ {1, . . . ,k} such that
the equivalence classes of∼ f are{B1, . . . ,Bk}. Since every surjective mapping is
uniquely determined by its kernel and its values on the equivalence classes of the

kernel, it follows that there arek!

{
n
k

}
surjective mappings from ann-element set

onto ak-element set.
On the other hand, let us count surjective mappings using another approach.

Clearly,

Number of sur-
jective mappings

=
Number of all
mappings

− Number of nonsur-
jective mappings

The number of all mappings{1, . . . ,n}→ {1, . . . ,k} is kn (Homework 2.1). As for
the nonsurjective mappings, letA j denote the set of all mappingsf : {1, . . . ,n} →
{1, . . . ,k} such thatf (x) = j for nox∈ {1, . . . ,n}:

A j = { f ∈ {1, . . . ,n}{1,...,k} : f (x) 6= j for all x},
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j ∈{1, . . . ,k}. ThenA1∪. . .∪Ak is the set ofall nonsurjective mappings{1, . . . ,n}→
{1, . . . ,k}, so

Number of nonsur-
jective mappings

= |A1∪ . . .∪Ak|.

According to the special case of Principle of Inclusion-Exclusion, Corollary 1.8,

|A1∪ . . .∪Ak|=
k

∑
j=1

(−1) j−1
(

k
j

)
|A1∩ . . .∩A j |.

But A1∩ . . .∩A j is the set of all mappings{1, . . . ,n} → { j +1, . . . ,k}, so Home-
work 2.1 yields|A1∩ . . .∩A j |= (k− j)n. Putting it all together, we get

Number of sur-
jective mappings

= kn−
k

∑
j=1

(−1) j−1
(

k
j

)
(k− j)n =

k

∑
j=0

(−1) j
(

k
j

)
(k− j)n.

Therefore,k!

{
n
k

}
=

k

∑
j=0

(−1) j
(

k
j

)
(k− j)n which concludes the proof. ¤

2.2 Permutations

Recall that a permutation of a finiteA set is a worda1a2 . . .an overA where every
letter fromA appears precisely once (and hencen = |A|). However, note that a
worda1a2 . . .an overA is just a mappingf : {1, . . . ,n}→ A given by

f =
(

1 2 . . . n
a1 a2 . . . an

)

Therefore, permutations ofA correspond to bijective mappings{1, . . . ,n} → A,
which in case ofA = {1, . . . ,n} leads to the following important observation:

Observation. A permutation of{1, . . . ,n} is any bijective mapping of{1, . . . ,n}
onto itself.

This simple insight allows us to draw permutations: take any permutation
f : {1, . . . ,n} → {1, . . . ,n}, taken points in the plane and draw an arrow from
i to j if f (i) = j. For example, Fig. 2.4 depicts the permutation

f =
(

1 2 3 4 5 6 7 8 9 10 11 12
8 9 12 7 5 11 10 2 1 3 6 4

)
.

We see that the permutation splits intocycles. The following theorem claims
that this is a general phenomenon.
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4 7

10

3

12
5

6 11
1 8

29

Figure 2.4: A permutation of{1,2, . . . ,12}

Theorem 2.5 Every permutation of a finite set splits into cycles.

Representing a permutation via its cycles is very popular and extremely useful.
It is called thecycle representationof the permutation. To write a cycle represen-
tation of a permutation is easy – just list the elements of each cycle. For example

(7 10 3 12 4) (11 6) (8 2 9 1) (5)

is a cycle representation of the permutation in Fig. 2.4. Since the order of cycles in
the cycle representation is not significant and since(8 2 9 1), (2 9 1 8),
(9 1 8 2) and (1 8 2 9) are equivalent representations of one and the
same cycle, the cycle representation of a permutation is not unique. So, all these
are valid cycle representations of the permutation in Fig. 2.4:

(7 10 3 12 4) (11 6) (8 2 9 1) (5),
(2 9 1 8) (5) (6 11) (4 7 10 3 12),
(5) (9 1 8 2) (11 6) (7 10 3 12 4).

In order to make our lives easier, we shall introduce thecanonical cycle represen-
tation of a permutationas follows:

• each cycle starts with the smallest element in the cycle (call it theleading
element of the cycle);

• the cycles are arranged according to the increasing leading elements.

So, the canonical cycle representation of the permutation in Fig. 2.4 is:

(1 8 2 9) (3 12 4 7 10) (5) (6 11).

The Stirling number of the first kind,

[
n
k

]
, is the number of permutations of

{1, . . . ,n} with preciselyk cycles.
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Example 2.6
[

5
3

]
= 35since

(1)(2)(345) (2)(3)(145) (3)(4)(125) (4)(5)(123)
(1)(3)(245) (2)(4)(135) (3)(5)(124)
(1)(4)(235) (2)(5)(124)
(1)(5)(234)
(1)(2)(354) (2)(3)(154) (3)(4)(152) (4)(5)(132)
(1)(3)(254) (2)(4)(153) (3)(5)(142)
(1)(4)(253) (2)(5)(142)
(1)(5)(243)
(1)(23)(45) (2)(13)(45) (3)(12)(45) (4)(12)(35)
(1)(24)(35) (2)(14)(35) (3)(14)(25) (4)(13)(25)
(1)(25)(34) (2)(15)(34) (3)(15)(24) (4)(15)(23)

Theorem 2.7 Stirling numbers of the first kind fulfill the following:[
n
1

]
= (n−1)!,

[
n
n

]
= 1, and

[
n
k

]
=

[
n−1
k−1

]
+(n−1)

[
n−1

k

]
.

Proof. In order to show that

[
n
1

]
= (n− 1)! it suffices to note that

[
n
1

]
is the

number of permutations of{1, . . . ,n} with presicely one cycle. In other words,[
n
1

]
counts the number of ways to arrangen people around a round table withn

seats, which is(n−1)!. To show that

[
n
n

]
= 1 is even more easy: there is exactly

one permutation of{1, . . . ,n} that maps eachx∈ {1, . . . ,n} onto itself, namely, the
identity.

n

n

A partition wheren is alone in its cycle

A partition wheren has some company

( ) ( ) ( ) ( ) ( )

( ( ( ( () ) ) ) )

Figure 2.5: Proof of Theorem 2.7 – two types of permutations

Now, let Pk
n denote the set of all permutations of{1,2, . . . ,n}, into k cycles,

so that

[
n
k

]
= |Pk

n|. Considern and note that all permutations fromPk
n fall into

two disjoint categories: those wheren is the only element in its cycle, and those
wheren is not the only element in the cycle, Fig. 2.5. LetS1 ⊆ Pk

n be the set
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of all permutations wheren is the only element in its cycle, and letS2 ⊆Pk
n be

the set of all permutations wheren is not the only element in the cycle. Clearly
S1∩S2 =∅ andS1∪S2 = Pk

n, i.e.{S1,S2} is a partition ofPk
n.

( ( ( () ) ) )

n−1 possibilities to insertn

Figure 2.6: Proof of Theorem 2.7 – the second case

For each permutation fromS1 the cycles that do not containn form a permu-

tation of{1, . . . ,n−1} with k−1 cycles, so|S1| =
[

n−1
k−1

]
. Now, take any per-

mutation fromS2 and removen. What remains is a permutation of{1, . . . ,n−1}
with k cycles. On the other hand, each permutation of{1, . . . ,n−1} with k cycles
determinesn−1 different permutations of{1, . . . ,n−1,n} with k cycles since we
can put the missingn after every element of every cycle to produce a new per-

mutation, Fig. 2.6. Therefore,|S2| = (n−1)
[

n−1
k

]
, and finally

[
n
k

]
= |Pk

n| =

|S1|+ |S2|=
[

n−1
k−1

]
+(n−1)

[
n−1

k

]
. ¤

We have now seen two important representations of permutations of{1, . . . ,n}:
representation by words where each letter in the alphabet appear exactly once, and
representation by bijective functions{1, . . . ,n} → {1, . . . ,n}, and from this point
on we shall not distinguish between the two. We shall treat permutations as words
or as bijective mappings, whichever is more convenient at that point, since one can
easily switch from one representation to another, e.g.

(
1 2 3 4 5 6 7 8
3 7 1 2 8 6 4 5

)
←→ 37128645.

Definition 2.8 Let f = a1a2 . . .an be a permutation of{1,2, . . . ,n}. An inversion
of the permutationf is a pair(ai ,a j) such thati < j andai > a j . The number of
inversions off is denoted byinv( f ). A permutation is calledevenor oddaccording
asinv( f ) is an even or an odd integer.

Example 2.9 Let f = 37128645. Then the inversions off are(3,1), (3,2), (7,1),
(7,2), (7,6), (7,4), (7,5), (8,6), (8,4), (8,5), (6,4) and(6,5), Fig. 2.7. Therefore,
inv( f ) = 12and this permutation is even.
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3 7 1 2 8 6 4 5

Figure 2.7: The inversions of the permutation37128645

Theorem 2.10 Let f = a1 . . .an be a permutation of{1, . . . ,n}.
(a) Let g = a1 . . .ai−1ai+1aiai+2 . . .an be a permutation obtained fromf by

exchanging two adjacent letters. Theninv(g) = inv( f )±1.
(b) Letg= a1 . . .ai−1a jai+1 . . .a j−1aia j+1 . . .an be a permutation obtained from

f by exchanging two not necessarily adjacent letters. Theninv(g) andinv( f ) are
not of the same parity (i.e. one of them is even and the other is odd).

Proof. (a) Note that exchanging two adjacent letters affects neither inversions of
the form(a j ,ak) where j,k /∈ {i, i +1}, nor inversions of the form(a j ,ai), (ai ,a j),
(a j ,ai+1), (ai+1,a j) where j /∈ {i, i +1}. So we either add a new inversion ifai <
ai+1 in which caseinv(g) = inv( f )+ 1, or take away an inversion ifai > ai+1 in
which caseinv(g) = inv( f )−1.

(b) Exchanging lettersai anda j wherei < j can be reduced to2( j− i−1)+1
operations of exchanging adjacent letters (swaps) as follows:

swap letters atj and j−1
swap letters atj−1 and j−2

...
swap letters ati +2 andi +1





j− i−1 swaps

swap letters ati +1 andi
}

1 swap

swap letters ati +1 andi +2
...

swap letters atj−2 and j−1
swap letters atj−1 and j





j− i−1 swaps

Therefore inv(g) = inv( f ) ± 1± 1. . . ± 1 (where the number of±1’s is
2( j− i−1)+1), soinv( f ) andinv(g) are not of the same parity. ¤

Theorem 2.11 If n > 2, the number of even permutations of{1, . . . ,n} is equal to
the number of odd permutations of the same set.
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Proof. Let En be the set of even permutations andOn the set of odd permutations
of {1, . . . ,n}. Defineϕ : En →On by

ϕ(a1a2a3 . . .an) = a2a1a3 . . .an.

Then one can easily see thatϕ is a bijection. ¤

Each permutationf of {1, . . . ,n} being a bijective mapping has the inversef−1

which is also a permutation of{1, . . . ,n}. We conclude this chapter by showing that
a permutation and its inverse have the same number of inversions.

Theorem 2.12 Let f be a permutation of{1, . . . ,n}. Theninv( f ) = inv( f−1).

Proof. Let us first note that every permutation of{1, . . . ,n} can be represented by
an arrangement ofn independent rooks on ann×n chess board. E.g., the repre-
sentation of the permutation 37128645 as an arrangement of 8 independent rooks
is given in Fig. 2.8(a). Interestingly enough, it is easy to get a representation of
the inverse permutation: just take the mirror image with respect to the main diag-
onal of the chess board. The inverse of 37128645 is 34178625 and it is given in
Fig. 2.8(b).

(a) (b)

3 7 1 2 8 6 4 5 3 4 1 7 8 6 2 5

Figure 2.8: A permutation and its inverse represented by an arrangement of inde-
pendent rooks

This representation is also very suitable for the study of inversions. Note that
inversions of a permutation correspond to those fields of the chess board where
there is a rook below and a rook to the right. The inversions of the permutation in
Fig. 2.8(a) are marked by a∗ in Fig. 2.9(a).

The final step in the proof is to observe that the arrangement of stars on the
chess board for the inverse permutation is a mirror image with respect to the main
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(a) (b)

3 7 1 2 8 6 4 5 3 4 1 7 8 6 2 5

∗
∗

∗
∗
∗

∗
∗

∗
∗
∗
∗
∗

∗
∗
∗
∗

∗
∗

∗

∗
∗

∗

∗

∗

Figure 2.9: Inversions of a permutation and its inverse

diagonal of the chess board of the arrangement of stars for the original permuta-
tion, as demonstrated on Fig. 2.9(b). The reason is simple: as we have seen, an
inversion corresponds to an L-shaped structure as the one in Fig. 2.10(a). Mirror
image of such a configuration is again a configuration of the same kind, and hence
an inversion. Therefore,f and f−1 have the same number of inversions. ¤

(a) (b)

∗ ∗

Figure 2.10: An inversion and its mirror image

Homework

2.1. Show thatkn is the number ofall mappings{1, . . . ,n}→ {1, . . . ,k}.

2.2. Show that

{
n
2

}
= 2n−1−1, and

{
n

n−1

}
=

(
n
2

)
.
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2.3. Let Sn denote the set of all permutations on{1, . . . ,n} (understood as bijec-
tions{1, . . . ,n} → {1, . . . ,n}), and let◦ denote the function composition.
Prove that(Sn,◦) is a group, that is

• if f andg are permutations fromSn, then so isf ◦g;

• f ◦ (g◦h) = ( f ◦g)◦h, for all f ,g,h∈ Sn;

• there is a permutatione∈Sn such thatf ◦e= e◦ f = f for all f ∈Sn;

• for every f ∈ Sn there ag∈ Sn such thatf ◦g = g◦ f = e.

This group is commonly referred to as thesymmetric group.

2.4. Prove Theorem 2.5.

2.5. Show that

[
n
2

]
= (n−1)!

n−1

∑
k=1

1
k

, and

[
n

n−1

]
=

(
n
2

)
.

2.6. Show that the mappingϕ defined in the proof of Theorem 2.11 is well
defined and that it is bijective.

Exercises

2.7. An orderedk-partition of a finite setA is a k-tuple (B1, . . . ,Bk) such that
{B1, . . . ,Bk} is a partition ofA. Letn1, . . . ,nk be positive integers such that
n1+ . . .+nk = |A|. Find the number of orderedk-partitions(B1, . . . ,Bk) of
A such that|Bi |= ni for all i.

2.8. Find
n

∑
k=1

[
n
k

]
.

2.9. Show that

{
n
k

}
6

[
n
k

]
for all n > k > 1.

†2.10. Show that

{
n+1
m+1

}
=

n

∑
k=m

(
n
k

){
k
m

}
.

†2.11. A Bell numberB(n) is the number of equivalence relations on ann-element
set. Show that

(a) B(n) =
n

∑
k=1

{
n
k

}
,

(b) B(n+1) =
n

∑
k=0

(
n
k

)
B(k) (note thatB(0) = 1).
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2.12. A transpositionis a permutation of the form

1. . . i−1 j i +1. . . j−1 i j +1. . .n.

Show that every permutation can be represented as a composition of trans-
positions.

2.13. Using 2.12 show that(En,◦) is a subgroup of(Sn,◦) (for the definition of
En see the proof of Theorem 2.11). What is the index of this subgroup? Is
it a normal subgroup ofSn?

2.14. Let a1a2 . . .a2005 be a permutation of{1,2, . . . ,2005}. Show that

(a1 +1)(a2 +2) . . .(a2005+2005)

is an even number.

2.15. Find the number of permutationsa1a2 . . .an of {1,2, . . . ,n}, n > 3, having
the property that|a1−a2|> 1.

2.16. Find the number of permutationsa1a2 . . .an of {1,2, . . . ,n}, n > 3, having
the property thatai < ai+2 for all i ∈ {1, . . . ,n−2}.

†2.17. Find the number of permutationsf of {1,2, . . . ,n} such thatinv( f ) = 2.
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Chapter 3

SDRs and Latin Squares

In this chapter we first introduce systems of distinct representatives (SDRs for
short) and show the celebrated Hall’s Marriage Theorem. We apply the theorem
to show that every Latin rectangle can be extended to a Latin square and estimate
the number of Latin squares of ordern. We then orthogonal Latin squares and
there exists a complete system of orthogolan Latin squares of ordern whenevern
is a power of a prime. Finally, we show the famous result due to Euler that for
everyn> 3 such thatn 6≡ 2 (mod 4) there exists a pair of orthogonal Latin squares
of ordern and conclude the chapter by showing that each system ofn−2 mutu-
ally orthogonal Latin squares of ordern can be extended to a complete system of
orthogonal Latin squares.

3.1 Systems of distinct representatives

Let A = (A1, . . . ,An) be a sequence of finite sets. Asystem of distinct representa-
tives (or SDR for short)for A is a sequence(e1, . . . ,en) such that

• ei 6= ej wheneveri 6= j (i.e.,ei ’s are distinct) and

• ei ∈ Ai for all i (i.e.,ei is a representative ofAi).

The problem we address in this section is: given a finite sequence of finite sets, is
there a system of distinct representatives for this sequence?

Example 3.1 (a) Five good friends, Anne, Betty, Cecilia, Dorothy and Emanuela
would like to get married to one of the six local boys Fred, George, Horatio, Ian,
John and Kevin, and each girl has a list of candidates:

35
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Anne’s wish list: Fred, George, Kevin
Betty’s wish list: Fred, Horatio
Cecilia’s wish list: Fred, Ian, John
Dorothy’s wish list: George, Ian, Kevin
Emanuela’s wish list: Horatio, John

Is it possible to arrange the marriages so that each girl gets married to a boy from
her list? Yes it is. There are many possibilities and one of the solutions to the prob-
lem is: Anne-Fred, Betty-Horatio, Cecilia-Ian, Dorothy-George and Emanuela-
John.

(b) Assume now that the wish lists of the five girls are

Anne’s wish list: Fred, George, Kevin
Betty’s wish list: Fred, Horatio
Cecilia’s wish list: George, Horatio
Dorothy’s wish list: George, Kevin
Emanuela’s wish list: George, Kevin, Horatio

Weeell, the situation is a bit tight this time. Consider Cecilia, Dorothy and Emanuela.
Their wish lists all together contain three boys, George, Horatio and Kevin, so if
there is a feasible arrangement of marriages, these three girls will have to marry
these three boys (say, Cecilia-George, Dorothy-Kevin and Emanuela-Horatio). But
now take a look at Anne and Betty. George, Horatio and Kevin are already married
to Cecilia, Emanuela and Dorothy, so there is only one candidate left on two wish
lists:

Anne’s wish list:
:::::
Fred,George,Kevin

Betty’s wish list:
:::::
Fred,Horatio

Cecilia’s wish list:
²
±

¯
°George , Horatio

Dorothy’s wish list: George,
®


©
ªKevin

Emanuela’s wish list: George, Kevin,
®


©
ªHoratio

and hence there is no feasible arrangement of marriages. A closer look reveals that
the five wish lists contained only four boys altogether, so it was impossible from
the beginning to make a feasible arrangement of marriages.

It is easy to see that if there is an SDR(e1, . . . ,en) for (A1, . . . ,An) then the
union of everyk sets in the sequence has at leastk elements, for allk∈ {1, . . . ,n}.
The remarkable theorem due to Phillip Hall shows that this necessary condition is
also sufficient. ForA = (A1, . . . ,An) and∅ 6= J⊆ {1, . . . ,n} let

A (J) =
⋃

j∈J

A j .
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Theorem 3.2 (Hall’s Marriage Theorem) LetA = (A1, . . . ,An) be a sequence of
finite sets. ThenA has an SDR if and only if

|A (J)|> |J| for all ∅ 6= J⊆ {1, . . . ,n}. (?)

Proof. (⇒) This is easy. If(e1, . . . ,en) is an SDR forA thenA (J) =
⋃

j∈J A j ⊇
{ej : j ∈ J} and since allej ’s are distinct,|A (J)|> |{ej : j ∈ J}|= |J|.

(⇐) The proof proceeds by induction onn, the length ofA . If n = 1, the
condition(?) guarantees that|A1| > 1, so there is a representative ofA1. If n = 2
then|A1|> 1, |A2|> 1 and|A1∪A2|> 2 so we can easily find an SDR of(A1,A2).
Assume now that(?) implies the existence of an SDR of every sequence with less
thann sets and consider a sequenceA = (A1, . . . ,An) with n sets.

If |A (J)| > |J| for all ∅ 6= J ⊂ {1, . . . ,n}, we have enough elements to play
with and an SDR can be constructed easily. Take anyen∈An and letB j = A j \{en},
j ∈ {1, . . . ,n−1}, andB = (B1, . . . ,Bn−1). Let us show thatB satisfies(?). Take
any∅ 6= J⊆ {1, . . . ,n−1} and note that|B(J)|= |A (J)|−1 or |B(J)|= |A (J)|
according asen ∈ A (J) or not. Therefore,|B(J)| > |A (J)| − 1 > |J| − 1 since
|A (J)| > |J| by assumption. Since we are working with integers here,|B(J)| >
|J|−1 means that|B(J)|> |J| and thusB satisfies(?). By the induction hypoth-
esisB has an SDR, say,(e1, . . . ,en−1) and it is easy to see that(e1, . . . ,en−1,en) is
an SDR forA .

Assume now that the situation is tight, that is,|A (J)|= |J| for some∅ 6= J⊂
{1, . . . ,n}. Without los of generality we can takeJ = {1, . . . ,s} for some16 s< n.
Then (A1, . . . ,As) satisfies(?) and by the induction hypothesis there is an SDR
(e1, . . . ,es) for (A1, . . . ,As). Since|A (J)|= |J| it follows thatA (J) = {e1, . . . ,es}.
Let Bi = Ai \A (J), s+1 6 i 6 n, and let us show thatB = (Bs+1, . . . ,Bn) satisfies
(?). Take any∅ 6= K ⊆ {s+1, . . . ,n}. Then it follows immediately thatB(K) =
A (J∪K) \A (J) so |B(K)| = |A (J∪K)|− |A (J)|. Now, |A (J∪K)| > |J∪K|
sinceA satisfies(?), and|A (J)| = |J| by the assumption. Therefore,|B(K)| >
|J∪K| − |J| = |K| sinceJ and K are disjoint. This shows thatB satisfies(?)
and by the induction hypothesis there is an SDR(es+1, . . . ,en) for B. Finally,
(e1, . . . ,es,es+1, . . . ,en) is an SDR forA . ¤

Next, we estimate the number of different SDRs of a sequence of finite sets
that has an SDR. For integersm1 6 m2 6 . . . 6 mn let

Fn(m1, . . . ,mn) = (m1)+(m2−1)+(m3−2)+ . . .(mn− (n−1))+

=
n

∏
i=1

(mi− (i−1))+

where(k)+ = max{1,k}. Our goal is to show the following theorem:
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Theorem 3.3 Let A = (A1, . . . ,An) be a sequence of finite sets that has an SDR
and letSDR(A ) denote the number of different SDRs forA . Assume also that
|A1|6 . . . 6 |An|. ThenSDR(A ) > Fn(|A1|, . . . , |An|).

The proof of the theorem requires some preparation. Definefn : Zn → N by

fn(a1, . . . ,an) = Fn(m1, . . . ,mn)

wherem1, . . . ,mn is a permutation ofa1, . . . ,an such thatm1 6 . . . 6 mn. So, we
can now writefn(a1, . . . ,an) whenever we are not certain thata1 6 . . . 6 an.

Lemma 3.4 Let a1, . . . ,ai−1, ai+1, . . . ,an, b, c∈ Z and assume thatb 6 c. Then

fn(a1, . . . ,ai−1,b,ai+1, . . . ,an) 6 fn(a1, . . . ,ai−1,c,ai+1, . . . ,an).

Proof. Let m1 6 . . . 6 mk−1 6 mk = b 6 mk+1 6 . . . 6 ml 6 ml+1 6 . . . 6 mn and
m1 6 . . . 6 mk−1 6 mk+1 6 . . . 6 ml 6 c 6 ml+1 6 . . . 6 mn be nondecreasing
rearrangements ofa1, . . . ,ai−1,b,ai+1, . . . ,an anda1, . . . ,ai−1,c,ai+1, . . . ,an. Then

fn(a1, . . . ,ai−1,c,ai+1, . . . ,an)
fn(a1, . . . ,ai−1,b,ai+1, . . . ,an)

=

=
(mk+1− (k−1))+ · (mk+2−k)+ · . . . · (ml − (l −2))+ · (c− (l −1))+

(b− (k−1))+ · (mk+1−k)+ · . . . · (ml−1− (l −2))+ · (ml − (l −1))+

which is clearly> 1 sincemk+1 > b, mk+2 > mk+1, . . . ,ml > ml−1 andc > ml . ¤

Proof. (of Theorem 3.3)The proof closely follows the outline of the proof of The-
orem 3.2. We proceed by induction onn. If n = 1 thenSDR(A ) = |A1| and we
are done. Suppose the claim holds for sequences with less thann sets and let
A = (A1, . . . ,An).

If |A (J)|> |J| for all∅ 6= J⊂{1, . . . ,n}, then take anye1∈A1 and letAi(e1) =
Ai \{e1}. We know from the proof of Theorem 3.2 thatA (e1)= (A2(e1), . . . ,An(e1))
has an SDR for everye1 ∈ A1, and sincee1 can be combined with every SDR of
A (e1) to produce and SDR ofA , we have that

SDR(A ) = ∑
e1∈A1

SDR(A (e1)).

By the induction hypothesis,SDR(A (e1)) > fn−1(|A2(e1)|, . . . , |An(e1)|) and since
|Ai(e1)|> |Ai |−1, Lemma 3.4 yields

SDR(A (e1) > fn−1(|A2(e1)|, . . . , |An(e1)|)
> fn−1(|A2|−1, . . . , |An|−1) = Fn−1(|A2|−1, . . . , |An|−1)
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due to the assumption that|A2|6 . . . 6 |An|. Putting it all together,

SDR(A ) = ∑
e1∈A1

SDR(A (e1)) > ∑
e1∈A1

Fn−1(|A2|−1, . . . , |An|−1)

= |A1| ·Fn−1(|A2|−1, . . . , |An|−1) = Fn(|A1|, |A2|, . . . , |An|).

Assume now that|A (J)|= |J| for some∅ 6= J⊂{1, . . . ,n}. LetJ = { j1, . . . , jk}
and{1, . . . ,n}\J = {m1, . . . ,ml}, k+ l = n. Without loss of generality we may as-
sume that|A j1| 6 . . . 6 |A jk| and|Am1| 6 . . . 6 |Aml |. Let E = A j1 ∪ . . .∪A jk and
Ami (E) = Ami \E, i ∈ {1, . . . , l}. From the proof of Theorem 3.2 we know that each
SDR for A consists of an SDR for(A j1, . . . ,A jk) and an SDR for(Am1(E), . . . ,
Aml (E)), so, by induction hypothesis

SDR(A ) = SDR(A j1, . . . ,A jk) ·SDR(Am1(E), . . . ,Aml (E))
> Fk(|A j1|, . . . , |A jk|) · fl (|Am1(E)|, . . . , |Aml (E)|).

Since|E|= k and|Ami (E)|> |Ami |− |E|= |Ami |−k, Lemma 3.4 yields

SDR(A ) > Fk(|A j1|, . . . , |A jk|) ·Fl (|Am1|−k, . . . , |Aml |−k).

Applying Lemma 3.4 once again, this time to the first factor on the left-hand side
of the inequality, we obtain

SDR(A ) > Fk(|A1|, . . . , |Ak|) ·Fl (|Am1|−k, . . . , |Aml |−k)

since|A j i |> |Ai | for 16 i 6 k. Next, let us remark that|A jk|6 |A j1∪ . . .∪A jk|= k,
so fork6 i 6 jk we have that|Ai |6 |A jk|6 k and thus|Ai |−(i−1) 6 1. Therefore,
(|Ai |− (i−1))+ = 1 whence

Fk(|A1|, . . . , |Ak|) =
jk

∏
i=1

(|Ai |− (i−1))+.

On the other hand,

Fl (|Am1|−k, . . . , |Aml |−k) =
l

∏
i=1

(|Ami |− (k+ i−1))+.

Now if mi 6 jk then|Ami |6 |A jk|6 k, so(|Ami |− (k+ i−1))+ = 1. Since

({ j1, . . . , jk},{m1, . . . ,ml})
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is a partition of{1, . . . ,n} it follwos that{Ami : mi > jk}= {A jk+1, . . . ,An} and thus

Fl (|Am1|−k, . . . , |Aml |−k) =
l

∏
i=1

(|Ami |− (k+ i−1))+

=
n

∏
i= jk+1

(|Ai |− (i−1))+.

The last equality is a bit tricky, so we show an example to demonstrate the main
idea. Suppose thatn = 10, ( j1, j2, j3) = (3,5,6) and (m1, m2, m3, m4, m5, m6,
m7) = (1, 2, 4, 7, 8, 9, 10), so that

A = (Am1,Am2,A j1,Am3,A j2,A j3,Am4,Am5,Am6,Am7).

Then|A j1∪A j2∪A j3|= 3 and

F5(|Am1|−3,|Am2|−3, |Am3|−3, |Am4|−3, |Am5|−3, |Am6|−3, |Am7|−3) =
= (|Am1|−3)+ · (|Am2|−4)+ · (|Am3|−5)+ · (|Am4|−6)+·

· (|Am5|−7)+ · (|Am6|−8)+ · (|Am7|−9)+.

Since|Am1|6 |Am2|6 |Am3|6 |A j3|6 3 we have that

(|Am1|−3)+ = (|Am2|−4)+ = (|Am3|−5)+ = 1,

hence

F5(|Am1|−3,|Am2|−3, |Am3|−3, |Am4|−3, |Am5|−3, |Am6|−3, |Am7|−3) =
= (|Am4|−6)+ · (|Am5|−7)+ · (|Am6|−8)+ · (|Am7|−9)+

= (|A7|−6)+ · (|A8|−7)+ · (|A9|−8)+ · (|A10|−9)+.

So much for the example. Finally, putting it all together we get

SDR(A ) > Fk(|A1|, . . . , |Ak|) ·Fl (|Am1|−k, . . . , |Aml |−k)

=

(
jk

∏
i=1

(|Ai |− (i−1))+

)
·
(

n

∏
i= jk+1

(|Ai |− (i−1))+

)

= Fn(|A1|, . . . , |An|).

This completes the proof. ¤
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Corollary 3.5 Let A = (A1, . . . ,An) be a sequence of finite sets that has an SDR
and suppose|Ai |> r for all i. Then

SDR(A ) >





r!, r 6 n

r!
(r−n)!

, r > n.

Recall that a determinant of ann×n real matrixA= [ai j ] is a number defined by

det(A) = ∑
f∈Sn

(−1)inv( f ) ·a1 f (1) · . . . ·an f(n)

where the summation goes over all permutationsf of {1, . . . ,n}. The signless
version of the determinant is called apermanentof A. Hence the permanent ofA
is defined by

per(A) = ∑
f∈Sn

a1 f (1) · . . . ·an f(n).

Although aparently simpler, permanents are almost impossible to compute effec-
tively, which stands in sharp contrast to determinants that can be computed very
easily.

Let A = (A1, . . . ,An) be a sequence of subsets of{1, . . . ,n}. The incidence
matrix ofA is then×n matrixMA = [mi j ] where

mi j =

{
1, Ai 3 j

0, otherwise.

An example of the incidence matrix of a sequence of sets is given in Fig. 3.1.

1 2 3 4 5 6
{1,3,4}

{2,3,4,5}
{1,5}

{2,4,5}
{2,3,6}

{1,3,5,6}

1 0 1 1

1 1 1 1

1 1

1 1 1

1 1 1

1 1 1 1

0 0

00

0 0 0 0

000

0 0 0

00

Figure 3.1: The incidence matrix of a sequence of sets
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Theorem 3.6 Let A = (A1, . . . ,An) be a sequence of subsets of{1, . . . ,n}. Then
SDR(A ) = per(MA ).

Proof. Note first that every SDR ofA is a permutation of{1, . . . ,n} and thatMA

is a 01-matrix. In the sum that defines the permanent, therefore, some summands
are 0 and others are 1. A summand that evaluates to 1 corresponds to a permutation
f of {1, . . . ,n} such thatm1 f (1) · . . . ·mn f(n) = 1. Therefore,mi f (i) = 1 for all i which
is equivalent toAi 3 f (i) for all i, so( f (1), . . . , f (n)) is an SDR forA . Since every
SDR ofA arises from such a permutation, we get the equality. ¤

We now see that computing the number of SDRs of a sequence of finite sets
is as complicated as calculating a permanent of a 01-matrix, which is in general
extremely complicated.

The following theorem is a typical example of theminimax phenomenonwhich
is one of the most fundamental insights in discrete mathematics. Suppose we are
given an arrangement of rooks on a rectangular chess board where some rooks may
attack each other. We would like to find the maximal number of independent rooks
in this arrangement. Recall that rooks on a chess board are independent if no two
of them are on the same line, aline of a chess boardbeing a row or a column. In
the arrangement of 11 rooks on a10×7 chessboard in Fig. 3.2(a) one can find at
most four independent rooks, e.g., those four in Fig. 3.2(b). Interestingly enough,
all the rooks can be covered by four lines, Fig. 3.2(c). The following theorem tells
us that this is not a coincidence.

(a) (b) (c)

Figure 3.2: Eleven rooks on a10×7 chess board

Theorem 3.7 Suppose we are given an arrangement of rooks on a rectangular
chess board. Then the maximum number of independent rooks in the arrangement
is equal to the minimum number of lines that cover all the rooks.
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Proof. Let mbe the minimum number of lines that cover all the rooks and letM be
the maximum number of independent rooks. Since independent rooks are no two
on the same line, we havem> M. We have to show thatm= M.

P

Q

1 . . . s

...
r

1

(a) (b)

s. . .1
i1
i2
i3
i4

j1 j2 j3

Figure 3.3: The proof of Theorem 3.7

Take any minimal collection of lines that cover all the rooks and suppose it
consists ofr rows andscolumns,r +s= m. Without loss of generality, let these be
the firstr rows and the firstscolumns. Let us show that the regionP in Fig. 3.3(a)
containsr independent rooks. For each rowi, 1 6 i 6 r, let Ai = { j > s : there is
a rook at the position(i, j)} and let us show that(A1, . . . ,Ar) has an SDR. Take
any k ∈ {1, . . . , r} andk indicesi1, . . . , ik ∈ {1, . . . , r}. If |Ai1 ∪ . . .∪Aik| < k, the
rooks in rowsi1, . . . , ik which are not in the firsts colums are arranged in less
thatk columns. Hence, we can replace the rowsi1, . . . , ik by somek−1 columns
and still cover all the rooks, Fig. 3.3(b). But this is impossible since we have
chosen the minimal number of covering lines. This shows that(A1, . . . ,Ar) has an
SDR and consequently there arer independent rooks in regionP. By the same
argument, there ares independent rooks in regionQ, so the number of independent
rooks is at leastr +s= m. SinceM is the maximum number of independent rooks,
M > r +s= m. ¤

We conclude the section by an important theorem due to G. Birkhoff from
1946. Apermutation matrixis a square 01-matrix where each row contains pre-
cisely one 1, and each column contains precisely one 1.

Theorem 3.8 Let A = [ai j ] be ann×n matrix whose entries are nonnegative inte-
gers and with the property that the sum of every row and every column ism. Then
A is the sum ofmpermutation matrices.
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Proof. We use induction onm. If m = 1 the claim is trivially true. Assume the
claim is true for all sums less thanm and letA be a matrix where the sum of every
row and every column ism> 1. DefineSi , 1 6 i 6 n, by Si = { j : ai j > 0}. Take
any k indices1 6 i1 < .. . < ik 6 n and let us show that|Si1 ∪ . . .∪Sik| > k. The
sum of thesek rows is clearlykm. Since every column ofA has summ, the nonzero
entries in the rowsi1, . . . , ik must spread over at leastk columns (otherwise, if all
the nonzero entries in thesek rows are concentrated ink−1 columns, the sum of
the rows could not exceed(k−1)m). Therefore,|Si1 ∪ . . .∪Sik| > k for all k and
all choices ofi1, . . . , ik. This shows that(S1, . . . ,Sn) has an SDR(s1, . . . ,sn) which
corresponds to the permutation matrixP= [pi j ] wherepisi = 1 and all other entries
of P are zero. The sum of every row and every column ofA−P is m−1, so by the
induction hypothesis,A−P is the sum ofm−1 permutation matrices. Therefore,
A is a sum ofmpermutation matrices. ¤

3.2 Latin squares

Let Q be a finite set withn > 2 elements and let1 6 r 6 n. A Latin r×n rectangle
overQ is anr ×n matrix with entries fromQ such that in every row all elements
are distinct and in every column all elements are distinct. ALatin square of order
n overQ is a Latinn×n rectangle overQ. Fig. 3.4 shows a Latin3×5 rectangle
and a Latin square of order 6. The construction of the Latin square in Fig. 3.4
also shows that for everyn there is a Latin square of ordern and hence, for every
1 6 r 6 n there is a Latinr×n rectangle.

1 5 2 4 3
3 4 5 1 2
4 1 3 2 5

1 2 3 4 5 6
65432 1
13 4 5 6 2
2654 1 3
315 6 2 4
426 1 3 5

Figure 3.4: A Latin rectangle and a Latin square

Let ϕ : Q→ Q be a bijection and letR = [ai j ]r×n be a Latinr × n rectangle
overQ. By ϕ(R) we denote the matrixϕ(R) = [ϕ(ai j )]r×n.

Lemma 3.9 Let Rbe a Latin rectangle overQ.
(a) A matrix obtained fromRby permuting rows is again a Latin rectangle.
(b) A matrix obtained fromRby permuting columns is again a Latin rectangle.
(c) If ϕ : Q→Q is a bijection, thenϕ(R) is a Latin rectangle.
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Let Q = {a1, . . . ,an} be a set of integers and leta1 < .. . < an. A Latin square
over Q is said to bestandard if the elements of the first row of the square are
linearly ordered. It is said to bedoubly standardif the elements of the first row and
of the first column of the square are linearly ordered. Fig. 3.5 show a standard and
a doubly standard Latin square of order 5.

1 2 3 4 5
3 1 4 5 2
4 3 5 2 1

12 35 4
5 4 2 1 3

54321
45 32 1
25413
12534
31245

Figure 3.5: A standard and a doubly standard Latin square of order 5

Lemma 3.10 (a) Every Latin square can be turned into a standard or a doubly
standard Latin square by permuting rows and columns of the original square.

(b) For every Latin squareL over Q there is a bijectionϕ : Q→ Q such that
ϕ(L) is a standard Latin square.

The following theorem is yet another important application of the Hall’s Mar-
riage Theorem 3.2.

Theorem 3.11 Let 1 6 r < n. Then every Latinr×n rectangle can be extended to
a Latin(r +1)×n rectangle.

Proof. Consider a Latinr × n rectangleR over ann element setQ and for each
i ∈ {1, . . . ,n} put

Si = {x∈Q : x does not appear in thei-th column ofR}.
ThenR can be extended by one row if and only if(S1, . . . ,Sn) has an SDR, so let
us show that(S1, . . . ,Sn) has an SDR. Take anyk indices j1, . . . , jk ∈ {1, . . . ,n}, let
Sj1 ∪ . . .∪Sjk = {a1, . . . ,al} and let us show thatl > k. Fora∈ Q let N(a) denote
the number of setsS1, . . . , Sn that containa. Sincea appears in every row ofR
precisely once,N(a) = n− r for all a∈Q. It is easy to see that

|Sj1|+ . . .+ |Sjk|6 N(a1)+ . . .+N(al ) = l(n− r).

On the other hand everySi has preciselyn− r elements, so

|Sj1|+ . . .+ |Sjk|= k(n− r).

Therefore,l(n− r) > k(n− r) and thusl > k. This shows that(S1, . . . ,Sn) satisfies
the requirement(?) in the Hall’s Marriage Theorem 3.2, and hence has an SDR.¤
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Corollary 3.12 Every Latin rectangle can be extended to a Latin square.

We conclude the section with an estimate on the number of Latin squares.

Theorem 3.13 Let λn denote the number of distinct Latin squares on ann element
set. Then

n

∏
k=1

k! 6 λn 6
n−1

∏
k=0

(n!−k).

Proof. We count Latin squares by adding rows one at a time. Each row of a Latin
square is a permutation ofQ, so there aren! possibilities for the first row, then there
are at mostn!−1 possibilities for the second row since the permutation chosen for
the first row must not be used again, at mostn!−2 possibilities for the third row
and so on. Therefore,λn 6 ∏n−1

k=0(n!−k).
As for the lower bound, let us first note that there are at least(n− r)! possi-

bilities to extend a Latinr × n rectangle to a Latin(r + 1)× n rectangle. To see
this, form setsSi as in the proof of Theorem 3.11. EachSi hasn− r elements, so
by Corollary 3.5 the sequence(S1, . . . ,Sn) has at least(n− r)! SDRs. Now, there
aren! possibilities to choose the first row of the Latin square, then at least(n−1)!
posibilities to find an SDR that consitutes the second row, at least(n−2)! SDRs
for the third row, and so on. Therefore,λn > ∏n

k=1k!. ¤

3.3 Orthogonal Latin squares

Let us start with an old card game which was rather popular in the Middle Ages.
From a deck of playing cards take all aces, kings, queens and jacks, and arrange
them in a4×4 array so that each row and column of the array contains an ace (A),
a king (K), a queen (Q) and a jack (J), but also a spade (♠), a heart (♥), a club
(♣) and a diamond (♦). One possible solution to this ancient problem is given in

A K Q J

JQ KA

J Q K A

AK QJ

♠ ♥ ♣ ♦
♦ ♣ ♥ ♠

♦ ♣♥ ♠
♠ ♥♣ ♦J QK A

AKQJ

A KQ J

JQKA

♦♣ ♥♠
♠♥ ♣♦

♠♥♣♦
♦♣♥♠

→ &

Figure 3.6: A medieval problem vs. Latin squares

Fig. 3.6. A careful look reveals that the arrangement of the 16 cards splits into two
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Latin squares of order 4: one taking care of ranks and the other one taking care of
colours.

Definition 3.14 Latin squaresL1 = [ai j ]n×n overQ1 andL2 = [bi j ]n×n overQ2 are
orthogonal, in symbolsL1 ⊥ L2, if {(ai j ,bi j ) : i, j ∈ {1, . . . ,n}}= Q1×Q2.

In other words,L1 andL2 are orthogonal if theL2 overlaid withL1 contains
every pair fromQ1×Q2. We shall mainly work with Latin squares over the same
setQ, although in some examplesQ1 might differ fromQ2.

Lemma 3.15 Let L1 andL2 be orthogonal Latin squares overQ. Then
(a) ϕ(L1)⊥ L2 for every bijectionϕ : Q→Q;
(b) ϕ(L1)⊥ ψ(L2) for every pair of bijectionsϕ,ψ : Q→Q.

Definition 3.16 Latin squaresL1, L2, . . . , Lk are mutually orthogonal ifLi ⊥ L j

wheneveri 6= j.

Theorem 3.17 Let L1, L2, . . . , Lk be mutually orthogonal Latin squares overQ
where|Q|= n. Thenk 6 n−1.

Proof. Without loss of generality we can assime thatQ = {1, . . . ,n}. According to
Lemma 3.10(b), for everyi ∈ {1, . . . ,k} there is a bijectionϕi : Q→ Q such that
L′i = ϕi(Li) is a standard Latin sqaure and from Lemma 3.15 it follows thatL′1, . . . ,
L′k are mutually orthogonal:

L1 L2 . . . Lk

ϕ1

y ϕ2

y . . .
yϕk

L′1 L′2 . . . L′k

Li ⊥ L j

ϕi

y yϕ j

L′i ⊥ L′j

Let b j ∈ Q be the element inL′j at the position(2,1), j ∈ {1, . . . ,k}, Fig. 3.7.
Thenb j 6= 1 for all j since in eachL′j there is an 1 in the first row, just aboveb j .

1 2 n
b1

L′1

. . .

. . .

. . .

...
...

...
...

...
...

. . .

. . .

. . .

L′2

b2

n21

...
...

...
. . .

. . .

. . .

L′k

bk

n21

. . .

Figure 3.7: The proof of Theorem 3.17

Let us now show thatbi 6= b j wheneveri 6= j. Since bothL′i andL′j are standard,
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overlaying the first row ofL′i with the first row ofL′j produces(1,1), (2,2), . . . ,
(n,n). FromL′i ⊥ L′j it follows that every pair ofQ2 appears exactly once when
L′i is overlaid withL′j so (bi ,b j) /∈ {(s,s) : s∈ Q} and hencebi 6= b j . Therefore,
{b1, . . . ,bk} is ak-element subset of{2, . . . ,n} whencek 6 n−1. ¤

We see from the above theorem that any system of mutually orthogonal Latin
squares has at mostn−1 elements,n = |Q|. Systems achieving the upper bound
are said to be complete.

Definition 3.18 A complete system of orthogonal Latin squares overQ is a system
of n−1 mutually ortogonal Latin squares,n = |Q|.

Theorem 3.19 Let |Q| = pα wherep is a prime andα ∈ N. Then there exists a
complete system of orthogonal Latin squares overQ.

Proof. This proof heavily relies on a nontrivial fact that for every primep and every
α ∈N there exists a finite field withpα elements. Recall that a field is an algebraic
structure where we can add, subtract, multiply and divide by anya 6= 0 (0 being
the neutral element for addition). Therefore, in a field we can perform all the usual
arithmetic, regardless of the fact that it need not be one of the number systems we
are used to work with, such asR orQ. In particular, we can solve systems of linear
equations using the same strategies we use when solvig systems of linear equations
in Q orR.

So, letQ be a finite field withn= pα elements and let us denote the operations
in Q in a usual way. Let 0 denote the neutral element for+. For eachk∈Q\{0}
we define ann×n matrixLk = [ak

i j ] overQ indexed by{0, . . . ,n−1} as follows:

ak
i j = i + j ·k

and let us show that eachLk is a Latin square. Ifak
i1 j = ak

i2 j theni1 + jk = i2 + jk

whencei1 = i2, so in each column ofLk all elements are distinct. Ifak
i j1

= ak
i j2

then
i + j1k = i + j2k i.e. j1k = j2k. Sincek 6= 0 we can divide byk whence j1 = j2.
Therefore, in each row ofLk all elements are distinct.

Finally, let us show thatLk ⊥ Lm for k 6= m. Take any(α,β ) ∈ Q2 and let us
find indicesi and j such that(ak

i j ,a
m
i j ) = (α,β ). We have to solve the following

system of linear equations in unknownsi and j:

i +k j = α, i +m j = β .

But we are in a field, so this is easy:

i =
kβ −mα

k−m
, j =

α−β
k−m

.
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This shows that each(α,β ) appears whenLk is overlaid withLm soLk ⊥ Lm. ¤

For a matrixL = [bi j ]n×n and ana let a⊗L = [(a,bi j )]n×n. For matricesL1 =
[ai j ]m×m and L2 = [bi j ]n×n let L1⊗ L2 be themn×mn matrix given in a block
representation by

L1⊗L2 =




a11⊗L2 a12⊗L2 . . . a1m⊗L2

a21⊗L2 a22⊗L2 . . . a2m⊗L2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
am1⊗L2 am2⊗L2 . . . amm⊗L2




Clearly, ifL1 is a Latin square overQ1 andL2 is a Latin square overQ2 thenL1⊗L2

is a Latin square overQ1×Q2 (Homework 3.9).

Lemma 3.20 LetL1, . . . ,Lk be mutually orthogonal Latin squares overQandL′1, . . . ,L
′
k

mutually orthogonal Latin squares overQ′. ThenL1⊗L′1, . . . ,Lk⊗L′k are mutually
orthogonal Latin squares overQ×Q′.

Lemma 3.21 Let n = pα1
1 pα2

2 . . . pαk
k wherepi ’s are distinct primes andαi > 0 for

all i, and letq be the minimum ofpα1
1 , pα2

2 , . . . , pαk
k . Then there existq−1 mutually

orthogonal Latin squares of ordern.

Proof. Let qi = pαi
i andq = min{q1, . . . ,qk}. We know that for eachi there exists

a complete system of orthogonal Latin squares of orderqi . Since any subset of a
complete system of orthogonal Latin squares is a set of mutually orthogonal Latin
squares and sinceq 6 qi for all i, it follows that for eachi there is a setLi

1, Li
2,

. . . ,Li
q−1 of q−1 mutually orthogonal Latin squares of orderqi . Lemma 3.20 now

yields that

L1
1⊗ . . .⊗Lk

1, L1
2⊗ . . .⊗Lk

2, . . . , L1
q−1⊗ . . .⊗Lk

q−1

is a set ofq−1 mutually orthogonal Latin squares of orderq1q2 . . .qk = n. ¤

Theorem 3.22 (Euler) If n 6≡ 2 (mod 4), there exists a pair of orthogonal Latin
squares of ordern.

Proof. Let n = pα1
1 pα2

2 . . . pαk
k wherepi ’s are distinct primes andαi > 0 for all i,

and letq = min{pα1
1 , pα2

2 , . . . , pαk
k }. If q = 2 thenn = 2 · pα2

2 . . . pαk
k wherepi ’s are

odd primes whence follows thatn≡ 2 (mod 4), which contradicts the assumption.
Therefore,q> 3. According to Lemma 3.21 there exists a set ofq−1> 2 mutually
orthogonal Latin squares of ordern, and in particular, there exists a pair of mutually
orthogonal Latin squares of ordern. ¤
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1 2 n
L1 L2

n21

Ln−2

n21j j j

. . .a1
i j a2

i j an−2
i ji →

Figure 3.8: The setSi j

Theorem 3.23 Every set ofn−2 mutually orthogonal Latin squares of ordern can
be extended (by adding “a missing square”) to a complete system of orthogonal
Latin squares.

Proof. Let L1 = [a1
i j ], . . . ,Ln−2 = [an−2

i j ] be mutually orthogonal Latin squares over
{1,2, . . . ,n}. Without loss of generality we can assume that allLi ’s are standard (if
this is not the case, we can find permutationsϕ1, . . . , ϕn−2 such that eachϕi(Li)
is standard, andϕ1(L1), . . . , ϕn−2(Ln−2) are still mutually orthogonal; if a Latin
squareL∗ is orthogonal to eachϕi(Li), it will be orthogonal to eachLi as well).

Let Si j = {a1
i j ,a

2
i j , . . . ,a

n−2
i j }, see Fig. 3.8. SinceL1, . . . , Ln−2 are mutually

orthogonal standard Latin squares, it is easy to show that|Si j | = n− 2 and that
j /∈ Si j for all i and j. Let a∗1 j = j, 1 6 j 6 n, and for i > 2 let a∗i j be the only
element of{1, . . . ,n} that does not appear inSi j ∪{ j}. PutL∗ = [a∗i j ]. We are going
to show thatL∗ is a Latin square and thatLi ⊥ L∗ for all i. Note that by construction
the first row ofL∗ is 12. . .n.

Let us first show thatL∗ is a Latin square. Suppose that an element, say 1, is
missing in the rowi > 2 of L∗. ThenSi2, . . . , Sin all contain 1. From each square
L1, . . . , Ln−2 take thei-th row without its first cell and arrange these rows in a
matrix as in Fig. 3.9. The matrix hasn−1 columnsSi2, . . . , Sin and each column
contains a 1. On the other hand, the matrix clearly hasn−2 rows, so there has to
be a row which contains two 1’s. But this is impossible because these are rows of
Latin sqaures. Therefore, each row ofL∗ contains each element of{1, . . . ,n}. The
proof that each column ofL∗ contains each element of{1, . . . ,n} is analogous, so
L∗ is a Latin square.

Now let us show thatL1 ⊥ L∗. SupposeL1 6⊥ L∗. Then there is a pair(x,y) ∈
{1, . . . ,n}2 such that(x,y) /∈ {(l1

i j , l
∗
i j ) : 1 6 i, j 6 n}. Since bothL1 andL∗ are

standard we havex 6= y, so without loss of generality we can assume that(x,y) =
(1,2). We can also assume that 1’s are on the main diagonal ofL1 (if this is not
the case, we can simultaneously permute rows ofL1, . . . ,Ln−2, L∗ to achieve this).
Since(1,2) does not appear in{(l1

i j , l
∗
i j ) : 1 6 i, j 6 n} we see that there are no 2’s



HOMEWORK 51

1 2 n
L1 L2

n21

Ln−2

n21

. . .i →

3 3 3

Si2 Si3 Sin

L1

L2

Ln−2

...

Figure 3.9: The proof thatL∗ is a Latin square

on the main diagonal ofL∗, which, by the construction ofL∗, means that2∈ S33,
2∈S44, . . . ,2∈Snn. From each squareL1, . . . ,Ln−2 take the main diagonal without
its first two cells and write these diagonals as rows of a matrix, see Fig. 3.9. The
matrix hasn−2 columnsS33, . . . ,Snn and each column contains a 2. On the other
hand, the matrix clearly hasn− 2 rows and the first row is 11. . . 1. So all the
2’s appear in the remainingn−3 rows and hence there has to be a row, say row
s, which contains two 2’s. But thenL1 6⊥ Ls since(1,2) appears twice when we
overlayL1 with Ls. The contradiction shows thatL1 ⊥ L∗. The proof thatLi ⊥ L∗

for the remainingi’s is analogous, soL1, . . . , Ln−2, L∗ is a complete system of
orthogonal Latin squares. ¤

Homework

3.1. Prove the following generalisation of Hall’s Marriage Theorem:
Let A = (A1, . . . ,An) be a sequence of finite sets, letr > 0 be an integer
and assume that

|A (J)|> |J|− r for all ∅ 6= J⊆ {1, . . . ,n}.

Then there are indices1 6 i1 < .. . < in−r 6 n such that(Ai1, . . . ,Ain−r ) has
an SDR. (Hint: taker distinct elementsx1, . . . , xr /∈ ⋃n

i=1Ai and consider
A ′ = (A′1, . . . ,A

′
n) whereA′i = Ai ∪{x1, . . . ,xr}.)
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1 2

L1 L2

21

Ln−2

21

. . .i →

S33 S44 Snn

L1

L2

Ln−2

...

1
1

1

1

1 1 1

... ... ...

· · ·
· · ·

· · ·

Figure 3.10: The proof thatL1 ⊥ L∗

3.2. Let 1 6 m1 6 m2 6 . . . 6 mn. Show thatm1 ·Fn−1(m2−1, . . . ,mn−1) =
Fn(m1,m2, . . . ,mn).

3.3. Prove Corollary 3.5.

3.4. Let Q = {1,2, . . . ,mn} wherem,n > 2. Let {A1, . . . , An} be a partition
of Q into n blocks of sizem, and let{B1, . . . , Bn} be another partition
of Q into n blocks of sizem. Show that there is a permutationf of {1, . . . ,
n} such thatAi ∩Bf (i) 6= ∅ for all i. (Hint: Take then×n integer matrix
M = [mi j ] wheremi j = |Ai ∩B j | and apply Theorem 3.8.)

3.5. Prove Lemmas 3.9 and 3.10.

3.6. Find all doubly standard Latin squares of order 4.

3.7. Let λr×n denote the number of distinct Latinr×n rectangles on ann ele-
ment set. Show that

r−1

∏
k=0

(n−k)! 6 λr×n 6
r−1

∏
k=0

(n!−k).

3.8. Prove Lemma 3.15.

3.9. Show that ifL1 is a Latin square overQ1 andL2 is a Latin square overQ2

thenL1⊗L2 is a Latin square overQ1×Q2.

3.10. Prove Lemma 3.20.
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Exercises

3.11. Find an SDR for({1},{1,2,3},{3,4},{2,4,5},{3,6},{1,4,7},{6}). How
many SDRs does this sequence of sets have?

3.12. Find subsetsA, B, C of {1,2,3} such thatSDR(A,B,C) = 3.

3.13. For eachn > 3 find n subsetsA1, . . . , An of {1,2, . . . ,n} such that|A1| =
. . . = |An| andSDR(A1, . . . ,An) = 2.

3.14. FindSDR(A ) whereA = ({1,2,3},{1,4,5},{1,6,7},{2,4,6},{2,5,7},
{3,4,7},{3,5,6}).

†3.15. Let Ai = {1, . . . ,n}\{i}, 1 6 i 6 n and let f (n) = SDR(A1, . . . ,An).

(a) Find f (n). (Hint: Use the Principle of Inclusion-Exclusion.)

(b) Computelim
n→∞

f (n)
n!

.

3.16. Let A = (A1, . . . ,An) be a sequence of subsets of{1, . . . ,n}. Show that
if MA is a regular real matrix, thenA has an SDR. (Hint: ifMA is a
regular real matrix thendet(MA ) 6= 0; conclude that at least one of the
summands in the expression forper(MA ) is nonzero using the fact that
MA is a 01-matrix.)

3.17. Turn the followingpartial Latin squaresinto Latin squares:

1
1

1
1

2

2 1

1

3 4
3

(a) (b)

†3.18. Find the number of Latin2×n rectangles,n > 2. (Hint: Use 3.15.)

3.19. Let L be a Latin square of ordern wheren is an odd integer and supposeL
is symmetric with respect to its main diagonal. Show that all the elements
on the main diagonal ofL are distinct.

3.20. Find all pairs of orthogonal Latin squares of order 3.

3.21. Let L+ = [ai j ] andL− = [bi j ] be Latin squares overZn = {0,1, . . . ,n−1}
indexed byZn, i.e.

L+ =




a00 a01 . . . a0,n−1

a10 a11 . . . a1,n−1
...

...
...

an−1,0 an−1,1 . . . an−1,n−1
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and similarly forL−. Assume that

ai j = i +n j and bi j = i−n j

where+n and−n are addition and subtraction inZn. Show thatL+ ⊥ L−

if n > 3 is odd.

3.22. We say that Latin squaresL1 andL2 overQ areisotopicand writeL1∼ L2

if there is a permutationϕ : Q→ Q such thatL2 can be obtained fromL1

by permuting rows and columns ofϕ(L1).

(a) Show that there are two nonisotopic Latin squares of order 4. (Hint:
Use 3.6.)

(b) Show that one of them has an orthogonal “mate” and the other does not.

3.23. Prove that ifL1 ∼ L2 andL1 has an orthogonal “mate”, then so doesL2.

3.24. A cross-sectionof a Latin squareL = [l i j ] of ordern is a setδ = {(1,k1),
(2,k2), . . . ,(n,kn)} such that(k1, . . . ,kn) is a permutation of{1, . . . ,n} and
l iki 6= l jk j wheneveri 6= j. In other words, a cross-section is a selection of
cells inL such that there is one cell in each row and each column ofL, and
all the entries in these cells are distinct.

Show that a Latin squareL of ordern has an orthogonal mate if and only
if L hasn pairwise disjoint cross-sections. (Hint: if there is anL′ such that
L⊥ L′, putδk = {(i, j) : l ′i j = k} and show thatδ1, . . . ,δn are pairwise dis-
joint cross-sections; the other implication uses the same idea to reconstruct
an orthogonal mate ofL from n pairwise disjoint cross-sections.)

3.25. A Latin squareL = [l i j ] over Q is said to berow-completeif for every
(p,q) ∈Q2 such thatp 6= q there is exactly one pair(i, j) such thatl i j = p
and l i+1, j = q (that is, every pair of distinct elements ofQ occurs ex-
actly once in consecutive positions in the same row). The definition of
thecolumn-completeLatin square is analogous.

Show that for every evenn > 4 there exists a Latin square of ordern that
is both row-complete and column-complete. (Hint: Letn = 2k and let
(x1, . . . ,xn) be the following sequence:

(0,1,2k−1,2,2k−2,3,2k−3, . . . ,k−1,k+1,k).

Show that for everys∈ {1, . . . ,n− 1} there is a uniquei such thats =
xi+1− xi . DefineL = [l i j ] over {0,1, . . . ,n− 1} by l i j = xi +n x j , where
+n denotes addition modulon, and show thatL is both row-complete and
column-complete.)



Chapter 4

Finite Geometries and Designs

In this chapter we first present some basic facts about finite geometries. More pre-
ciesly, we shall consider finite planes only. We show that the existence of a finite
projective plane is equivalent to the exisence of a complete system of orthogonal
Latin squares. We then move on to designs, one of the most important combina-
torial configurations, which are straightforward generalisations of geometries. We
characterize projective and affine planes as some special designs, but also show
that other structures (such as Hadamard matrices) appear to be designes.

4.1 Projective planes

A finite projective planeis a pair(π,L ) whereπ is a nonempty set whose elements
are calledpoints, L is a set of nonempty subsets ofπ whose elements are called
lines, and the following four conditions called theaxioms of projective planimetry
are satisfied:

(P1) For every pair of distinct pointsA,B∈ π there exists one and only one line
l ∈L such thatA∈ l andB∈ l .

(P2) For every pair of distinct linesl ,m∈L there exists one and only one point
A∈ π such thatl 3 A andm3 A.

(P3) There exist four distinct points such that no three are on the same line.

(P4) π is finite.

A finite projective plane with 13 points and 13 lines is given in Fig. 4.1. Note
that each line consists of exactly four points in this finite projective plane, and the
curved lines in the figure are just used as an illustration.

For distinct pointsA andB, by A ·B or justAB we denote the unique line that
contains bothA andB. Similarly, for distinct linesl andm, by l ·m we denote the

55
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Figure 4.1: A finite projective plane with 13 points and 13 lines

unique point that belongs to bothl andm. If three or more points belong to the
same line, we say that the points arecollinear. If three or more lines pass through
the same point, we say that the lines areconcurrent.

Theorem 4.1 Every finite projective plane has at
least 7 points.

Proof. Let A, B, C, D be the four distinct points in
the plane which exist by (P3). ThenE = AB·CD
is distinct fromA, B, C andD (e.g., ifE = A then
A, D, C have to be collinear, which is impossible).
Furthermore, letF = AD ·BC andG = AC ·BD.
It is easy to see thatF 6∈ {A,B,C,D,E} andG 6∈
{A,B,C,D,E,F}. Therefore,A, B, C, D, E, F , G
are seven distinct points. ¤

A

B

C

D

E
F

G

There exists a finite projective plane with exaclty
seven points. It is called theFano planeand clearly this is
the smallest finite projective plane.

Theorem 4.2 Every line in a finite projective plane contains at least three points.
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Theorem 4.3 All lines in a projective plane have
the same number of points.

Proof. Let l andm be two distinct lines in a pro-
jective plane. Take a pointS such thatS /∈ l ∪m
and defineϕS : l → m by ϕS(X) = SX·m. Then
ϕS is bijective and hence|l |= |m|. ¤

Definition 4.4 The order of a projective plane
(π,L ) is a positive integerq such that|l |= q+1
for all l ∈ π.

S

l

m

X

f (X)

So, the order of the Fano plane is 2, while the order of the projective plane in
Fig. 4.1 is 3. One can easily show that in a projective plane of orderq every point
belongs to preciselyq+1 lines (Exercise 4.13).

Theorem 4.5 Let (π,L ) be a finite projective plane of orderq. Then|π|= |L |=
q2 +q+1.

Proof. Let S be a point in the plane. Then there areq+ 1 lines l1, . . . , lq+1 that
containS. Now |l1|+ . . . + |lq+1| = (q+ 1)2. Note that every point in the plane
appears only once in this sum, except forSwhich was countedq+ 1 times, once
for each line. Therefore, the number of points inπ is (q+1)2−q = q2 +q+1.

For A∈ π let LA denote the set of all lines that containA. Then∑A∈π |LA| =
(q2 +q+1)(q+1). In this sum each line was countedq+1 times, once for each
of its points. Therefore,|L |= q2 +q+1. ¤

The axioms of the finite projective plane (projective space of dimension 2) can
easily be extended to alow for higher dimensional projective spaces. Projective
space of dimensiond and orderq is denoted byPG(d,q). So, projective plane of
orderq is PG(2,q) and in particular the Fano plane is justPG(2,2). Higher dimen-
sional projective spaces have many properties that resemble the projective plane,
e.g. an appropriate form of the Duality Principle is always valid (see Exercise 4.15),

or |PG(d,q)|= qd+1−1
q−1

.

Finite projective geometry is a source of very hard problems, e.g., it was shows
only recently that aPG(2,10) does not exist (a long computation by Lam, Swierz,
Thiel in 1989). The question forPG(2,12) is still unresolved. On the other hand,
we know that ifq is a prime power then there exists a unique projective plane of
orderq. We show the existence of such planes in the next section.



58 CHAPTER 4. FINITE GEOMETRIES AND DESIGNS

4.2 Affine planes

A finite affine planeis a pair(α,L ) whereα is a nonempty set whose elements
are calledpoints, L is a set of nonempty subsets ofα whose elements are called
lines, and the following four conditions called theaxioms of affine planimetryare
satisfied:

(A1) For every pair of distinct pointsA,B∈ α there exists one and only one line
l ∈L such thatA∈ l andB∈ l .

(A2) For every linel and every pointA /∈ l there is a unique linemsuch thatA∈m
andl ∩m=∅.

(A3) There exist three distinct points not on the same line.

(A4) α is finite.

We say that linesl andm areparallel and writel ‖ m if l = m or l ∩m= ∅.
Axiom (A2) is therefore called the Parallel Postulate. It is easy to see that‖ is an
equivalence relation onL and hence the lines inL can be divided into equivalence
classes of parallel lines, calledparallel pencils. An affine plane with 9 points is
depicted in Fig. 4.2. It has 9 points, 12 lines and 4 parallel pencils one of which
is outlined in the figure. Each parallel pencil in this geometry consists of three
parallel lines.

Figure 4.2: A finite affine plane with 9 points and 12 lines

Lemma 4.6 Let (α,L ) be a finite affine plane.
(a) If a,b∈L anda 6 ‖ b thena andb have a unique common point.
(b) α has at least four points such that no three are on the same line.
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We are now going to show that affine planes are closely related to projective
planes. Let(π,L ) be a projective plane and letm∈ L be any line inπ. Let
π−m= π \mand defineL −mby

L −m= {l \m : l ∈L andl 6= m}.

So, (π −m,L −m) is a structure obtained from the projective plane(π,L ) by
removing the linemand all its points.

Theorem 4.7 Let (π,L ) be a projective plane and letm∈L be arbitrary. Then
(π−m,L −m) is an affine plane.

Proof. Let us show that(π −m,L −m) satisfies (A1)–(A4). (A4) is obvious,
while (A1) is a direct consequence of (P1). Let us show (A3). By (P3) there
exist distinct pointsA, B, C, D ∈ π such that no three are on the same line. If
|m∩{A,B,C,D}| 6 1 then at least three of these four points lie outsidem, that is
in π−m and we are done. Assume now that|m∩{A,B,C,D}|= 2, say,A,B∈m.
ThenC,D /∈ m. It is easy to see thatE = AC ·BD does not lie onm and that
{C,D,E} ⊆mare three distinct points.

Finally, let us show (A2). Take anyl ∈L −
m and anyA ∈ π −m such thatA /∈ l . By the
construction ofL −m there is anl ′ ∈ L such
thatl = l ′\m. Sincel ′ 6= mthe two lines intersect
and letL = l ′ ·m. Clearly,l ′ = l ∪{L}. Puta′ =
AL anda= a′\m∈L −m. Thena3A anda‖ l .
Let b∈L −mbe any other line parallel tol that
containsA and takeb′ ∈L such thatb = b′ \m.
Now, b′ and l ′ have an intersection inπ while
b andl do not. Therefore, the intersection ofb′

m

l

A

L

a

and l ′ is a point onl ′ that does not belong tol , and henceb′ · l ′ = L. This shows
thatb′ = AL = a′ whenceb = a, and the parallel throughA is unique. ¤

This construction is based on the idea that
“parallel lines intersect at infinity”, where “in-
finity” is the line m. Using the same idea we
can reverse the construction: starting from an
affine plane, for each parallel pencil we add
one new “point at infinity” and assume that all
these “points at infinity” lie on a new line, the

M∞
i

l1

l2

l3

l4

“line at infinity”. Each old line goes through all its old points plus the one new
point corresponding to its parallel pencil.
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More precisely, let(α,L ) be a finite affine plane and letm∞ = L /‖ = {M∞
1 ,

M∞
2 , . . . ,M∞

k } be the set of parallel pencils (so that eachM∞
i is a set of lines parallel

to each other). Just for the record note thatM∞
i /∈ α for all i since these are sets

of lines, and thatm∞ /∈L . Let α∗ = α ∪{M∞
1 , . . . ,M∞

k }. For each linel ∈L let
l∗ = l ∪{M∞

i } whereM∞
i = l/‖, and letL ∗ = {l∗ : l ∈L }∪{m∞}, Fig 4.3.

M∞
1

M∞
2

M∞
3 M∞

4

m∞

Figure 4.3: Extending an affine plane to a projective plane

Theorem 4.8 If (α,L ) is an affine plane, then(α∗,L ∗) is a projective plane.

Proof. Let us show that(α∗,L ∗) satisfies (P1)–(P4). PointsM∞
i will be referred

to as points at infinity. Firstly, note that (P4) is obvious and (P3) is a direct conse-
quence of Lemma 4.6(b).

To show that (P1) holds, take anyA,B∈ α∗, A 6= B. If A,B∈ α then there is
a unique linel ∈L such thatA,B∈ l so l∗ is a unique line inL ∗ that containsA
andB. If A = M∞

i andB = M∞
j for somei 6= j then clearlym∞ is the only line in

L ∗ that containsA andB since all other lines inL ∗ contain precisely one point
at infinity. Finally, letA∈ α andB = M∞

i for somei. Recall thatM∞
i is a parallel

pencil, so take anyl ∈M∞
i . If A∈ l thenl∗ is the unique line inL ∗ that containsA

andB. If A /∈ l let a be the unique line inL parallel tol which passes throughA.
Thena∗ is the unique line inL ∗ that containsA andB = M∞

i .
To show that (P2) holds, take anya,b∈L ∗, a 6= b. If one of them ism∞, say

b= m∞, thena= a∗0 for somea0∈L anda·b= M∞
i whereM∞

i is the parallel pencil
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of a0. If a 6= m∞ 6= b thena = a∗0 for somea0 ∈L andb = b∗0 for someb0 ∈L .
If a0 ‖ b0 then they have the same point at infinityM∞

i soa ·b = M∞
i . Otherwise

a0∩b0 6=∅. Sincea0 6= b0, it follows by Lemma 4.6(a) thata0∩b0 = {A} for some
A∈ α, soa·b = A. The uniqueness of the point of intersection is immediate.¤

Corollary 4.9 For every finite affine plane(α,L ) there is a positive integerq such
that |α|= q2, |L |= q(q+1), each line has preciselyq points, each point belongs
to preciselyq+1 lines, each parallel pencil hasq lines and there areq+1 parallel
pencils.

Proof. Let q be the order of the finite projective plane(α∗,L ∗). Then clearly
|α| = |α∗|− |m∞| = (q2 +q+1)− (q+1) = q, |L | = |L ∗|−1 = q2 +q and for
eachl ∈L we have|l |= |l∗|−1= q. Since each point inα∗ is incident withq+1
lines, and since noA∈ α is incident tom∞ we get that each point fromα belongs
to preciselyq+ 1 lines fromL . The number of parallel pencils is|m∞| = q+ 1.
Since each point inα∗ belongs toq+1 lines, the same holds for points at infinity.
But one of theseq+1 lines that pass through a point at infinity ism∞ /∈L , so each
parallel pencil of lines inL consists ofq lines. ¤

Definition 4.10 The integerq from Corollary 4.9 is called theorder of the finite
affine plane(α,L ).

We conclude the section on affine planes by showing that the existence of pro-
jective and affine planes of a given order is equivalent to the existence of a complete
system of orthogonal Latin squares.

Theorem 4.11 The following statements are equivalent for every integerq > 2:

(1) There exists a finite projective plane of orderq.

(2) There exists a finite affine plane of orderq.

(3) There exists a complete system of orthogonal Latin squares of orderq.

Proof. The equivalence of (1) and (2) has been established in Theorems 4.7 and 4.8.
Let us show the equivalence of (2) and (3).

(3)⇒ (2): Let L1 = [l1
i j ], . . . ,Lq−1 = [lq−1

i j ] be a complete system of orthogonal
Latin squares overQ = {1,2, . . . ,q}. For the points we take “coordinates”, that is,
we letα = Q2 = {(i, j) : i, j ∈Q} and (A4) is obviously satisfied. ForL we take
three types of lines, Fig. 4.4:

• horizontal lines:hi = {(i, j) : j ∈Q}, for eachi ∈Q,



62 CHAPTER 4. FINITE GEOMETRIES AND DESIGNS

(a) (b) (c)

Figure 4.4: The three types of lines:(a) horizontal,(b) vertical,(c) skew

• vertical lines:v j = {(i, j) : i ∈Q}, for eachj ∈Q, and

• skew lines:sk
a = {(i, j) : lk

i j = a}, for eachk∈ {1, . . . ,q−1} and eacha∈Q.

Let us first note that no skew line contains two points from the same row, or two
points from the same column (ifsk

a contains(i, j1) and(i, j2) then lk
i j1

= a = lk
i j2

,
which is impossible sinceLk is a Latin square).

Let us show that (A1) is valid. Take two distinct points(i1, j1) and(i2, j2). If
i1 = i2 = i thenhi contains both points. No other horizontal line contains these two
points, and clearly no vertical line and no skew line can contain two points from
the same row. So,hi is the only line that contains the two points. The proof is
analogous in casej1 = j2. Assume now thati1 6= i2 and j1 6= j2. To show that there
is a unique skew linesk

a that contains both(i1, j1) and(i2, j2) it suffices to show
that there is a uniquek and a uniquea such thatlk

i1 j1 = lk
i2 j2 = a. But this is true due

to Homework 4.4.
To show (A2) take any linep and a point(i, j) not on the line. Ifp = hi′ for

somei′ thenhi contains(i, j) and it is parallel tohi′ . It is easy to see thathi is
the only such line: neither the vertical linev j nor skew lines that contain(i, j) are
parallel tohi′ . The proof is analogous in casep is a vertical line. Assume now that
p is a skew linesk

a for somek anda. By the assumption,(i, j) /∈ sk
a sob = lk

i j 6= a.
Now, sk

b contains(i, j) and it is parallel tosk
a (if (u,v) ∈ sk

a∩ sk
b thenb = lk

uv = a,
which is not the case). Let us show that no other line through(i, j) is parallel to
sk
a. Clearly, no horizontal and no vertical line is parallel tosk

a and let us show that
nosm

c 6= sk
b that contains(i, j) is parallel tosk

a. Take anysm
c such that(i, j) ∈ sm

c and
sm
c 6= sk

b. Thenm 6= k and henceLk ⊥ Lm. Therefore, there exists an(i0, j0) such
that(lk

i0 j0, l
m
i0 j0) = (a,c). So,(i0, j0) ∈ sk

a∩sm
c , i.e.sk

a 6 ‖ sm
c , and hencesk

b is the only
line parallel tosk

a that contains(i, j).
To see that (A3) is valid, take(1,1), (1,2) and(2,1). No horizontal or vertical

line contains all three points, and no skew line contains(1,1) and(1,2).

(2)⇒ (3): Let (α,L ) be a finite affine plane of orderq. It hasq2 points and
q+1 parallel pencils. In order to produce Latin squares out of this configuration,
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we shall first introduce “coordinates” as follows. Take two distinct parallel pencils
H = {h1, . . . ,hq} andV = {v1, . . . ,vq}. The two pencils will serve as “horizontal”
lines and “vertical” lines. Every pointA ∈ α lies on a unique “horizontal” line
hi and a unique “vertical” linev j , so we say that(i, j) are the coordinates ofA.
Let f : {1, . . . ,q}2 → α be the mapping that takes coordinates to their respective
points. Clearly, f is a bijection. Each of the remainingq− 1 parallel pencils
Pm = {am1, . . . ,amq} determines a matrixLm = [lm

i j ]q×q over{1, . . . ,q} as follows:
lm
i j = k if f (i, j) ∈ amk. Let us show thatLm is a Latin square. Suppose that some
k appears twice in a row ofLm, say,lm

i j1
= k and lm

i j2
= k. Then f (i, j1) ∈ amk and

f (i, j2) ∈ amk, and hencehi andamk have two distinct points in common:f (i, j1)
and f (i, j2). Therefore,hi = amk, but this implies that two distinct parallel pencils
H andPm have a line in common, which is not possible. Therefore, for each of
the remainingq−1 parallel pencilsP1, . . . , Pq−1 the matricesL1, . . . , Lq−1 are
Latin squares. Finally, let us show thatLm⊥ Lk for m 6= k. Take anyi1, j1, i2, j2
and suppose that(lm

i1 j1, l
k
i1 j1) = (lm

i2 j2, l
k
i2 j2) = (t,u). Then f (i1, j1) ∈ amt, f (i2, j2) ∈

amt, f (i1, j1) ∈ aku and f (i2, j2) ∈ aku. If (i1, j1) 6= (i2, j2) then bothamt andaku

contain these two distinct points, soamt = aku. But if this is true, then the parallel
pencilsAm andAk have a line in common, which contradicts the assumptionm 6= k.
Therefore,(i1, j1) = (i2, j2). This shows that every pair(t,u) ∈ {1, . . . ,q}2 appears
at most once when we overlayLm with Lk, whence follows thatLm⊥ Lk. ¤

4.3 Designs

Assume that we wish to comparev varieties of wine. In order to make the testing
procedure as fair as possible it is natural to require that each person participat-
ing tastes the same number (sayk) of varieties being tested so that each person’s
opinion has the same weight, and each pair of varieties of wine is compared by
the same number of persons (sayλ ) so that each variety of wine gets the same
treatment. One possibility would be to let everyone taste all the varieties. But if
v is large, this is very impractical. We would like to design a fair experiment so
thatk < v.

Definition 4.12 Let X be a finite set withv elements, and let2 6 k < v andλ > 0.
A pair (X,B) whereB is collection of distinct subsets ofX is called a(v,k,λ )-
designif

• each set inB contains exactlyk elements, and

• each 2-element subset ofX is contained in exactlyλ sets inB.

The elements ofX are calledverticesand the sets inB are called theblocksof the
design. The number of blocks of(X,B) is usually denoted byb.
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Example 4.13 (a) LetX = {1, . . . ,7} andB = {{1,2,4}, {2,3,5}, {3,4,6}, {4,5,7},
{5,6,1}, {6,7,2}, {7,1,3}}. Then(X,B) is a(7,3,1)-design.

(b) Every finite projective plane of orderq is a(q2 +q+1,q+1,1)-design.
(c) Every finite affine plane of orderq is a(q2,q,1)-design.

Theorem 4.14 Let (X,B) be a(v,k,λ )-design. Then each vertex of the design
occurs inr blocks, wherer satisfies the following two equalities:

r(k−1) = λ (v−1) and bk= vr.

Proof. Consider aa∈ X and assume thata occurs inra blocks. Let

H = {(x,B) : a 6= x,B∈B,{a,x} ⊆ B},

and let us find|H |. There arev− 1 possibilities to choosex (sincex 6= a), and
once we have chosenx 6= a, there areλ blocks that contain botha andx. Therefore,
|H | = (v−1)λ . On the other hand, there arera blocks that containa and each
block hask elements. Therefore, in each of thera blocks that containa there are
k−1 possibilities to choosex 6= a, so|H |= ra(k−1). So, we see thatra(k−1) =
(v−1)λ , i.e. ra is uniquely determined by byv, k andλ . This means thatra1 = ra2

for all a1,a2 ∈ X and we have the first equality. For the second equality, let

H ′ = {(x,B) : B∈B,x∈ B}.

Since the design hasb blocks and each block hask elements,|H ′| = bk. On the
other hand, there arev ways to choosex, and once we fixx, there arer blocks that
contain it. Therefore,|H ′|= vr and finallybk= vr. ¤

This theorem also shows thatb andr are uniquely determined byv, k andλ . A
main problem in design theory is to determine for which values ofv, k andλ there
is a(v,k,λ )-design. Certainly, designs do not exist for every choice ofv, k andλ .

We have seen in Example 4.13 that every affine plane is a(n2,n,1)-design. But
the converse is also true:

Theorem 4.15 A (v,k,λ )-design is an affine plane if and only if this is a(n2,n,1)-
design for somen > 2.

Proof. Every affine plane of orderq is a(q2,q,1)-design. To show the implication
from right to left take any(n2,n,1)-design(X,B), n > 2, and let us show that it
satisfies (A1)–(A4). (A1) is satisfied since(X,B) is a design, while (A3) and (A4)
are obvious, so let us show (A2). Take any blockB = {a1, . . . ,an} ∈ B and any
x /∈ B. For everyi ∈ {1, . . . ,n} there is a unique blockBi containingx andai , and
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a1 a2 a3 an

x

· · ·

B1 B2 B3 Bn

B

B∗

Figure 4.5: The proof of Theorem 4.15

clearly Bi 6= B j wheneveri 6= j. According to Theorem 4.14 we haver = n+ 1,
i.e. every point lies inn+ 1 blocks. Now, there aren blocks that containx and
intersectB, so the remaining(n+1)-th block containingx has to be disjoint from
B, Fig. 4.5. Therefore, this is the unique block disjoint fromB that containsx. ¤

The incidence matrixof a design(X,B) whereX = {x1, . . . ,xv} and B =
{B1, . . . ,Bb} is the incidence matrix of of the familyB, that is, anb× v matrix
A = [ai j ] over{0,1} such that

ai j =

{
1, Bi 3 x j

0, otherwise.

Lemma 4.16 Let A be an incidence matrix of a(v,k,λ )-design, letE be the iden-
tity matrix andJ a square matrix in which every entry is 1. Then

A>A =




r λ λ . . . λ
λ r λ . . . λ
λ λ r . . . λ
. . . . . . . . . . . . . . . . .
λ λ λ . . . r




= (r−λ )E +λJ,

Theorem 4.17 (Fisher’s inequality) If there exists a(v,k,λ )-design thenb > v.
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Proof. Let us calculatedet(A>A). We first subtract the first row from the others:

det(A>A) =

∣∣∣∣∣∣∣∣∣∣

r λ λ . . . λ
λ r λ . . . λ
λ λ r . . . λ
. . . . . . . . . . . . . . . . .
λ λ λ . . . r

∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣

r λ λ . . . λ
λ − r r −λ 0 . . . 0
λ − r 0 r−λ . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
λ − r 0 0 . . . r−λ

∣∣∣∣∣∣∣∣∣∣

and then add all other columns to the first column:

det(A>A) =

∣∣∣∣∣∣∣∣∣∣

r +(v−1)λ λ λ . . . λ
0 r−λ 0 . . . 0
0 0 r−λ . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . r−λ

∣∣∣∣∣∣∣∣∣∣

.

Therefore,det(A>A) = (r +(v−1)λ )(r−λ )v−1. Now fromr(k−1) = λ (v−1) we
obtain thatdet(A>A) = rk(r−λ )v−1. We have assumed thatk < v, sor(k−1) =
λ (v−1) impliesr > λ which, together withv > 2 yieldsdet(A>A) > 0.

Assume now thatb < v. Then there are fewer rows than columns inA. Let A1

be av×v matrix obtained by addingv−b rows of zeros toA. It is easy to see that
A>1 A1 = A>A. But sinceA1 is a square matrix, the product rule for determinants
implies that

det(A>A) = det(A>1 A1) = det(A>1 )det(A1) = 0

because there is at least one row of zeros inA1. This contrardictsdet(A>A) > 0
and henceb > v. ¤

A (v,k,λ )-design issymmetricif b = v, i.e., its incidence matrix is a square
matrix. Note that the incidence matrix of a symmetric design does not have to be a
symmetric matrix!

Lemma 4.18 In a symmetric(v,k,λ )-design we havek = r andλ < k.

In a symmetric design we denotek−λ by n. A symmetric design is said to be
trivial if n = 1.

Lemma 4.19 In a trivial symmetric design every(v−1)-element subset ofX is a
block. For a nontrivial symmetric design we havek 6 v−2.

Theorem 4.20 Let A be an incidence matrix of a symmetric(v,k,λ )-design. Then
A>A = AA> and the intersection of any two distinct blocks of the design hasλ
elements.
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Proof. Let J be thev× v matrix whose all entries are 1. The following is clearly
true:AJ= JA= kJ, A>J = JA> = kJ sincek = r, andJ2 = vJ. Using Lemma 4.16,
k = r andA>J = JA= kJ we see that(

A>−
√

λ
v

J

)(
A+

√
λ
v

J

)
= A>A+

√
λ
v

(A>J−JA)− λ
v

J2

= A>A−λJ = (k−λ )E.

Sincek > λ , the above calculation means thatA>−
√

λ
v J has an inverse and the

inverse is 1
k−λ

(
A+

√
λ
v J

)
. Now,

1
k−λ

(
A+

√
λ
v

J

)(
A>−

√
λ
v

J

)
= E

AA>+

√
λ
v

(JA>−AJ)− λ
v

J2 = (k−λ )E

AA>−λJ = (k−λ )E

AA> = (k−λ )E +λJ,

so Lemma 4.16 yieldsAA> = A>A. The second part of the theorem follows imme-
diately fromAA> = (k−λ )E +λJ. ¤

Let (X,B) be a(v,k,λ )-design such thatb−2r +λ > 0, and letB = {X \B :
B ∈ B}. Then (X,B) is a (v,v− k,b− 2r + λ )-design called thecomplement
of (X,B).

Not every design has a complement simply because it may happen thatb−2r +
λ < 0. However, every nontrivial symmetric(v,k,λ )-design has a complement
and its complement is a symmetric(v,k,λ )-design wherev = v, k = v− k and
λ = v−2k+λ . Moreover,n = n, wheren = k−λ (Exercise 4.21).

Theorem 4.21 If a nontrivial symmetric(v,k,λ )-design exists, then

4n−1 6 v 6 n2 +n+1.

Proof. Suppose there exists a nontrivial symmetric(v,k,λ )-design. Then it has a
complement and it is a(v,k,λ )-design wherev = v, k = v−k andλ = v−2k+λ .
Let us calculateλλ :

λλ = λ (v−2k+λ ) = λ (v−1)+λ −2kλ +λ 2

= k(k−1)+λ −2kλ +λ 2 [sinceλ (v−1) = r(k−1) andr = k]

= (k−λ )2− (k−λ ) = n2−n.
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Fromλ > 1 andλ > 1 we get

0 6 (λ −1)(λ −1) = λλ − (λ +λ )+1 = (n2−n)− (v−2k+2λ )+1

= (n2−n)− (v−2(k−λ ))+1 = n2−n−v+2n+1

whencev 6 n2 +n+1. For the lower bound let us first note that(x+y)2 > 4xy for
every pair of realsx andy. Now for x = λ andy = λ we obtain

(λ +λ )2 > 4λλ = 4n(n−1) > (2n−2)2

sincen > 2. Having in mind thatλ +λ > 1 and2n−2 > 1 taking the square root
of the above inequality yields

v−2n = λ +λ > 2n−2

i.e.v−2n > 2n−1, sov > 4n−1. ¤

We say that a nontrivial symmetric(v,k,λ )-design ismaximalif v= n2+n+1
and that it isminimalif v= 4n−1. We conclude this section by showing that max-
imal symmetric designs correspond to finite geometries. We give the interpretation
of minimal symmetric designs in the next section.

Theorem 4.22 A (v,k,λ )-design is a finite projective plane if and only if it is a
maximal nontrivial symmetric(v,k,1)-design.

Proof. (⇒) Let (X,B) be a projective plane of orderq. Then it is a(q2+q+1,q+
1,1)-design. Since a projective plane has the same number of points and lines, it
is a symmetric design wheren = k− λ = (q+ 1)− 1 = q > 1. Hence, this is a
nontrivial symmetric design whose maximality is obvious sincev = n2 +n+1.

(⇐) Let (X,B) be a maximal nontrivial symmetric(v,k,1)-design. Thenv =
n2 +n+1 andk = n+λ = n+1. Hence, this is a(n2 +n+1,n+1,1)-design. Let
us show that this is a projective plane. (P4) is trivially satisfied, while (P1) follows
from λ = 1. From Theorem 4.20 we know that in a nontrivial symmetric design
the intersection of every two distinct blocks hasλ elements, so (P2) is valid since
λ = 1. Finally, to show that (P3) holds, take any two distinct blocksB,B′ ∈ B,
B 6= B′. Then|B∩B′| = λ = 1 and letx be the only element ofB∩B′. Since the
design is nontrivial,n > 2 so|B|= |B′|= n+1 > 3. Takey1,y2 ∈ B\{x} such that
y1 6= y2 and takey3,y4 ∈ B′ \{x} such thaty3 6= y4. Now, y1, y2, y3 andy4 are four
distinct points no three in the same block. ¤
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4.4 Hadamard matrices

One of the important results due to the famous French mathmatician Jacques Sa-
lomon Hadamard (1865–1963) is the answer to the following question: LetA =
[ai j ] be a real square matrix such that|ai j |6 1; how large can|det(A)| be?

Theorem 4.23 (Hadamard) Let A= [ai j ] be a realn×n matrix such that|ai j |6 1.
Then|det(A)|6 nn/2. The equality holds if and only ifai j =±1 for all i and j, and
A>A = nE.

Proof. (Sketch)It is well known that|det(A)| is the volume of the parallelepiped
in n-dimensional Euclidean space whose sides are verctors that correspond to the
columns ofA. If |ai j |6 1 for all i and j, then the Euclidean length of such vectors
is at most

√
n. The volume of the parallelepiped is at most the product of the

lengths of its edges, so|det(A)| 6 (
√

n)n = nn/2. The equality holds if and only
if the edges of the parallelepiped are mutually orthogonal and of maximal length√

n. The edges can achieve the length of
√

n just in caseai j = ±1 for all i and
j, while the orthogonality requirement means that the scalar product of any two
distinct columns inA is zero. Therefore,A>A = nE. ¤
Definition 4.24 An Hadamard matrix of ordern is ann×n matrix H with entries
±1 such thatH>H = nE.

Note thatH>H = nE means thatH is invertible andH−1 = 1
nH>. Therefore,

a matrixH with entries±1 is an Hadamard matrix if and only ifHH> = nE. We
say that an Hadamard matrix isnormalizedif its first row and its first column are
11. . .1.

Lemma 4.25 If H is an Hadamard matrix andH ′ is a matrix obtained fromH
by multiplying a row or a column by−1, thenH ′ is also an Hadamard matrix.
Every Hadamard matrixH can be transformed to a normalized Hadamard matrix
by multiplying some of its rows and columns by−1.

Theorem 4.26 Let H be a normalized Hadamard matrix of ordern > 1. Then
every row other than the first row on the matrix hasn/2 entries equal to 1 andn/2
entries equal to−1. If n> 2 then any two rows other than the first row have exactly
n/4 1’s in common. The analogous statements hold for columns.

Consequently, if there exists an Hadamard matrix of ordern thenn = 1, n = 2
or n≡ 0 (mod 4).

Proof. The inner product of the first row with any other row is 0. Therefore, in any
other row the number of entries equal to 1’s and the number of entries equal to−1
are the same. Hencen is even.
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Take any two rowsi 6= j other than the first row. Lets be the number of 1’s
these two rows have in common and lett be the number of−1’s these two rows
have in common:

1st row
ith row
j th row

1 1 . . . 1
1 1 . . . 1
1 1 . . . 1︸ ︷︷ ︸

s

1 1 . . . 1
1 1 . . . 1

−1 −1 . . . −1︸ ︷︷ ︸
n/2−s

1 1 . . . 1
−1 −1 . . . −1

1 1 . . . 1︸ ︷︷ ︸
n/2−t

1 1 . . . 1
−1 −1 . . . −1
−1 −1 . . . −1︸ ︷︷ ︸

t

The number of 1’s in the third row isn/2 sos+(n/2− t) = n/2, whence follows
thats= t. The inner product of the second and the third row is 0 sos+ t = (n/2−
s)+(n/2−t) and sinces= t we immediately obtains= n/2−s. Therefore,s= n/4
and hencen is divisible by 4. ¤

The existence of Hadamard matrices is still an open problem. However, it is
easy to show that an Hadamard matrix of ordern exists whenevern is a power of 2.
It is conjectured that an Hadamard matrix of ordern > 4 exists if and only ifn is
divisible by 4.

Example 4.27 Let us show that an Hadamard matrix of ordern exists whenever

n = 2k. Clearly,H1 = [1] andH2 =
[

1 1
1 −1

]
are Hadamard matrices of order

1 and 2. Now, ifHn is an Hadamard matrix of ordern it is easy to show that

H2n =
[

Hn Hn

Hn −Hn

]
is an Hadamard matrix of order2n. Therefore, there exist

Hadamard matrices of ordern whenevern is a power of 2.

Each normalized Hadamard matrix gives rise to a(4s−1,2s−1,s−1)-design
as follows. Remove the first row and the first column of the matrix (they carry no
information so we don’t need them) and in the remaining truncated matrix replace
each−1 with 0. The new matrix is an incidence matrix of a(4s−1,2s−1,s−1)-
design called theHadamard design. The reverse construction shows that every
Hadamard design gives rise to an Hadamard matrix.

Theorem 4.28 A (v,k,λ )-design is an Hadamard design withv > 7 if and only if
it is a minimal nontrivial symmetric(v,k,n−1)-design (here,n is not the order of
the Hadamard matrix but a parameter of the symmetric design).

Proof. (⇒) If a design is an Hadamard design arising from an Hadamard matrix of
order4s then its parameters arev = 4s−1, k = 2s−1 andλ = s−1. According
to Theorem 4.14,r = 2s−1 andb = 4s−1 = v, so the design is symmetric. Then
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n= k−λ = s> 2 sincev > 7. So it is minimal (v= 4n−1), nontrivial (n> 2) and
λ = s−1 = n−1.

(⇐) In a minimal symmetric(v,k,n−1)-design we havev = 4n−1 andk =
n+λ = 2n−1. So this is a(4n−1,2n−1,n−1)-design, i.e. an Hadamard design.
Since the design is nontrivial,n > 2 and hencev > 7. ¤

Corollary 4.29 There exists an Hadamard matrix of ordern > 8 if and only if n is
divisible by 4 and there exists an Hadamard(n−1, 1

2n−1, 1
4n−1)-design.

Homework

4.1. (a) Prove Theorem 4.2. (Hint: take any line and consider the four points
that exist by (P3).)

(b) Show that every point in a finite projective plane belongs to at least
three distinct lines.

4.2. (a) Show that for every pair of linesl , m there is a pointS such thatS /∈
l ∪m.

(b) Show that the mappingϕS in the proof of Theorem 4.3 is bijective.

4.3. Show Lemma 4.6. (Hint: for(a) use (A1); for(b) take three pointsA, B, C
not on the same line using (A3), letl be a line throughC parallel toABand
let m be a line throughB parallel toAC; show thatl andm have a point of
intersectionD and thatA, B, C andD are the points we have been looking
for.)

4.4. Let L1 = [l1
i j ], . . . ,Lq−1 = [lq−1

i j ] be a complete system of orthogonal Latin
squares over{1, . . . ,q}. Let (i1, j1) and(i2, j2) be two pairs of indices such
that i1 6= i2 and j1 6= j2. Show that there is a uniquek and a uniquea such
that lk

i1 j1 = lk
i2 j2 = a. (Hint: DefineA andB as follows:

A =
{
(k,a,{(u1,v1),(u2,v2)}) : k∈ {1, . . . ,q−1}, a∈Q and

lk
u1v1

= a = lk
u2v2

}

B =
{{(u1,v1),(u2,v2)} : u1,v1,u2,v2 ∈ {1, . . . ,q} andu1 6= u2,v1 6= v2

}

and let
ϕ

(
k,a,{(u1,v1),(u2,v2)}

)
= {(u1,v1),(u2,v2)}.

(a) Show thatϕ is well defined, i.e.ϕ
(
k,a,{(u1,v1),(u2,v2)}

)
belongs to

B for all
(
k,a,{(u1,v1),(u2,v2)}

) ∈A .
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(b) Show thatϕ is injective.

(c) Show that|A |= |B| and conclude thatϕ is bijective.)

4.5. Show that the design in Example 4.13(a) is the Fano plane.

4.6. Let X be a finite set withv elements andB is collection ofb distinct
subsets ofX such that

• each set inB contains at mostk elements,
• every element fromX belongs to exactlyr sets inB, and
• each 2-element subset ofX is contained in at leastλ sets inB.

Show thatbk> rv andr(k−1) > λ (v−1).

4.7. Prove Lemma 4.16

4.8. Prove Lemma 4.18. (Hint: Use Theorem 4.14 and the assumptionk < v.)

4.9. Prove Lemma 4.19. (Hint: Show that in a symmetric design we have
k−λ = 1 if and only if k = v−1.)

4.10. Prove Lemma 4.25.

4.11. Show that ifHn is an Hadamard matrix of ordern it is easy to show that

H2n =
[

Hn Hn

Hn −Hn

]
is an Hadamard matrix of order2n.

Exercises

=

4.12. Is there a finite projective plane with 9 points? And with 12 points?

4.13. Show that in a projective plane of orderq every point belongs to precisely
q+1 lines.

4.14. How many noncollinear triples of points{A,B,C} are there in a finite pro-
jective plane of orderq?

4.15. (a) Show that in every finite projective plane there exist four distinct lines
such that no three of them are concurrent.

(b) The Duality Principle for projective planes is a metatheorem of pro-
jective geometry. Take any statement about a projective plane and inter-
change words and phrases as follows: “point”↔ “line”, “belongs to (∈)”
↔ “contains (3)”, “the point of intersection of the two lines”↔ “the line
that passes through the two points” etc. The statement you obtain is said



EXERCISES 73

to bedual to the original statement. The Duality Principle states that a
statement is true in a projective plane if and only if its dual is true.

Show the Duality Principle for projective planes. (Hint: Recall that a proof
of a statementS is a sequence of statementsS1, S2, . . . , Sn ≡ S such that
everySi is either an axiom or there existk, j < i such thatSk ≡ Sj ⇒ Si .
Let S∂ denote the dual statement ofS. Show that the dual od all the axioms
are true and show that ifS1, S2, . . . ,Sn is a proof ofS thenS∂

1 , S∂
2 , . . . ,S∂

n
is a proof ofS∂ .)

4.16. Let V be a 3-dimensional vector space over a finite fieldFq with q = pk

elements. Letπ be the set of all 1-dimesional subspaces ofV andL the
set of all 2-dimensional subspaces ofV.

(a) Show that(π,L ) is a projective plane.

(b) Find |π|. What is the order of(π,L )?

4.17. Is there an(11,6,2)-design?

4.18. Show that for a(v,k,λ )-design,b/λ =
(

v
2

)/(
k
2

)
.

4.19. Let (X,B) be a(v,k,λ )-design such thatb−2r +λ > 0. Show that(X,B)
is a(v,v−k,b−2r +λ )-design.

4.20. Let (X,B) be a (v,k,λ )-design and letB∗ = {D ⊆ X : |D| = k and
D /∈ B}. Show that(X,B∗) is a (v,k,λ ∗)-design for someλ ∗. What
is the value ofλ ∗?

4.21. Show that every nontrivial symmetric(v,k,λ )-design has a complement
(i.e. b− 2r + λ > 0) and its complement is a symmetric(v,k,λ )-design
wherev = v, k = v− k and λ = v− 2k + λ . Moreover,n = n, where
n = k−λ .

4.22. Show that if(X,B) is a maximal nontrivial symmetric design, then one
of the designs(X,B), (X,B) is a finite projective plane. (Hint: show that
v = n2 +n+1 impliesλ = 1 or λ = 1; see proof of Theorem 4.21.)

4.23. Show that if(X,B) is a nontrivial symmetric(v,k,λ )-design withv =
4n−1, then one of the designs(X,B), (X,B) is a(4n−1,2n−1,n−1)-
design. (Hint: Recall thatλλ = n(n−1) andλ + λ = v−2n = 2n−1.
Conclude that{λ ,λ}= {n,n−1} and discuss the two possibilities.)

4.24. Show that for every nontrivial symmetric(v,k,λ )-design there exists a
Latin k×v rectangle whose columns are blocks of the design. (Hint: Use
Theorem 3.8.)
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4.25. A (v,k,λ )-design(X,B) is resolvableif there is a partition{B1, . . . ,Br}
of B in r classes such that eachBi consists ofb/r blocks, and for each
i ∈ {1, . . . , r} and eachx∈ X there is exactly oneB∈Bi that containsx.
The classesBi are called theparallel classesof the resolvable design.

Show that for everyn> 0 there exists a resolvable(2n,2,1)-design. (Hint:
TakeX = {0,1, . . . ,2n−1} and define the parallel classesB1, . . . ,B2n−1

as follows:{0, i} ∈Bi , and if x,y > 0 andx+ y≡ 2i (mod 2n−1) then
{x,y} ∈Bi .)

4.26. (a) Show that the definition of an Hadamard design is correct, i.e. that the
configuration obtained by the construction is indeed a design.

(b) Show that every Hadamard design indeed gives rise to an Hadamard
matrix.



Chapter 5

Graphs and Digraphs

Graphs represent one of the most popular tools for modeling discrete phenomena
where the abstraction of the problem involves information about certain objects
being connected or not. For example, crossings in a city transportation model
are joined by streets, or cities in a country are joined by roads. We will examine
two types of such models: graphs which correspond to situations where all the
“roads” are bidirectional, and digraphs (directedgraphs) where one-way “roads”
are allowed.

5.1 Graphs

A graph is an ordered pairG = (V,E) whereV is a nonempty finite set andE is an
arbitrary subset ofV(2) =

{{u,v} ⊆V : u 6= v
}

. Elements ofV are calledvertices
of G, while elements ofE are callededgesof G. We shall often writeV(G) and
E(G) to denote the set of vertices and the set of edges ofG, andn(G) andm(G)
to denote the number of vertices and the number of edges ofG. If e = {u,v} is
an edge of a graph, we say thatu andv areadjacent, and thate is incidentwith
u andv. We also say thatu is aneighbourof v. Theneighbour-set ofv is the set
NG(v) = {x∈V(G) : x is a neighbour ofv}. Thedegree of a vertexv, denoted by
δG(v), is the number of edges incident tov: δG(v) = |NG(v)|. If G is clear from
the context, we simply writeN(v) andδ (v). By δ (G) we denote the least, and by
∆(G) the greatest degree of a vertex inG. A vertex with degree 0 is said to be an
isolated vertex. A vertex of degree 1 is called aleaf of G. A vertex is said to be
even, resp.oddaccording asδ (v) is an even or an odd integer. A graph isregular if
δ (G) = ∆(G). In other words, in a regular graph all vertices have the same degree.

The graphs are called graphs because of a very natural graphical representation
they have. Vertices are usually represented as (somewhat larger) points in a plane,

75
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isolated
vertex

v

N(v)

this isnot
a vertex

s

u
w

y

t leaf

edge

z

x

Figure 5.1: An example of a graph

while edges are represented as (smooth non-selfintersecting) curves joining the
respective vertices, so that adjacent vertices are joined by a curve.

Example 5.1 Fig. 5.1 depicts a grafG with V = {s, t,u,v,w,x,y,z} and
E =

{{t,u}, {u,x}, {u,v}, {w,y}, {w,v}, {v,x}, {v,y}, {v,z}, {x,y}, {x,z}, {y,z}}.
We see that

vertex s t u v w x y z
δ 0 1 3 5 2 4 4 3

soδ (G) = 0 and∆(G) = 5. Also,N(v) = {u,w,x,y,z}.

Example 5.2 Two black and two white knights are placed on a3×3 chessboard
as in Fig. 5.2(a). Is it possible to reach the configuration in Fig. 5.2(b) following
the rules of chess?

(a) (b)

Figure 5.2: Example 5.2
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(a) (b)

1 2 3

4 5 6

7 8 9

5

1
8

3

4

9
2

7

6

(c) (d)

Figure 5.3: Solution to the problem in Example 5.2

Answer:No. Let us enumerate the fields of the chess board by 1, . . . , 9 as in
Fig. 5.3(a). To this chess board we can now assign a graph with{1, . . . ,9} as the
set of vertices by joiningi and j if an only if it is possible for a knight to jump fromi
to j following the general rules of chess. The graph is given in Fig. 5.3(b). Clearly,
regular movements of a knight on the3×3 chess board correspond to movements
of the knight along the edges of the graph in Fig. 5.3(b). We see now that it is not
possible to start from the initial position of the knights given in Fig. 5.3(c) and
reach the final position in Fig. 5.3(d) by moving one knight at a time along the
edges of the graph simply because the white knights separate the black knights in
Fig. 5.3(d), which is not the case in the initial position.

Theorem 5.3 (The First Theorem of Graph Theory) If G=(V,E) is a graph with
medges, then∑v∈V δ (v) = 2m.

Proof. Since every edge is incident to two vertices, every edge is counted twice in
the sum on the left. ¤

Corollary 5.4 In any graph the number of odd vertices is even.

Theorem 5.5 If n(G) > 2, there exist verticesv,w ∈ V(G) such thatv 6= w and
δ (v) = δ (w).

Proof. Let V(G) = {v1, . . . ,vn} and suppose thatvi 6= v j wheneveri 6= j. Without
loss of generality we may assume thatδ (v1) < δ (v2) < .. . < δ (vn). Since there
are onlyn possibilities for the degree of a vertex (0, 1, . . . , n−1) it follows that
δ (v1) = 0, δ (v2) = 1, . . . , δ (vn) = n−1. But thenvn is adjacent to every other
vertex of a graph, including the isolated vertexv1. Contradiction. ¤

A graphH = (W,E′) is asubgraphof a graphG = (V,E), in symbolsH 6 G,
if W ⊆V andE′ ⊆ E. A subgraphH of G is aspanning subgraphif W = V(G).
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A subgraphH is an induced subgraphof G if E′ = E∩W(2). Induced subgraphs
are usually denoted byG[W]. The edges of an induced subgraph ofG are all the
edges ofG whose both ends are inW. A set of verticesW ⊆V(G) is independent
if E(G[W]) = ∅, i.e. no two vertices inW are adjacent inG. By α(G) we denote
the maximum carinality of an independent set of vertices inG. If A,B⊆ E(G) are
disjoint, byE(A,B) we denote the set of all edges inG whose one end is inA and
the other inB.

Theorem 5.6 α(G) 6 n(G)−δ (G).

Proof. Let A⊆V(G) be an independent set of vertices ofG such thatα(G) = |A|.
Take anyv∈A. SinceA is independent all vertices adjacent tov are inV(G)\A, so
δ (v) 6 |V(G)\A|= n(G)−|A|. Now δ (G) 6 δ (v) 6 n(G)−|A| and the statement
follows. ¤

K7 C9 P6

Figure 5.4:K7, C9 andP6

A complete graph onn vertices(or ann-clique) is a graph withn vertices where
each two distinct vertices are adjacent. A complete graph onn vertices is denoted
by Kn. A cycleof lengthn, denoted byCn, is the graph withn vertices where the
first vertex is adjacent to the second one, and the second vertex to the third one, and
so on, the last vertex is adjacent to the first. Apathwith n vertices is a graph where
the first vertex is adjacent to the second one, and the second vertex to the third one,
and so on, and the penultimate vertex is adjacent to the last one, but the last vertex
is not adjacent to the first. We say that the path withn vertices has lengthn−1.
Fig. 5.4 depictsK7, C9 andP6.

Theorem 5.7 If δ (G) > 2 thenG contains a cycle.

Proof. Let x1 . . .xk−1 xk be the longest path inG. Sinceδ (xk) > δ (G) > 2, xk has
a neighbourv distinct fromxk−1. If v /∈ {x1, . . . ,xk−2} thenx1 . . .xk−1 xk v is a path
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with more vertices than the longest path, which is impossible. Therefore,v = x j

for somej ∈ {1, . . . ,k−2} sox j . . .xk are vertices of a cycle inG. ¤
Theorem 5.8 If C3 66 G thenn(G) 6 α(G)(α(G)+1).

Proof. Let S be an independent set of vertices ofG such thatα(G) = |S| and
let T = V(G) \S. SinceS is maximal, every vertex fromT has a neighbour in
S, so |E(S,T)| > n−α(G). This implies∑v∈Sδ (v) > n−α(G). Let v ∈ S be
the vertex of the greatest degree inS. Thenα(G) · δ (v) > ∑v∈Sδ (v) > n−α(G)
whenceδ (v) > n−α(G)

α(G) . Vertices inT adjacent tov form an independent set since
G does not have aC3 as its subgraph. Now,α(G) is the maximum cardinality of an
independent set whenceδ (v) 6 α(G). Therefore,n−α(G)

α(G) 6 δ (v) 6 α(G) and thus
n 6 α(G)(α(G)+1). ¤

GraphsG1 andG2 are isomorhic, and we writeG1
∼= G2, if there is a bijec-

tion ϕ : V(G1)→ V(G2) such that{x,y} ∈ E(G1)⇔ {ϕ(x),ϕ(y)} ∈ E(G2). For
example graphsG andG2 in Fig. 5.5 are isomorphic, whileG andG1 are not.

G G1 G2

Figure 5.5:G∼= G2, butG 6∼= G1

Theorem 5.9 Let G1
∼= G2 and letϕ be an isomorphism betweenG1 andG2. Then

n(G1) = n(G2), m(G1) = m(G2) andδG1(x) = δG2(ϕ(x)) for everyx∈V(G1).

The complementof a graphG = (V,E) is the graphG = (V,E) whereE =

V(2) \E. A graphG is selfcomplementaryif G∼= G. Clearly,m(G)+m(G) =
(

n
2

)
.

Lemma 5.10 Let G andH be graphs.
(a) G∼= H if and only if G∼= H.
(b) δG(x) = (n(G)−1)−δG(x) for all x∈V(G).

Theorem 5.11 If G is a selfcomplementary graph withn vertices thenn > 4 and
n≡ 0,1 (mod 4). Conversly, for every integern > 4 such thatn≡ 0,1 (mod 4)
there exists a selfcomplementary graph withn vertices.
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Gn

t

u

v

w

Gn

t

w

u
v

(a) (b)

Figure 5.6: The proof of Theorem 5.11

Proof. Let G be a selfcomplementary graph withn> 4 vertices andmedges and let

m= m(G). Thenm+m=
(

n
2

)
andm= msinceG∼= G. Therefore2m=

n(n−1)
2

i.e. m=
n(n−1)

4
. But m is an integer andn andn−1 are not of the same parity,

so4 | n or 4 | n−1.
For the other part of the statement, for every integern > 4 such thatn≡ 0,1

(mod 4) we shall construct a selfcomplementary graphGn = (Vn,En) with n ver-
tices. It is obvious that we can takeG4 = P4 and G5 = C5. Now let Gn be a
selfcomplementary graph withn vertices and constructGn+4 as follows. Take four
new verticest, u, v, w and put

Vn+4 = Vn∪{t,u,v,w}
En+4 = En∪{{t,u},{u,v},{v,w}}∪{{t,x} : x∈Vn}∪{{w,x} : x∈Vn},

see Fig. 5.6(a). ThenGn+4 is given in Fig. 5.6(b) and it is easy to establish that
Gn+4

∼= Gn+4. ¤

5.2 Connectedness and distance

A walk in a graphG is any sequence of vertices and edgesv0 e1 v1 e2 v2 . . .vk−1 ek vk

such thatei = {vi−1,vi} for all i ∈ {1, . . . ,k}. Note that an edge or a vertex may ap-
pear more than once in a walk. We say thatk is thelengthof the walk. Ifv0 6= vk we
say that thewalk connectsv0 andvk. A closed walkis a walkv0 e1 v1 . . . vk−1 ek vk

wherev0 = vk. Clearly, a path is a walk where neither vertices nor edges are al-
lowed to repeat, and a cycle is a closed walk where neither edges nor vertices are
allowed to repeat, except for the first and the last vertex.
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(a) (b)

Figure 5.7:(a) A connected graph;(b) A graph withω = 4

Lemma 5.12 If there is a walk inG that connects two vertices then there is a path
that connects them. Every closed walk of odd length contains an odd cycle.

We define a binary relationθ onV(G) by xθy if x = y or there is a walk that
connectsx andy. Clearly,θ is an equivalence relation onV(G) and hence partitions
V(K) into blocksS1, . . . ,St . These blocks or the corresponding induced subgraphs
(depending on the context) are calledconnected componentsof G. The number
of connected components ofG is denoted byω(G). A graphG is connectedif
ω(G) = 1. An example of a connected graph and of a graph with four connected
components are given in Fig. 5.7.

Lemma 5.13 S⊆ V(G) is a connected component ofG if and only if no proper
supersetS′ ⊃ S induces a connected subgraph ofG.

Theorem 5.14 A graphG is connected if and only ifE(A,B) 6=∅ for every parti-
tion {A,B} of V(G).

Proof. (⇒) Let G be a connected graph and{A,B} a partition ofV(G). Take any
a∈ A andb∈ B. Now G is connected, so there is a pathx1 . . .xk that connectsa
andb. Sincex1 = a andxk = b, there is aj such thatx j ∈ A andx j+1 ∈ B whence
E(A,B) 6=∅.

(⇐) SupposeG is not connected and letS1, . . . , Sω be the connected compo-
nents. Then Lemma 5.13 yieldsE(S1,

⋃ω
j=2Sj) =∅. ¤

Theorem 5.15 At least one of the graphsG, G is connected.
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Proof. Suppose thatG is not connected and letS1, . . . ,Sω , ω > 2, be the connected
components ofG. Let us show that there is a path that connects any two vertices in
G. Take anyx,y∈V(G), x 6= y. If x andy belong to distinct connected components
of G then{x,y} /∈ E(G) and hence{x,y} ∈ E(G), so they are connected by an
edge. If, however,x andy belong to the same connected component ofG, saySi ,
take anyj 6= i and anyz∈ Sj . Thenx andz are connected by an edge inG and so
arey andz. Therefore,x z yis a path inG that connectsx andy. ¤

We see from the proof of previous theorem that ifG is not connected, thenG
is “very connected”. We shall now introduce a numerical measure that enables us
to express such statements formally.

ThedistancedG between verticesx andy of a connected graphG is defined by
dG(x,x) = 0, and in casex 6= y,

dG(x,y) = min{k : there is a path of lengthk that connectsx andy}.

Theorem 5.16 Let G = (V,E) be a connected graph. Then(V,dG) is a metric
space, i.e. for allx,y,z∈V the following holds:

(D1) dG(x,y) > 0;

(D2) dG(x,y) = 0 if and only if x = y;

(D3) dG(x,y) = dG(y,x); and

(D4) dG(x,z) 6 dG(x,y)+dG(y,z).

If G is obvious, instead ofdG se simply writed. The diameterd(G) of a
connected graphG is the maximum distance between two of its vertices:

d(G) = max{d(x,y) : x,y∈V(G)}.

Example 5.17 (a) d(G) = 1 if and only if G is a complete graph.

(b) d(Pn) = n−1 andd(Cn) = bn−1
2
c.

A graphG is bipartite if there is a partition{X,Y} of V(G) such that every
edge inG has one end inX and the other inY, i.e.E(G) = E(X,Y). Therefore,X
andY are independent sets. Acomplete bipartite graphis a bipartite graph with
partition{X,Y} of vertices such that its edges areall pairs{x,y} with x∈ X and
y∈Y. If |X|= p and|Y|= q, the complete bipartite graph with the partition{X,Y}
is denoted byKp,q. A star with n vertices, denoted bySn, is a complete bipartite
graphK1,n−1. A bipartite graph, aK3,4 and a starS10 are depicted in Fig. 5.8.

Lemma 5.18 A graphG with at least two vertices is a bipartite graph if and only
if every connected component ofG is either an isolated vertex or a bipartite graph.
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X

Y
K3,4 S10

Figure 5.8: A bipartite graph, aK3,4 and a starS10

Theorem 5.19 A graphG with at least two vertices is bipartite if and only ifG
does not contain an odd cycle.

Proof. According to Lemma 5.18 it suffices to give the proof for connected graphs.
So, letG be a connected graph andn(G) > 2.

(⇒) Let G be a bipartite graph and supposeG contains an odd cycle whose
vertices arev1, v2, . . . , v2k+1. Sovi is adjacent tovi+1 for all i ∈ {1, . . . ,2k} and
v2k+1 is adjacent tov1. Let{X,Y} be a partition ofV(G) showing thatG is bipartite,
i.e. such thatE(G[X]) = E(G[Y]) =∅. Now v1 belongs toX or Y, so assume that
v1 ∈ X. Thenv2 ∈ Y sincev2 is adjacent tov1 andG is bipartite, and this forces
v3 ∈ X, v4 ∈ Y and so on. We see that vertices with odd indices belong toX,
so v2k+1 ∈ X. But we havex1 ∈ X too, soE(G[X]) contains{x1,x2k+1} which
contradicts the assumptionE(G[X]) =∅.

(⇐) SupposeG does not contain an odd cycle. Take anyv∈V(G) and define
A0, A1, . . .⊆V(G) as follows:

An = {x∈V(G) : d(v,x) = n},

for n > 0. SinceG is connected, there is a path connectingv to any other vertex of
G, so each vertex ofG appears in at least one of theAi ’s. TheAi ’s are disjoint by
the construction and the fact thatV(G) is finite now yields that there is ans such
that{A0,A1, . . . ,As} is a partition ofV(G) andAt =∅ for all t > s. Let

X =
⋃

j even

A j , and Y =
⋃

j odd

A j

and let us show that bothX andY are independent sets inG. First, let us note
that E(A j ,A j+2) = ∅, for if x ∈ A j and y ∈ A j+2 were adjacent thend(v,y) 6
d(v,x)+ d(x,y) = j + 1 which contradictsy ∈ A j+2. Next, let us show that each
A j is an independent set. Assume that there is aj and verticesx,y∈ A j such that
x andy are adjacent, Fig. 5.9. By the construction ofAi ’s there is a pathv. . .x
with j edges, and there is a pathy. . .v with j edges. By chaining these two paths
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v

A jA1A0
. . . . . .

x

y

Figure 5.9: The proof of Theorem 5.19

together with the edgee= {x,y}we obtain a walkv. . .x e y. . .v of length2 j +1, so
by Lemma 5.12G contains an odd cycle, which is impossible. Therefore, allA j ’s
are independent and consequently, bothX andY are sets of independent vertices.
This shows thatG is a bipartite graph and one possible partition of its vertices
is {X,Y}. ¤

Note that this theorem does not imply that bipartite graphs have to have cycles.
A graph with no cycles is a bipartite graph, and this follows from the theorem since
it hasno odd cycles.

Let e be an edge andv a vertex of a graphG. By G−e we denote the graph
obtained fromG by removing the edgee, while G−v denotes the graph obtained
from G by removingv and all the edges ofG incident tov. A cut-vertexof a graph
G is a vertexv∈V(G) such thatω(G−v) > ω(G). A cut-edgeof a graphG is an
edgee∈ E(G) such thatω(G−e) > ω(G). Cut-vertices and cut-edges are weak
points in the graph since removing one of these makes the graph split. Intuitively,
they look like this:

v

BA
e

BA

a cut-edge a cut-vertex

Theorem 5.20 Let ebe an edge of a graphG. The following are equivalent:

(1) e is a cut-edge ofG;

(2) there is a partition{A,B} of V(G) such thatE(A,B) = {e};
(3) ebelongs to no cycle ofG.
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Proof. We give the proof in caseG is connected. IfG is not connected it suffices
to consider the connected component ofG that containse.

(2)⇒ (1): If E(A,B) = {e} in G thenE(A,B) = ∅ in G−e, soG−e is not
connected by Theorem 5.14. Therefore,2 = ω(G−e) > ω(G) = 1.

(1)⇒ (3): Suppose thateappears in a cycleC = v0 e v1 e2 v2 . . . vk−1 ek v0 of
G. To show thatG−e is connected take anyx 6= y. SinceG is connected, there is
a pathP that connectsx to y. If P does not containe, it is also a path inG−e that
connectsx to y. If, however,P containse, sayP = x. . .v0 e v1 . . .y, then removee
from P and replace it withC−e to obtain the following walk:

W = x. . .v0 ek vk−1 . . .v2 e2 v1︸ ︷︷ ︸
C−e

. . .y,

Fig. 5.10. Sinceeappears once inP and once inC it follows thatedoes not appear
in W, soW is a walk fromx to y in G−e.

e v1v0

e2

v2vk−1

ek

x y

C

P

Figure 5.10: The walkW

(3)⇒ (2): Suppose thate= {a,b} belongs to no cycle ofG and defineA and
B as follows:A = {a}∪{x∈V(G) : there is a path froma to x that does not pass
throughe} andB=V(G)\A. If b /∈B thenb∈A and there is a path froma to b that
does not pass throughe. This path together withe forms a cycle that containse.
Since there are no such cycles we haveb∈ B. So,{A,B} is a partition ofV(G) and
e∈ E(A,B). Suppose now that there is ane′ ∈ E(A,B), e′ 6= e, and lete′ = {a′,b′},
a′ ∈ A, b′ ∈ B, Fig. 5.11. We will assume further thata 6= a′ andb 6= b′ since these
two cases follow by similar arguments. There is a pathPA = a. . .a′ that does not
pass throughe and there is a pathPB = b′ . . .b that does not pass throughe. Now
these two paths together witheande′ form a cycle a. . .a′︸ ︷︷ ︸

PA

e′ b′ . . .b︸ ︷︷ ︸
PB

e a which

containse. This contradiction shows thatE(A,B) = {e}. ¤

Theorem 5.21 Let v be a vertex ofG. Thenv is a cut-vertex ofG if and only if
there is a partition{A,B} of V(G)\{v} such thatE(A,B) =∅, E(A,{v}) 6=∅ and
E(B,{v}) 6=∅.
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a be

e′ b′a′

A B

PA
PB

Figure 5.11: A cycle that containse

Theorem 5.22 If e is a cut-edge ofG thenω(G− e) = ω(G) + 1. If v is a cut-
vertex ofG thenω(G−v) < ω(G)+δ (v).

Theorem 5.23 If G is a connected graph with at least three vertices and ifG has a
cut-edge, thenG has a cut-vertex.

Proof. Let e be a cut-edge ofG. Then there is a partition{A,B} of V(G) such
thatE(A,B) = {e} (Theorem 5.20). Lete= {a,b} and leta∈ A andb∈ B. From
n(G) > 3 it follows that |A| > 2 or |B| > 2, say|A| > 2. Since the graph is con-
nected,a has a neighbourc in A, Fig. 5.12. Now letA′ = A\ {a} and note that

e

BA

A′
a

b
c

Figure 5.12: The proof of Theorem 5.23

E(A′,B) = ∅, E(A′,{a}) 6= ∅ andE(B,{a}) 6= ∅. Therefore,a is a cut-vertex
according to Theorem 5.21. ¤

We have seen in Theorem 5.20 that a graph has no cut-edges if and only if
every edge belongs to a cycle. The analogous statement for cut-vertices is the
famous Whitney Theorem.

Theorem 5.24 (Whitney 1932)Let G be a connected graph with at least three
vertices. G has no cut-vertices if and only if any two vertices lie on a common
cycle.
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Proof. (⇐) Since any two verticesu andv lie on a common cycle, removing one
vertex from the graph cannot separateu from v, and henceG−x is connected for
all x.

(⇒) For the converse, suppose that G has no cutvertices. We say that two paths
ux1 . . .xkv anduy1 . . .yl v connectingu to v are internally disjoint if{x1, . . . ,xk}∩
{y1, . . . ,yl} = ∅. Now take anyu andv in G, u 6= v, and let us show by induction
on d(u,v) thatG has two intenally disjoint paths connectingu andv. Clearly, the
two paths will then form a cycle containing bothu andv.

Let d(u,v) = 1 and lete = {u,v}. The graphG− e is connected by Theo-
rem 5.23 so there is a path inG−e from u to v. This is also a path inG and it is
internally disjoint from the trivial pathu vconsisting of the edgee itself.

For the induction step, letd(u,v) = k > 1 and assume thatG has internally
disjoint paths connecting every pair of verticesx, y such that1 6 d(x,y) < k. Let
u x1 . . . xk−1 v the a path of lengthk (i.e. one of the shortest paths that connectu
to v). We haved(u,xk−1) = k− 1, and hence by the induction hypothesisG has
internally disjoint pathsP andQ joining u to xk−1, Fig. 5.13. SinceG− xk−1 is

u vxk−1

P

Q

R

z

Figure 5.13: The proof of Whitney’s theorem

connected,G− xk−1 contains a pathR that joinsu andv. If this path is internally
disjoint from P or Q we are done, so assume thatR shares internal vertices with
both P andQ. Let z be the last vertex ofR belonging toP∪Q. Without loss of
generality we may assume thatz∈ P. We now combine the subpath ofP joining
u to z with the subpath ofR joining z to v to obtain a path fromu to v internally
disjoint from the pathQ′ = Q e′ v wheree′ = {xk−1,v}. ¤
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5.3 Trees

A tree is a connected graph with no cycles. By Theorem 5.20 we see that every
edge of a tree is a cut-edge. Therefore, a tree is a minimal connected graph with
the given set of vertices. The following theorem shows that in a way trees capture
the essence of the property of being connected.

Recall that a spanning subgraph of a graphG = (V,E) is a graphH = (W,E′)
such thatW = V andE′ ⊆ E. If H is a tree, we say thatH is aspanning tree ofG.

Theorem 5.25 A graph with at least two vertices is connected if and only if it has
a spanning tree.

Proof. Clearly, if a graphG contains a connected subraphH thenG is also con-
nected. Therefore if a graph has a spanning tree, it is connected. For the converse,
take any connected graphG and construct a sequence of graphsG0, G1, G2, . . . as
follows: G0 = G; if Gi has a cycle, take any edgeei that lies on a cycle and let
Gi+1 = Gi−ei , otherwise putGi+1 = Gi . EachGi is a spanning subgraph ofG and
eachGi is connected since an edge that lies on a cycle cannot be a cut-edge (Theo-
rem 5.20). Moreover, ifGi = Gi+1 thenGi = G j for all j > i. Let mbe the number
of edges ofG. Since we cannot remove more thanm edges fromG, we conclude
thatGm+1 = Gm+2. By construction of the sequence this means thatGm+1 has no
cycles. Therefore,Gm+1 is a spanning tree ofG. ¤

We will now show that each tree withn vertices hasn−1 edges and that each
two of the three properties listed below implies the remaining one:

• being connected,

• having no cycles, and

• m= n−1.

Lemma 5.26 Each tree with at least two vertices has at least two leaves.

Proof. Let G be a tree withn > 2 vertices and letv1, v2, . . . ,vk be the longest path
in the tree. Thenk > 2 sinceG is a connected graph with at least two vertices.
If δ (v1) > 1 thenv1 has a neighbourx distinct fromv2. If x is a new vertex, i.e.
x /∈ {v3, . . . ,vk}, then the pathx, v1, v2, . . . , vk is longer than the longest path in
G, which is impossible. If, however,x ∈ {v3, . . . ,vk} thenG has a cycle, which
contradicts the assumption thatG is a tree. Therefore,v1 is a leaf. The same
argument shows thatvk is another leaf. ¤

Theorem 5.27 Let G = (V,E) be a tree withn vertices andm edges. Then
m= n−1, and consequently∑v∈V δ (v) = 2(n−1).
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Proof. The second part of the theorem follows from the First Theorem of Graph
Theory, so let us show thatm= n−1. The proof is by induction onn. The cases
n = 1 andn = 2 are trivial. Assume that the statement is true for all trees with less
thenn vertices and consider a treeG with n vertices. By Lemma 5.26 there is a leaf
x in G. According Theorem 5.21 the degree of a cut-vertex is at least two, sox is
not a cut-vertex and henceG−x is connected. Clearly,G−x does not have cycles
(removing vertices and edges cannot introduce cycles), soG−x is a tree with less
thann vertices. By the induction hypothesis,m′ = n′−1, wherem′ = m(G−x) and
n′ = n(G−x). Butm′ = m−1 andn′ = n−1 sincex is a leaf, whencem= n−1. ¤
Theorem 5.28 Let G be a graph withn vertices andm edges. Ifm= n−1 andG
has no cycles thenG is connected (hence a tree).

Proof. Suppose thatm= n−1, G has no cycles, andG is not connected. LetS1,
. . . , Sω be the connected components ofG, ω > 2. Each connected component
is a tree, somi = ni − 1 for all i, wheremi = m(Si) and ni = n(Si). Therefore
∑ω

i=1mi = ∑ω
i=1ni −ω i.e. m= n−ω (sincem= ∑ω

i=1mi andn = ∑ω
i=1ni). Now,

ω > 2 leads to contradiction:m= n−ω < n−1 = m. ¤
Theorem 5.29 Let G be a connected graph withn > 2 vertices andm edges and
let m= n−1. ThenG has no cycles (and hence it is a tree).

Proof. According to Theorem 5.25 the graphG = (V,E) has a spanning tree
H = (V,E′). SinceH is a tree Theorem 5.27 yieldsm(H) = n(H)− 1 = n− 1.
Assumptionm= n−1 now impliesm(H) = mand thus fromE′ ⊆ E we conclude
E′ = E. Therefore,G = H and soG is a tree. ¤
Corollary 5.30 A connected graph withn vertices andmedges is a tree if and only
if m= n−1.

We shall conclude the section by a result on the number of distinct trees. Let us
first note that when counting structures we can count distinct structures and non-
isomorphic structures. For example, there are 16 distinct trees on a four element
set, but only two nonisomorphic, see Fig. 5.14. It is not surprising that counting
nonisomorphic structures is more difficult.

Theorem 5.31 (Cayley 1889)There arenn−2 distinct trees withn vertices.

Proof. Let V = {1, . . . ,n} be a finite set that serves as a set of vertices. The proof
we are going to present is due to H. Prüfer1. The idea is to encode each tree on
V by a sequence of integers(a1, . . . ,an−2) and thus provide a bijectionϕ : Tn →
{1,2, . . . ,n}n−2, whereTn denotes the set of all trees onV.

1H. Prüfer, Neuer Beweis eines Satzes über Permutationen, Archiv der Math. und Phys. (3)
27(1918), 142–144
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Figure 5.14: Sixteen distinct and only two nonisomorphic trees with four vertices
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Figure 5.15: The Prüfer code of a tree
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We first show how to construct the Prüfer code of a tree. LetT be a tree with
the set of verticesV. We shall construct a sequence of trees(Ti) and two sequences
of integers, the code(ai) and an auxiliary sequence(bi). Let T1 = T. GivenTi , let
bi be the smallest leaf of the tree (vertices are integers, so out of all integers that
appear as leaves we choose the smallest) and letai be its only neighbour. Now put
Ti+1 = Ti−bi and repeat until a tree with two vertices is obtained. The code of the
tree is now(a1,a2, . . . ,an−2). An example is given in Fig. 5.15. Thus, we have a
functionϕ : Tn →{1, . . . ,n}n−2 that takes a tree onto its Prüfer code.

Conversely, given a sequence(a1, . . . ,an−2) we can construct the tree as fol-
lows. ForS⊆{1, . . . ,n} let mixS= min({1, . . . ,n}\S) denote the minimal number
not inS(mimimal excluded). Putan−1 = n and then constructb1, b2, . . . ,bn−1 by

bi = mix{ai , . . . ,an−1,b1, . . . ,bi−1}
(for i = 1 there are nob j ’s in the set). For example in case of(4,7,3,4,1,4,4) we
havea8 = 9 and:

b1 = mix{4,7,3,4,1,4,4,9}= 2

b2 = mix{ 7,3,4,1,4,4,9,2}= 5

b3 = mix{ 3,4,1,4,4,9,2,5}= 6

b4 = mix{ 4,1,4,4,9,2,5,6}= 3

b5 = mix{ 1,4,4,9,2,5,6,3}= 7

b6 = mix{ 4,4,9,2,5,6,3,7}= 1

b7 = mix{ 4,9,2,5,6,3,7,1}= 8

b8 = mix{ 9,2,5,6,3,7,1,8}= 4

This process is called thereconstruction proceduresince, as we shall see, it pro-
duces a tree whose Prüfer code is(a1, . . . ,an−2).

Let us show that{{bi ,ai} : 1 6 i 6 n} is the set of edges of a tree. Ifi < j
then, by construction,b j = mix{a j , . . . ,an−1,b1, . . . ,bi , . . . ,b j−1}, sob j 6= bi . We
see that allbi ’s are distinct and smaller thann = an−1. Therefore,{b1, . . . ,bn−1}=
{1, . . . ,n−1} and hence{b1, . . . ,bn−1,an−1} = {1, . . . ,n−1,n}. Moreover, ifi 6
j thena j /∈ {b1, . . . ,b j} sincebi = mix{ai , . . . ,a j , . . . ,an−1,b1, . . . ,bi−1}, so from
{b1, . . . ,bn−1,an−1} = {1, . . . ,n−1,n} it follows thata j ∈ {b j+1, . . . ,bn−1,an−1}.
To summarize,

a j ∈ {b j+1,b j+2, . . . ,bn−1,an−1} and
b j /∈ {a j+1,b j+1,a j+2,b j+2, . . . ,an−1,bn−1}, for all j. (?)

To build the graph we start from{bn−1,an−1} and then add edges{bn−2,an−2},
{bn−3,an−3}, . . . , {b1,a1} one by one. From(?) it follows that at each step we
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extend the graph by one new vertexbi and one new edge{bi ,ai} that connects
the new vertex to an existing one. Therefore, the graph we obtain at the end is
connected, and a connected graph withn vertices andn−1 edges has to be a tree
(Corollary 5.30). Thus, we have a functionψ : {1, . . . ,n}n−2 → Tn that takes a
code and produces a tree.

To complete the proof, we have to show thatϕ and ψ are inverses of one
another, i.e.ϕ ◦ψ = id andψ ◦ϕ = id. We show onlyψ ◦ϕ = id i.e.ψ(ϕ(T)) = T
for all T ∈Tn. For a treeT, a vertexv∈V(T) is aninternal vertexT if δT(v) > 1.
Let int(T) denote the set of all internal vertices ofT.

Take anyT ∈ Tn, let (a1, . . . ,an−2) be its Prüfer code and(b1, . . . ,bn−2) the
auxiliary sequence. At the end of the procedure of constructing the Prüfer code
two vertices remain the the graph, the vertexan−1 = n and its neighbour whom we
denote bybn−1. Starting from(a1, . . . ,an−1) the reconstruction procedure produces
a sequence of integersb′1, . . . , b′n−1. We will show thatbi = b′i for all i. Assume
also thatn > 3.

Sinceb1 is adjacent toa1 in T andn> 3, a1 cannot be a leaf ofT soa1∈ int(T).
The same argument shows thata2 ∈ int(T − b1), a3 ∈ int(T − b1− b2), and in
general,ai+1 ∈ int(T −b1− . . .−bi). Sinceint(T − v) ⊆ int(T) wheneverv is a
leaf ofT andn(T) > 2, it follows thatint(T−b1− . . .−bi) = {ai+1, . . . ,an−2}. In
particular,int(T) = {a1, . . . ,an−2}. Since each vertex of a tree with at least two
vertices is either a leaf or an internal vertex we obtain that

V(T−b1− . . .−bi)\ int(T−b1− . . .−bi)

is the set of leaves ofT −b1− . . .−bi . Now V(T −b1− . . .−bi) = {1, . . . ,n} \
{b1, . . . ,bi} and int(T − b1− . . .− bi) = {ai+1, . . . ,an−2}, so the set of leaves of
T−b1− . . .−bi is(

{1, . . . ,n}\{b1, . . . ,bi}
)
\{ai+1, . . . ,an−2}=

= {1, . . . ,n}\{ai+1, . . . ,an−2,b1, . . . ,bi}.
It is now easy to show thatbi = b′i by induction oni. As we have seen,b1 is a leaf of
T, sob1 ∈ {1, . . . ,n}\{a1, . . . ,an−2}. But b1 is the smallest such integer, whence
b1 = min({1, . . . ,n}\{a1, . . . ,an−2}) = mix{a1, . . . ,an−2}= b′1. Assume thatb j =
b′j for all j ∈ {1, . . . , i} and considerbi+1. It is the smallest leaf inT−b1− . . .−bi

so, with the help of induction hypothesis

bi+1 = min({1, . . . ,n}\{ai+1, . . . ,an−2,b1, . . . ,bi})
= mix{ai+1, . . . ,an−2,b1, . . . ,bi}= mix{ai+1, . . . ,an−2,b

′
1, . . . ,b

′
i}= b′i+1

Therefore,{ai ,bi} = {ai ,b′i} for all i and the tree produced by the reconstruction
procedure isT, the tree we started with. ¤
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5.4 Digraphs

A digraph is an ordered pairD = (V,E) whereV is a nonempty finite set andE
is an arbitrary subset ofV2 such that(x,x) /∈ E for all x ∈ V. Elements ofV are
calledverticesof D, while elements ofE are callededgesof D. We shall often
write V(D) andE(D) to denote the set of vertices and the set of edges ofD, and
n(D) andm(D) to denote the number of vertices and the number of edges ofD.
Instead of(x,y) ∈ E we often writex→ y or x→

D
y. If x→ y we say thatx is a

predecessorof y andy is asuccessorof x. The number of edges that go out ofv iz
called theout-degreeof v and will be denoted byδ+

D (v). The number of edges that
go intov is called theindegreeof v and will be denoted byδ−D (v). Further, let,

ID(v) = {x∈V : x→ v}, OD(v) = {x∈V : v→ x},
denote the set of predecessors and the set of successors ofv. Clearly, δ−D (v) =
|ID(v)| andδ+

D (v) = |OD(v)|. The total degreeof a vertexv is δD(v) = δ−D (v)+
δ+

D (v). If D is clear from the context, we simply writeδ−(v), δ+(v), I(v), O(v)
andδ (v).

A sourceof a digraphD is a vertexv∈V(D) such thatδ−(v) = 0 andδ+(v) >
0. A sinkof a digraphD is a vertexv∈V(D) such thatδ−(v) > 0 andδ+(v) = 0.
A back-edgein a digraphD is an edge(x,y) ∈ E(D) such that(y,x) ∈ E(D). If D
has no back-edges thenI(v)∩O(v) =∅ for everyv∈V(D).

If v is a vertex ande an edge of a digraphD thenD−e denotes the digraph
obtained fromD by removing the edgee, while D−v denotes the digraph obtained
from D by removingv, the edges that go intov and the edges that go out ofv.

Digraphs also have a very natural graphical representation. Vertices are repre-
sented as points in a plane, while an edgex→ y is represented as a directed curve
(usually an arrow) going fromx to y. Fig. 5.16(a) depicts a digraf with 10 vertices.

Theorem 5.32 (The First Theorem for Digraphs) Let D = (V,E) be a digraph
with medges. Then∑v∈V δ−(v) = ∑v∈V δ+(v) = m.

DigraphsD1 = (V1,E1) andD2 = (V2,E2) areisomorphicif there exists a bijec-
tion ϕ : V1→V2 such that(x,y)∈E1 if and only if (ϕ(x),ϕ(y))∈E2. The bijection
ϕ is referred to as asisomorphismand we writeD1

∼= D2.
The notions of the oriented path, oriented cycle and oriented walk in a di-

graph are straightforward generalizations of their “unoriented” versions. Anori-
ented walkis a sequence of vertices and edgesx0 e1 x1 . . .xk−1 ek xk such that
ei = (xi−1,xi). We say thatk is the length of the walk. Anoriented pathis an
oriented walk where all vertices and all edges are distinct. Anoriented cycleis
an oriented walk where all edges and vertices are distinct, with the exception of
x0 = xk.
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Figure 5.16: Two digraphs

Theorem 5.33 Let D be a digraph with at least one edge. IfD has no sinks, then
it has an oriented cycle. Dually, ifD has no sources, it has an oriented cycle.

A digraph isacyclic if it has no oriented cycles. Fig. 5.16(b) is an example of
an acyclic digraph.

Corollary 5.34 Each acyclic digraph with at least one edge has both a source and
a sink.

Theorem 5.35 A digraphD with n vertices is acyclic if and only if it is possible
to arrange its vertices as(v1, . . . ,vn) in such a way thatvi → v j implies i < j.

Proof. (⇐) If such an arrangement of vertices exists then clearlyG has no oriented
cycles.

(⇒) We use induction onn. Casesn = 1 andn = 2 are easy. Assume that such
an arrangement of vertices exists for all acyclic digraphs with less thann vertices
and letD be an acyclic digraph withn vertices. If there is a vertexx such that
δ (v) = 0 put v1 = x. Otherwise,D has at least one edge, so it has a source. Let
v1 be any source ofD. Now, D− v1 is again an acyclic digraph and by induction
hypothesis its vertices can be arranged into a sequence(v2, . . . ,vn) in such a way
thatvi → v j impliesi < j for all i, j > 2. SinceI(v1) =∅ andO(v1)⊆ {v2, . . . ,vn},
it is easy to see that(v1,v2, . . . ,vn) is the required arrangement of vertices ofD. ¤



5.4. DIGRAPHS 95

A digraphD′ = (V ′,E′) is asubdigraphof a digraphD = (V,E) if V ′ ⊆V and
E′ ⊆ E. We writeD′ 6 D. ForS⊆V, thesubdigraph induced byS is the digraph
D[S] = (S,S2∩E).

We say thatS⊆ V(D) dominatesD if D[S] has no edges and the following
holds: for everyx∈V(D)\S there is ans∈ Ssuch that eithers→ x or s→ y→ x
for somey∈V(D).

Theorem 5.36 (Chvátal, Lovász 1974)For every digraphD there is a set of ver-
ticesS⊆V(D) which dominatesD.

Proof. We use induction onn = n(D). For n = 1 or n = 2 the claim is obvious.
Suppose the claim is true for all digraphs with less thann vertices and letD be a
digraph withn> 3 vertices. Take anyx∈V(D) and letA=V(D)\({x}∪O(x)). If
A =∅ thenS= {x} dominatesD. If, however,A 6=∅, by the induction hypothesis
the digraphD[A] has a set of verticesS′ ⊆ A that dominatesD[A]. If there are no
edges inD[S′ ∪{x}] thenS= S′ ∪{x} dominatesD. Otherwise, there is az∈ S′

such thatx→ z or z→ x in D. Fromz /∈ O(x) we conclude thatz→ x in D, so
S= S′ dominatesD. ¤

There are two natural notions of connectedness for digraphs. It seems natural
to be able to go from any vertex to any other vertex respecting the orientation of
the edges, but sometimes we might wish to be able to do the same thing regardless
of the orientation of edges.

A baseof a digraphD = (V,E) is a graphG = (V,E′) whereE′ = {{x,y} :
(x,y) ∈ D}. A base of a digraph is obtained by replacing oriented edges of the
digraph by nonoriented edges, see Fig. 5.17. A digraphD is weakly connectedif

Figure 5.17: A digraph and its base

its base is a connected graph. A digraphD is strongly connectedif for every pair
of verticesx,y∈V, x 6= y, there is an oriented path going fromx to y, see Fig. 5.18.
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strongly
connected

weakly connected
(not strongly connected)

not
connected

Figure 5.18: Two types of connectedness for digraphs

For disjointA,B⊆V(D) let E(A,B) = {(x,y) ∈ E(D) : x∈ A,y∈ B} be the set
of all edges ofD that go from a vertex inA to a vertex inB.

Theorem 5.37 A digraphD is weakly connected if and only ifE(A,B) 6= ∅ or
E(B,A) 6=∅ for every partition{A,B} of V(D).

A digraphD is strongly connected if and only ifE(A,B) 6=∅ and E(B,A) 6=∅
for every partition{A,B} of V(D).

Proof. We shall prove the second part of the theorem.
(⇒) Let D be a strongly connected digraph and let{A,B} be an arbitrary parti-

tion of V(D). Take anya∈ A and anyb∈ B. The digraphD is strongly connected,
so there exists an oriented path froma to b. Sincea∈ A andb∈ B, the path has
to cross fromA into B at some point, so there exists an edge(x,y) along this path
such thatx∈ A andy∈ B. Therefore,E(A,B) 6=∅. Similarly,E(B,A) 6=∅.

(⇐) Take anyx,y∈V(D), x 6= y, and let us show that there is an oriented path
from x to y. Let A = {x}∪{v∈V(D) : there is an oriented path fromx to v}. We
wish to show thaty∈ A. Suppose this is not the case and letB = V(D) \A. Then
y ∈ B and soB 6= ∅. Now, {A,B} is a partition ofV(D) and by the assumption
E(A,B) 6= ∅. This means that there is av∈ A and aw∈ B such thatv→ w. But
v∈ A means that there is an oriented path fromx to v, sov→ w implies that there
is an oriented path fromx to w /∈ A. This contradiction shows thaty∈ A and hence
there is an oriented path fromx to y. ¤

Every connected graphG = (V,E) can be turned into a strongly connected di-
graphD(G) = (V,E′) whereE′ = {(x,y) : {x,y} ∈ E}, that is, by replacing each
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edge{x,y} of G by a pair of edges(x,y), (y,x). Therefore, each connected graph
is a base of some strongly connected digraph, possibly with back-edges. The fol-
lowing theorem shows that this is not the case if we forbid back-edges.

Theorem 5.38 A connected graphG with at least two vertices is a base of a
strongly connected digraph with no back-edges if and only ifG has no cut-edges.

Proof. (⇒) Let G = (V,EG) be a base of a digraphD = (V,ED) and suppose that
G has a cut-edgee= {u,v}. Then by Theorem 5.20 there is a partition{A,B} of
V such thatEG(A,B) = {e}. SinceD has no back-edges then either(u,v) ∈ ED or
(v,u) ∈ ED, but not both. Therefore, eitherED(A,B) =∅ or ED(B,A) =∅. In any
case,D is not strongly connected by Theorem 5.37.

(⇐) Let G = (V,E) be a graph with no cut-edges and letS⊆V be a maximal
set of vertices such thatG[S] is a base of a strongly connected digraphD(S) with
no back-edges. Let us show thatS 6= ∅. Note first thatG contains a cycle (G has
no cut-edges, so by Theorem 5.20 every edge ofG belongs to a cycle; hence there
is at least one cycle inG). Take any cycleC in G, orient its edges to obtain an
oriented cycle and orient the remaining edges inG[V(C)] arbitrarily. We thus ob-
tain a strongly connected digraphD(C) with no back-edges whose base isG[V(C)].
Therefore, there exists a setS′ ⊆V with at least three vertices such thatG[S′] is a
base of a strongly connected digraph with no back-edges, so the maximal such set
cannot be empty.

Let us show thatS= V. Suppose to the
contrary thatS⊂ V, i.e.V \S 6= ∅. SinceG
is connected we haveE(S,V \S) 6=∅, so take
anye= {u,v} such thatu∈ S andv∈V \S.
There are no cut-edges inG so according to
Theorem 5.20 the edgee belongs to a cycle
in G. Let v w1 . . .wk be a part of the cycle that
belongs toV \S and letwk+1 be the vertex
that followswk on the cycle. By assumption,
wk+1 ∈ S. Now orient the edges on the path

S V \S

v

w1

wk

u

wk+1

u v w1 . . .wk wk+1 to obtain an oriented path that goes fromu to wk+1 and attach the
path to the digraphD(S). Orient the remaining edges inG[S∪{v,w1, . . .wk}] arbi-
trarily. The digraphD′ obtained this way is strongly connected, has no back-edges
and its base isG[S∪{v,w1, . . .wk}] whose set of vertices is a proper superset ofS.
This contradiction shows thatS= V, i.e. thatG is a base of a strongly connected
digraph with no back-edges. ¤
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5.5 Tournaments

A tournamentis a digraphT = (V,E) with
the property that for each pairx,y∈V, x 6= y,
either(x,y) ∈ T or (y,x) ∈ T. Equivalently, a
tournament is a digraph with no back-edges
whose base is a complete graph. Tourna-
ments (as digraphs) appear as models of tour-
naments (as sprot events) where no match
ends in a draw; each arrow then represents
one match and goes from the vertex repre-
senting the winner to the vertex representing
the loser.

A tournament withn vertices has

(
n
2

)
edges andδ+(v)+ δ−(v) = n−1 for

each vertexv. Therefore, it has become customary to consider onlyδ+(v). When
working with tournaments,δ+(v) is called thescoreof v and denoted bys(v). A
tournament istransitiveif x→ y andy→ z impliesx→ z wheneverx, y andz are
three distinct vertices of the tournament.

Theorem 5.39 Let T be a tournament withn vertices. Then the following are
equivalent:

(1) T is an acyclic tournament;

(2) T is a transitive tournament;

(3) the scores of vertices inT are0, 1, . . . ,n−1.

Proof. (1) ⇒ (2): SupposeT is not a transitive tournament. Then there exist
distinct verticesx, y and z such thatx→ y and y→ z but x 6→ z. SinceT is a
tournament,x 6→ zmeans thatz→ x and we obtain a cyclex→ y→ z→ x.

(2)⇒ (3): The proof is by induction onn. Casesn = 2 andn = 3 are trivial.
Suppose that in each transitive tournament withk< n vertices the scores of vertices
are0, 1, . . . ,k−1 and letT be a transitive tournament withn vertices. Letv1 be the
vertex ofT with maximal score and let us show thats(v1) = n−1. Suppose that
there is a vertexx such thatx→ v1. Then due to transitivityv1 → z impliesx→ z
and hences(x) > 1+s(v1) > s(v1), which is impossible. Therefore,v1 → x for all
x 6= v1 and hences(v1) = n−1. It is easy to see thatT − v1 is again a transitive
tournament and by the induction hypothesis the scores of its vertices are0, 1, . . . ,
n−2. Therefore, the scores of vertices inT are0, 1, . . . ,n−2, n−1.

(3)⇒ (1): The proof is again by induction onn and the casesn = 2 andn = 3
are trivial. Suppose that each tournament withk < n vertices and with scores0, 1,
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. . . , k−1 is acyclic and letT be a tournament withn vertices and scores0, 1, . . . ,
n−1. Let v be the vertex ofT whose score isn−1 and letC be an oriented cycle
in T. SinceT−v is a tournament with scores0, 1, . . . ,n−2, it is acyclic according
to the induction hypothesis soV(C) 6⊆V(T−v). Therefore,C has to pass through
v. On the other hand,s(v) = n−1 means thatv→ x for everyx 6= v so no cycle in
T can pass throughv. Contradiction. ¤
Corollary 5.40 Two transitive tournaments are isomorphic if and only if they have
the same number of vertices.

Theorem 5.41 Every tournament with at least2k−1 vertices,k > 2, has a transitive
subtournament with at leastk vertices.

Proof. The proof is by induction onk. If k = 2 the
tournament has at least two vertices and hence at least
one edge, so each edgex→ y is a transitive subtourna-
ment with two vertices. Assume the claim is true for
all integers less thank and consider a tournamentT
with at least2k−1 vertices. Take anyv∈V(T). Then
V(T) = I(v)∪{v}∪O(v), so one of the setsI(v), O(v)
has at least2k−2 vertices. Without loss of generality

O(v)

T ′

> k−1
v

we can assume that|O(v)| > 2k−2. Inductioin hypothesis now yields that there is
a transitive subtournamentT ′ of T[O(v)] with at leastk−1 vertices. ThenT ′ to-
gether withv induces a transitive subtournament ofT with at leastk vertices. ¤

A king in a tournamentT is a vertexv∈V(T) such that{v} dominatesT. This
means that for everyx 6= v eitherv→ x or v→ y→ x for somey∈V(T).

Theorem 5.42 Each tournament with at least two vertices has a king.

Proof. Let v be a vertex ofT whose score is maximal and
let us show thatv is a king. Suppose to the contrary thatv
is not a king. Then there is anx 6= v such thatv 6→ x and
noy∈V(T) satisfiesv→ y→ x. SinceT is a tournament,
v 6→ x meansx→ v, while the other condition means that
if v→ y thenx→ y. But thens(x) > 1+s(v) > s(v), which
contradicts the maximality ofs(v). ¤

x

v
y1

y2

Homework

5.1. An automorphsmof a graphG is every isomorhismϕ : V(G) → V(G)
from the graph onto itself. ByAut(G) we denote the set of all the auto-
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morphisms ofG.

(a) Show that(Aut(G),◦) is a group.

(b) DescribeAut(Kn), Aut(Sn) andAut(Pn) for n > 3.

(c) Show thatAut(G) = Aut(G).

5.2. (a) Show that for everyn > 6 there exists a graphG with n vertices such
that|Aut(G)|= 1.

(b) Show that for everyk > 2 and everyn > k+3 there exists a graphG
with n vertices such that|Aut(G)|= k!.

5.3. Prove Lemma 5.12.

5.4. Prove Theorem 5.16.

5.5. If G is not connected show thatd(G) 6 2. (We know thatG is connected).

5.6. Prove Theorem 5.21.

5.7. Prove Theorem 5.22.

5.8. Show that a graph is a tree if and only if each pair of distinct vertices of of
the graph is connected by a unique path.

5.9. Find the number of distinct spanning trees ofKn.

5.10. Complete the proof of Theorem 5.31 by showing thatϕ ◦ψ = id.

5.11. Prove Theorem 5.33.

5.12. In the distant land of Xÿç there aren cities some of which are connected
by roads, but still it is possible to reach each city from every other city by
traveling along the roads (and possibly passing through some other cities).
The Evil Magician who rules the Xÿç would like to terrorize his people by
making each road a one-way road in such a way that after leaving a city it
is impossible to get back. Show that it is possible to do such a thing.

5.13. Prove the first part of Theorem 5.37 (the characterization of weak connect-
edness).

5.14. Prove Corollary 5.40.

5.15. A tournament isregular if s(x) = s(y) for all x andy. Show that in a regular
tournament each vertex is a king.
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Exercises

5.16. Let G be a graph withn vertices andmedges. Show that∆(G) > 2m
n .

5.17. Which of the following integer sequences can be a sequence of degrees of
vertices of a graph?

(a) (1,2,2,4,5,6,7);

(b) (1,1,2,2,2,3,3);

(c) (1,1,3,3,3,3,5,6,8,9).

†5.18. Show that there are

(a) 2
(n

2

)
distinct graphs withn vertices;

(b) 2
(n−1

2

)
distinct graphs withn vertices such that the degree of each vertex

in the graph is even.

5.19. Let G be a graph withδ (G) > 2. ThenG contains a path of length> δ (G)
and a cycle of length> δ (G)+1.

5.20. Let G be a bipartite graph (not necessarily a complete bipartite graph!)
with n vertices andmedges. Show thatm6 1

4n2.

5.21. Show that a graphG is bipartite if and only if every subgraphH of G
satisfiesα(H) > 1

2n(H).

5.22. A k-dimensional hypercubeis a graphQk = (Vk,Ek) whereVk is the set of
all 01-words of lengthk anda1 . . .ak, b1 . . .bk ∈Vk are adjacent if and only
if the two words differ at exactly one place. For example, ifk = 4 then
0101 and 0001 are adjacent inQ4 while 0101 and 0000 are not.

(a) Find the number of vertices and the number of edges ofQk.

(b) Show thatQk is bipartite.

(c) Findd(Qk).

5.23. Show that for every evenn > 6 there exists a connected regular graph of
degree 3 withn vertices and with no trianlges.

5.24. Show that ifδ (G) > 1
2n(G) thenG is connected andd(G) 6 2.

5.25. Show that for every graphG there exists a regular graphH such thatG is
an induced subgraph ofH and∆(G) = ∆(H).

5.26. Show thatδ (G) = (n(G)−1)−∆(G) and∆(G) = (n(G)−1)−δ (G).

5.27. Show the following:
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(a) If G is connected andd(G) > 3 thenG is connected andd(G) 6 3.

(b) Every selfcomplementary graphG with at least two vertices is con-
nected and2 6 d(G) 6 3.

5.28. Suppose that the degree of every vertex in a connected graphG is even.
Show thatω(G−v) 6 1

2δ (v) for all v∈V(G).

5.29. Let G = (V,E) be a connected graph withn vertices and letu be an arbi-

trary vertex ofG. Show that∑
x∈V

d(u,x) 6
(

n
2

)
.

5.30. Let G be a connected graph with at least two vertices. Show thatG has at
least two vertices that are not cut-vertices.

5.31. Show that ifv is a cut-vertex ofG, thenv is not a cut-vertex ofG.

5.32. Show that each treeG has at least∆(G) leafs.

5.33. Let T be a tree,∆ = ∆(T) and fk the number of vertices inT of degreek.

Show thatf1 = 2+
∆

∑
k=3

(k−2) fk.

5.34. Find all treesG such thatG is a tree.

5.35. For everyn > 4 find a graphG with n vertices such that for eachk ∈
{2, . . . ,n−2} there is a spanning tree ofG whose diameter isk.

5.36. Note first that each tree is a bipartite graph since no cycles means no odd
cycles. Let{X,Y} be a partition of the vertices of a treeT which demon-
strates thatT is a bipartite graph and assume that|X| = |Y|+ p for some
p > 0. Show thatX contains at leastp+1 leaves ofT.

5.37. A forestis a graph whose connected components are trees. Show thatG is
a forest if and only ifδ (H) 6 1 for all induced subgraphsH of G.

†5.38. How many nonisomorphic spanning trees doesK2,n have?

†5.39. Show that each spanning tree of a connected graph contains all cut-edges
of the graph.

†5.40. A block of a connected graphG is a maximal set of verticesS⊆V(G) such
thatG[S] has no cut-vertices (that is, ifS′ ⊇ SandG[S′] has no cut-vertices
thenS′ = S).

(a) Show that any two blocks of a graph have at most one vertex in com-
mon.

(b) Let B1, . . . , Bk be blocks ofG and letBG be the graph with vertices
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{1, . . . ,k} wherei is adjacent toj if and only if i 6= j andBi andB j have a
nonempty intersection. Show thatBG is a tree.

†5.41. Let D = (V,E) be a weakly connected digraph. A strongly connected com-
ponent ofD is a maximal set of verticesS⊆V such thatD[S] is strongly
connected (that is, ifS′ ⊇ SandD[S′] is strongly connected thenS′ = S).

(a) Show thatS∩S′ =∅wheneverSandS′ are distinct strongly connected
components ofD.

(b) Let S andS′ be distinct strongly connected components ofD. Show
that if E(S,S′) 6=∅ thenE(S′,S) =∅.

(c) Let S1, . . . , Sk be strongly connected components ofD and letSD

be the graph with vertices{1, . . . ,k} wherei → j if and only if i 6= j and
E(Si ,Sj) 6=∅. Show thatSD has no back-edges and its base is a tree.

5.42. Show that∑
v∈V

(δ+(v))2 = ∑
v∈V

(δ−(v))2 in every tournamentT = (V,E).

5.43. A tournament isregular if s(x) = s(y) for all x andy. Show that for each
odd integern > 3 there exists a regular tournament withn vertices.

5.44. Scoress1 6 s2 6 . . . 6 sn of a tournamentT satisfy
k

∑
i=1

si =
(

k
2

)
for every

k∈ {1, . . . ,n}. Show thatT is an acyclic tournament.
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Chapter 6

Eulerian and Hamiltonian graphs

In this chapter we deal with two important classes of graphs:

• Eulerian graphs, which are graphs with the closed walk in which each edge
occurs precisely once; and

• Hamiltonian graphs, which are graphs with the cycle in which every vertex
occurs precisely once.

We present an easy characterisation of Eulerian graphs and discuss several neces-
sary and sufficient conditions for a graph to be Hamiltonian. The fact that there is
no “easy” and “useful” characterisation of Hamiltonian graphs is justified by the
discussion at the end of the chapter where we argue that checking for a Hamiltonian
cycle in a graph is an NP-complete problem.

6.1 Eulerian graphs

The famous Swiss mathematician Leonhard Euler was visiting the city of Königs-
berg in the year 1735. Königsberg was a city in Prussia situated on the Pregel
River, which served as the residence of the dukes of Prussia in the 16th century.
(Today, the city is named Kaliningrad, and is a major industrial and commercial
center of western Russia.) The river Pregel flowed through the city such that in its
center was an island, and after passing the island, the river broke into two parts.
Seven bridges were built so that the people of the city could get from one part to
another. A map of the center of Königsberg in 1735 looked like this:

105
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A favorite pastime for visitors to the city was to try to cross each of the bridges
of Königsberg exactly once. Euler was told by some people that it was impossible
and by others that they doubted whether or not it could be done. No one believed
it was possible. Eventually, Euler realized that all problems of this form could
be represented by replacing areas of land by vertices, and the bridges to and from
them by edges of a graph such as:
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The problem now becomes to draw this picture without tracing any line twice
and without picking the pencil up off the paper. All four of the vertices in the
above picture have an odd degree. Take one of these vertices, say one of the ones
of degree three. We could start at that vertex, and then arrive and leave later. But
then we can’t come back. So, every vertex with an odd degree has to be either
the beginning or the end of the pencil-path and thus we can have at most two odd
vertices. Therefore it is impossible to draw the above picture in one pencil stroke
without tracing some line twice.

This is the first recorded problem in graph theory, and W. Tutte, himself a
prominent graph-theorist, decided to celebrate the problem with a poem:

From Königsberg to König’s book
by William T. Tutte

Some citizens of Koenigsberg
Were walking on the strand
Beside the river Pregel
With its seven bridges spanned.

O, Euler, come and walk with us
Those burghers did beseech
We’ll walk the seven bridges o’er
And pass but once by each.

“It can’t be done” then Euler cried
“Here comes the Q.E.D.
Your islands are but vertices,
And all of odd degree.”

We shall now go for a more formal treatment of this and similar problems. We
shall first solve the general problem in case of oriented graphs, and then infer the
solution in case of undirected graphs.

Definition 6.1 A trail in a graph is a walk in which edges are not allowed to repeat.
An Eulerian trail in a graph is a trail that contains each edge of the graph precisely
once. A graph is said to beEulerian if it contains a closed Eulerian trail, Fig. 6.1.

Definition 6.2 Analogously, anoriented trail in a digraph is an oriented walk in
which edges are not allowed to repeat. AnEulerian trail in a digraph is an oriented
trail in the digraph that contains each edge of the digraph precisely once. A digraph
is said to beEulerian if it contains a closed Eulerian trail.
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(a) (b) (c)

Figure 6.1:(a) A graph with no Eulerian trail;(b) a non-eulerian graph with an
Eulerian trail;(c) an Eulerian graph

Lemma 6.3 Let D be a digraph with no isolated vertices and with the property that
δ−(v) = δ+(v) for everyv ∈ V(D). Then every vertex ofD belongs to a closed
oriented trail inD.

Proof. Let W = v e1 x1 . . .ek xk be the longest trail inD that
starts withv and let us show thatxk = v. Suppose to the con-
trary thatxk 6= v and assume thatxk appearsl > 1 times on
the trailW. Each appearance ofxk on W engages one edge
that leads intoxk and one edge that leads out ofxk, except for
the last appearance ofxk that engages one edge leading into
xk. Therefore,W containsl edges leading intoxk and l −1
edges leading out ofxk. Sinceδ−(xk) = δ+(xk), there exists
an edgee′ = (xk,u) ∈ E(D) that does not appear inW. Now,

v

u

xk

v e1 x1 . . .ek xk e′ u is a trail that starts fromv longer thatW. Contradiction. ¤

Theorem 6.4 Let D be a digraph with no isolated vertices. ThenD is an Eulerian
digraph if and only ifD is weakly connected andδ−(v) = δ+(v) for everyv ∈
V(D).

Proof. (⇒) Let D be an Eulerian digraph with no isolated vertices and consider
a closed Eulerian trailW in D. Walking alongW we can start from any vertex
in D and reach any other vertex inD which shows thatD is strongly, and hence
also weakly connected. The trailW can be partitioned into oriented cyclesC1,
. . . , Ck in such a way that every edge inD belongs to exactly one of the cycles
(Homework 6.1). Each vertex ofD appears onW, so each vertex belongs to at
least one of the cycles. Now, ifv ∈ V(D) lies on exactlyl of these cycles, then
δ−(v) = l = δ+(v) since every edge inW belongs to precisely one of the cycles
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C1, . . . ,Ck, and each of the cycles “absorbs” one edge that goes intov and one edge
that goes out ofv.

(⇐) Take anyv∈V(D). According to Lemma 6.3,v belongs to some closed
oriented trail inD. Let W be the longest closed oriented trail inD that containsv
and let us show thatW is an Eulerian trail inD.

Suppose thatW is not an Eulerian trail inD, i.e. E(W) ⊂ E(D). If V(W) =
V(D), take anye= (u,v) ∈ E(D) \E(W). If V(W) ⊂ V(D) then{V(W),V(D) \
V(W)} is a partition ofV(D) and sinceD is weakly connected there is an edge
e= (u,v) ∈ E(D) \E(W) such thatu∈V(W) andv∈V(D) \V(W) (or the other
way around; the proof is analogous). In any case, letS be the weak connected
component ofD−E(W) that containse. SinceW is a closed trail, it is easy to see
thatδ−S (v) = δ+

S (v) for everyv∈V(S). Hence, by Lemma 6.3 there exists a closed
trail W′ in S that containsu. SinceE(W′) ⊆ E(S) ⊆ E(D) \E(W), it follows that
E(W′)∩E(W) = ∅, so glueingW andW′ at u provides a trail that containsv and
which is longer thanW. Contradiction. ¤

The characterisation of Eulerian graphs is similar, and the proof goes along the
same guidelines as in case of digraphs.

Theorem 6.5 Let G be a graph with no isolated vertices. ThenG is an Eulerian
graph if and only ifG is connected and each vertex ofG is even.

Proof. Analogous to the proof of Theorem 6.4. ¤

It is now easy to characterize noneulerian graphs that contain an Eulerian trail
(which therefore cannot be a closed Eulerian trail).

Theorem 6.6 Let G be a noneulerian graph with no isolated vertices. ThenG has
an Eulerian trail if and only if it is connected and has precisely two odd vertices.

Proof. (⇒) Let W be an Eulerian trail inG. SinceG is not Eulerian,W is not
closed. Denote the vertices it starts and ends with byu andv. Introduce a new
vertexx /∈V(G) and two new edges{x,u}, {x,v}, and apply Theorem 6.5.

(⇐) Let u andv be the odd vertices inG. Introduce a new vertexx /∈V(G) and
two new edges{x,u}, {x,v}, and apply Theorem 6.5. ¤

Finally, we conclude the section with another characterization of Eulerian graphs.

Theorem 6.7 Let G be a connected graph. ThenG is Eulerian if and only if every
edge ofG belongs to an odd number of cycles inG.
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Proof. We start by proving an auxiliary statement.

Claim. LetG be a connected noneulerian graph with an Eulerian trail and letu
andv be the only two odd vertices inG. Then the number of trails that start atu,
end inv and wherev appears only once (i.e. at the end of the trail) is odd.

Proof. The proof is by induction onm(G). The claim is true for connected
noneulerian graphs with an Eulerian trail that have 1, 2 and 3 edges. Suppose the
claim holds for all such graphs with< m edges, and letG be such a graph withm
edges. Furthermore, letu andv be the two odd vertices inG, let k = δ (u) and let
x1, . . . , xk be the neighbours ofu. For j ∈ {1, . . . ,k} let ej = {u,x j} and letTj be
the set of all the trailsu ej x j . . . v with the property thatv appears only at the end
of the trail. ThenT1∪ . . .∪Tk is the set of all the trails we are considering and we
have to show that|T1|+ . . .+ |Tk| is odd. Sincek is odd, it suffices to show that
every|Tj | is odd.

Take anyj ∈ {1, . . . ,k} and letG j = G−ej . The degree ofu in G j is even, sox j

andv are the only odd vertices inG j . This is why they have to belong to the same
connected component ofG j . The number of edges in this connected component is
strictly less thanm, so by the induction hypothesis the number of trails that start at
x j , end inv and containv only once is odd. It is easily seen that the number of such
trails equals|Tj |, and hence|Tj | is also odd. This completes the proof of the claim.

Let us now go back to the proof of the theorem.

(⇐) Let G be a connected graph that is not Eulerian. ThenG has an odd
vertexv. For an edgee incident tov let c(e) denote the number of cycles inG that
containe. Since each such cycle contains two edges that are adjacent tov, the sum
∑v∈ec(e) is even (= twice the number of cycles that pass throughv). But δ (v) is
odd, so this sum consists of an odd number of summands. Therefore, one of the
summands has to be even, and thus there exists an edgee adjacent tov such that
c(e) is even.

(⇒) Let G be an Eulerian graph and lete= {u,v} ∈ E(G) be arbitrary. Ac-
cording to Exercise 6.13,e is not a cut-edge, soG−e is connected. Hence,G−e
is not Eulerian, but has an Eularian trail. Let this trail start atu and end inv. The
Claim now yields that there is an odd number of trails that start atu, end inv and
containv only once. IfS is one such trail which is not a path, thenScontains some
vertex more than once (for otherwiseSwould be a path). Letwi be the first vertex
in S that appears more than once inSand letwiei+1wi+1 . . .ejw j = wi be the short-
est cycle inS that containswi . “Mirroring” the cycle withinSproduces a new trail
S′ having the same properties asS:

S: ue1w1 . . . wi ei+1wi+1 . . . ej w j . . .ws−1esv
‖ ‖

S′ : ue1w1 . . .w j ej . . . wi+1ei+1 wi . . .ws−1esv
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Therefore, trails that start atu, end inv, containv only once and are not paths
appear in pairs. Hence, the number of such trails which are not paths is even.
But, we know that there is an odd number of trails with these properties, whence
follows that the number of paths connectingu andv in G−e is odd. Each of the
paths together withebuilds a cycle inG that containse. Therefore,ebelongs to an
odd number of cycles. ¤

6.2 Hamiltonian graphs

Sir William Rowan Hamilton, who was Astronomer Royal of Ireland, invented in
1857 a puzzle calledThe Travellers Dodecahedron or A Voyage Around the World.
It is not a true dodecahedron but is a “schematic” of a dodecahedron on a wooden
“mushroom”.

The 30 edges represent the only roads that one is allowed to pass along as one
visits the 20 vertices that represent cities. Two travellers were supposed to set off
visiting the cities: the first was supposed to pose a problem and start the tour by
visiting four cities that belong to the same face of the dodecahedron. The player
posing the problem then returns home and the other continues to travel around the
world trying to visit all the remaining cities only once, and eventaully return home.
The silk cord that accompanied the puzzle was used to mark the voyage and thus
prevent the voyager from visiting a city more than once.
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Until recently, only information we had onThe Travellers Dodecahedronwas
its description in a chapter on Hamilton’s Game in volume 2 of Édouard Lucas’
Récréations Mathématiquesand another mention in the 3rd edition of Ahrens’
German work on Recreational Mathematics. But then an example was recovered,
complete and in almost new condition.

In graph-theoretic terms the puzzle boils down to finding a spanning cycle of
the incidence graph of a dodecahedron. The graph shown in Fig. 6.2 is a plane
projection of a dodecahedron and we outlined a spanning cycle in this graph.

Definition 6.8 A Hamiltonian pathin a graph is a path that contains all vertices of
the graph. AHamiltonian cyclein a graph is a cycle that contains all vertices of
the graph. A graph is calledHamiltonianif it has a Hamiltonian cycle.

In comparison with Eulerian graphs, Hamiltonian graphs are much more hard
to grasp. There is no “useful” characterisation of Hamiltonian graphs and we shall
see in the next section that there is a justification for this: deciding whether a graph
is Hamiltonian is one of the most complicated computational problems. We will
actually show that this decision problem is NP-complete (for the moment, think of
this as “extremely hard”).
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Figure 6.2: A solution to The Travellers Dodecahedron is a spaning cycle of the
incidence graph of the dodecahedron

Theorem 6.9 Let G be a Hamiltonian graph and∅ 6= S⊂V(G) a nonempty set of
vertices ofG. Thenω(G−S) 6 |S|.
Proof. Let C be a Hamiltonian cycle ofG. Thenω(C−S) > ω(G−S) since
G−Shas more edges thanC−S, and they might connect some of the connected
components ofC−S together. On the other hand, it is easy to see thatω(C−S) 6
|S|. Therefore,ω(G−S) 6 |S|. ¤

Theorem 6.9 is useful when it comes to showing that a graph isnot Hamilto-
nian.

Corollary 6.10 Hamiltonian graphs have no cut-vertices and no cut-edges.

Proof. If v is a cut-vertex of a graphG thenω(G− v) > 2 > |{v}|. Theorem 6.9
now implies thatG is not Hamiltonian. We leave the cut-edges as Homework 6.5.
¤

We have already mentioned that there is no “useful” characterisation of Hamil-
tonian graphs. However, it is generally accepted that the best characterization of
Hamiltonian graphs was given in 1972 by Bondy and Chvátal who generalized ear-
lier results by G. A. Dirac and O. Ore. The idea behind their result is that a graph
is Hamiltonian if enough edges exist.

If u,v are nonadjacent vertices inG ande= {u,v}, then byG+ e we denote
the graph obtained by adding the edgee to G.
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The closure of a graphG is a graph on the same set of vertices constructed as
follows. Define a sequence of graphsG0, G1, . . . , byG0 = G and

Gi+1 =





Gi +e, wheree /∈ E(Gi) joins two nonadjacent vertices

u,v∈V(Gi) such thatδGi (u)+δGi (v) > n(Gi),

Gi , if no such pair of vertices exists.

Since we leave the set of vertices fixed and add new edges whenever possible, there
exists ak such thatGk = Gk+ j for all j > 1. Then the graphGk is called theclosure
of G and denoted bycl(G).

Theorem 6.11 (Bondy, Chvátal 1972)A graphG is Hamiltonian if and only if
cl(G) is Hamiltonian.

Proof. If G is Hamiltonian, then so iscl(G) sinceE(G) ⊆ E(cl(G)). For the
converse, suppose thatG is not Hamiltonian but thatcl(G) is Hamiltonian. Then
there exists a graphGi in the sequenceG = G0, G1, . . . ,Gk = cl(G) definingcl(G)
such thatGi is not Hamiltonian andGi+1 is Hamiltonian. LetGi+1 = Gi +ewhere
e= {u,v}. Then by the construction,u andv are not adjacent andδGi (u)+δGi (v) >
n.

SinceGi + e is Hamiltonian andGi is not, it follows that each Hamiltonian
cycle in Gi + e passes throughe. Take any Hamiltonian cycleC in Gi + e. Then
e∈ E(C) and henceC−e is a Hamiltonian pathu = x1 x2 . . . xn−1 xn = v in Gi .
Now it is easy to see that ifu is adjacent tox j for somej > 1 thenv is not adjacent
to x j−1 for otherwise we would have a Hamiltonian cycle inGi :

u =x1 x2 x j−1 x j xn−1 xn= v

Therefore, ifδGi (u) = k thenδGi (v) 6 n−(1+k) sincev is not adjacent to itself,
nor is it adjacent to predecessors of thek neighbours ofu. HenceδGi (u)+δGi (v) 6
n−1. Contradiction. ¤
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Corollary 6.12 Let G be a graph withn vertices.

(a) If δ (u)+ δ (v) > n wheneveru andv are distinct, nonadjacent vertices ofG
thenG is Hamiltonian. (O. Ore 1960)

(b) If δ (u) > n
2

for all u∈V(G) thenG is Hamiltonian. (G. A. Dirac 1952)

All these statements have their analogues for digraphs. We shall, however, treat
only tournaments to show how very special digraphs they are.

Definition 6.13 A Hamiltonian pathin a digraph is an oriented path that contains
all vertices of the digraph. AHamiltonian cyclein a digraph is an oriented cycle
that contains all vertices of the digraph. A digraph is calledHamiltonianif it has a
Hamiltonian cycle.

Theorem 6.14 (Rédei)Every tournament has a Hamiltonian path.

Proof. The proof is by induction on the number of vertices in the tournament. The
statement is easily seen to be true in case of tournaments with 2 and 3 vertices.
Assume now that every tournament with less thann vertices has a Hamiltonian
path, and letT be a tournament onnvertices,V(T) = {x1, . . . ,xn}. By the induction
hypothesisT ′ = T−x1 has a Hamiltonian pathxi2 xi3 . . . xin. If x1→ xi2 or xin → x1,
the Hamiltonian path ofT ′ easily extends to a Hamiltonian path ofT. If, however,
x1 6→ xi2 andxin 6→ x1 thenxi2 → x1 andx1 → xin. It is easy to see that there exists
anssuch thatxis → x1 → xis+1:

xi2 xis xis+1 xin

x1

soxi2 . . . xis x1 xis+1 . . . xin is a Hamiltonian path forT. ¤

Theorem 6.15 A tournament is Hamiltonian if and only if it is strongly connected.

Proof. (⇒) If a tournament is Hamiltonian, then walking along the Hamiltonian
cycle we can get from every vertex of the tournament to every other vertex. Hence,
the tournament is strongly connected.

(⇐) Let T be a strongly connected tournament. ThenT is not transitive and
hence contains an oriented cycle. LetC = x0→ x1→ . . .→ xk → x0 be the longest
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oriented cycle inT and let us show thatV(C) =V(T). Suppose to the contrary that
V(C) ⊂V(T). Then{V(C),B} is a partition ofV(T), whereB = V(T)\V(C). If
there exists ay∈ B such thatE(V(C),{y}) 6=∅ andE({y},V(C)) 6=∅ then there
exists an indexi such thatxi → y→ xi+1:

xi xi+1

y

x0 xk

andx0 → . . .→ xi → y→ xi+1 → . . .→ xk → x0 is an oriented cycle inT which is
longer thanC. Contradiction.

Therefore, for eachy∈ B eitherE(V(C),{y}) = ∅ or E({y},V(C)) = ∅. Let
Y = {y∈ B : E(V(C),{y}) =∅} andZ = {z∈ B : E({z},V(C)) =∅}. SinceT is
strongly connected it follows thatY 6=∅, Z 6=∅ andE(Z,Y) 6= 0. Takez∈ Z and
y∈Y such thatz→ y. FromE(V(C),{y}) =∅ it follows thaty→ xi for all i.

x0 xkx1

z

y

Similarly, xi → z for all i, sox0→ z→ y→ x1→ . . .→ xk→ x0 is an oriented cycle
in T and it is longer thanC. Contradiction. Therefore,V(C) = V(T), soT is a
Hamiltonian tournament. ¤

A careful analysis of the previous proof reveals that we can actually prove
much more.

Theorem 6.16 (Camion 1959)Let T be a Hamiltonian tournament withn ver-
tices. For every vertexv∈V(T) and everyk ∈ {3, . . . ,n} there exists an oriented
cycle of lengthk that containsv.
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6.3 Complexity issues

In this section we consider the computational complexity of deciding whether a
graph has a Hamiltonian cycle. We show that this decision problem not only falls
into theNP complexity class, but that it is anNP-complete problem, i.e. a paradigm
of anNP-hard problem.

The notion of an algorithm (= ”effective procedure”) was recognised as one of
the essential notions in mathematics as early as 1928 when D. Hilbert and W. Ack-
ermann published their influential booklet “Grundzüge der theoretischen Logik” in
which they posed a problem of finding an algorithm (whatever that might mean)
which decides whether a first-order sentence is a consequence of the axioms of
arithmetic. At that time there was no formal notion of an algorithm, so the problem
was actually twofold: on the “philosophical” level it was required to introduce the
precise definition of an algorithm, while on the mathematical level the definition
should have been used in solving the particular problem of mathematical logic.
The problem (both on the philosophical and the mathematical level) was indepen-
dently solved in 1936 by A. Church and A. Turing. Although Church’s solution
was published a few months ahead of Turing’s, the approach taken by A. Turing
is more intuitive, and constitues a basis of what is today known as Computability
Theory.

We shall not present a formal definition of a Turing machine. For our purposes
it suffices to say that aTuring machineis a mathematical model of a computer
program written for a modern computer with infinite memory. Since computers
actually operate on finite 01-words we shall takeΣ = {0,1} as the alphabet in
which to carry out our considerations. LetΣ∗ denote the set of all finite 01-words,
together with the empty wordε. By |w|we denote the length ofw∈Σ∗. A language
is any setL ⊆ Σ∗ of 01-words. In particular, for every graphG there is a 01-word
〈G〉 representing the graph, so we also have the languageG = {〈G〉 : G is a graph}.

A computer programA can take any 01-wordw as its input, but may fail to
produce an output. Hence, each computer programA corresponds to a function
Â : Σ∗→ Σ∗∪{∞} such that

Â(w) =





u, A takesw as its input and after a finite number of computation
steps stops and printsu as a result;

∞, A never stops on inputw.

For a computer programA and a wordw∈ Σ∗ let

tA(w) =

{
n, A takesw as its input and stops aftern computation steps;

∞, A never stops on inputw.



118 CHAPTER 6. EULERIAN AND HAMILTONIAN GRAPHS

A computer programA runs in polynomial timeif there exists a positive integerk
such thattA(w) = O(|w|k) whenever̂A(w) 6= ∞.

The complexity classP. A languageL ⊆ Σ∗ is decidableif there exists a com-
puter programA such that̂A : Σ∗→{0,1} and

L = {w∈ Σ∗ : Â(w) = 1}.

(Note that the computer program which decides a language stops on all inputs
and outputs0 or 1.) The languageL ⊆ Σ∗ is decidable in polynomial timeif there
exists a computer programAwich runs in polynomial time such that̂A : Σ∗→{0,1}
andL = {w∈ Σ∗ : Â(w) = 1}.

Definition 6.17 The complexity classP consists of all languages overΣ = {0,1}
that are decidable in polynomial time:

P = {L ⊆ Σ∗ : L is decidable in polynomial time}.

Equivalently, the complexity classP consists of all problems that can be solved
in polynomial time. Indeed, given an problemQ it suffices to encode each instance
I of the problem by a 01-word〈I〉 and consider the languageLQ = {〈I〉 : I is an
instance ofQ}. Then each instanceI of the problem can be solved in polynomial
time (where the degree of the polynomial does not depend on the instance) if and
only if LQ is decidable in polynomial time. For example, the problem of deciding
in polynomial time whether a graph is connected corresponds to polynomial de-
cidability of the languageLconn= {〈G〉 : G is a connected graph}. For some other
problems the transformationproblem → languagemay not be so obvious.

The complexity classNP. Instead of requiring a computer program to solve a
problem, we might only wish to pull a solution out of a sleeve and verify that then
solution is indeed a solution to a problem. Averification algorithmis a computer
programA with two inputs such that̂A : Σ∗×Σ∗→ {0,1}. If there exists a posi-
tive integerk such thattA(p,s) = O((|p|+ |s|)k) for all p,s∈ Σ∗ we say thatA is
a polynomial verification algorithm. A languageL is verified by a verification
algorithmA if

L = {p∈ Σ∗ : ∃s∈ Σ∗ (Â(p,s) = 1)}.
A languageL ⊆Σ∗ is verifiable in polynomial timeif there exists a positive integer
c and a polynomial verification algorithmA such that

L = {p∈ Σ∗ : ∃s∈ Σ∗ (|s|6 |p|c andÂ(p,s) = 1)}.
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Definition 6.18 The complexity classNP consists of all languages overΣ = {0,1}
that are verifiable in polynomial time:

NP = {L ⊆ Σ∗ : L is verifiable in polynomial time}.

Equivalently, the complexity classNP consists of problems for which it is easy
to check whether what we claim to be a solution is indeed a solution. For example,
LHam = {〈G〉 : G is a Hamiltonian graph} is in NP since given a graphG and a
sequence of verticesx1, . . . ,xn it is easy to check whetherx1, . . . ,xn is a Hamiltonian
cycle ofG.

Theorem 6.19 P⊆ NP.

Proof. Take anyL ∈ P. ThenL = {w ∈ Σ∗ : Â(w) = 1} for some computer
programA that decidesL in polynomial time. Now take a verification algorithm
B : Σ∗×Σ∗→ {0,1} so thatB̂(p,s) = Â(p). ThenB clearly verifiesL in polyno-
mial time, soL ∈ NP. ¤

The exact relationship betweenP andNP is still unknown. It is strongly be-
lieved thatP 6= NP, but we still haven’t got a proof. The problem is actually so
important that the Clay Mathematics Institute is offering a USD 1,000,000 prize for
the correct solution.1 Apart from the prize, the importance of the problem is also
reflected by the fact that the security of RSA, the most widely used crypto-system,
depends onP 6= NP. If it turns out thatP = NP the security of all transactions
based on RSA, PGP and the such will be broken and many aspects of our everyday
life would have to change.

Polynomial reducibility and NP-completeness. We say that a languageL1 ⊆
Σ∗ is polynomially reducibleto a languageL2⊆ Σ∗ and write and writeL1 4p L2

if there exists a computer programA which runs in polynomial time such that
Â : Σ∗→ Σ∗ and

w∈L1 if and only if Â(w) ∈L2.

Intuitively, regarding polynomial-time as “easy”, this means: if there is a polyno-
mial reduction fromL1 to L2, thenL1 cannot be harder thanL2.

Theorem 6.20 If L ∈ P andL ′ 4p L thenL ′ ∈ P.

1http://www.claymath.org/millennium/P_vs_NP/
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Proof. If A is a computer program that decidesL in polynomial time, and ifB
is a computer program that reducesL ′ to L in polynomial time, thenB◦A is a
computer program that decidesL ′ in polynomial time, soL ′ ∈ P. ¤

Definition 6.21 A languageL ⊆ Σ∗ is NP-hard if L ′ 4p L for everyL ′ ∈ NP.
A languageL ⊆ Σ∗ is NP-completeif it is NP-hard and belongs toNP.

An NP-complete problem is a paradigm of anNP-problem. Moreover, if one
of them happens to be inP thenP = NP:

Theorem 6.22 Let L be anNP-complete language. IfL ∈ P thenP = NP.

Proof. Suppose thatL is anNP-complete language such thatL ∈ P. Take any
L ′ ∈ NP. SinceL is NP-hard, it follows thatL ′ 4p L and thusL ′ ∈ P by
Theorem 6.20. This shows thatNP⊆ P. ¤

The first hands-onNP-complete problem was discovered in 1971 by S. Cook.
A Boolean formulais a formula built up from Boolean variablesx1,. . . ,xn (each of
which can take the valuestrue or false) and Boolean connectives¬, ∧ and∨. A
Boolean formulaF(x1, . . . ,xn) is said to be in aconjunctive form(CF for short) if
it has the form

F(x1, . . . ,xn) = C1(x1, . . . ,xn)∧C2(x1, . . . ,xn)∧ . . .∧Ck(x1, . . . ,xn)

where each clauseCi(x1, . . . ,xn) is a disjuction of literals

Ci(x1, . . . ,xn) = (l i1∨ l i2∨ . . .∨ l imi )

and each literall i j is a variablexi j or a negated variable¬xi j . It is a well known
fact from Boolean logic that every Boolean formula is equivalent to a CF Boolean
formula.

A Boolean formulaF(x1, . . . ,xn) is satisfiableif there exists an assignment
τ : {x1, . . . ,xn} → {true, false} of truth values to variables such thatτ(F) = true,
that is,F evaluates totrue under the assignmentτ. Let us fix a systematic way
of encoding CF Boolean formulas by 01-words and let〈F〉 denote an encoding
of F . Let us denote the language that corresponds to satisfiable Boolean formulas
by SAT:

SAT= {〈F〉 : F is a satisfiable CF Boolean formula}.

Theorem 6.23 (Cook 1971)SATis NP-complete.
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Now that we have an expliciteNP-complete problem, it gives us a strategy to
show that other problems are alsoNP-complete: if anNP-complete problem is
polynomially reducible to some other problem, this new problem also has to be
NP-complete.

Theorem 6.24 If L is anNP-complete language and ifL ′ ∈NP has the property
thatL 4p L ′ thenL ′ is alsoNP-complete.

Proof. This is an immediate consequence of the fact that4p is transitive. ¤

Therefore, in order to show that finding a Hamiltonian cycle in a graph is an
NP-complete problem, it suffices to show thatSATis polynomially reducible to it.
In this particular case, working with digraphs turns out to be easier than working
with graphs, so we introduce the two languages:

• HAMG= {〈G〉 : G is a Hamiltonian graph}, which is a 01-language that en-
codes Hamiltonian graphs, and

• HAMD = {〈D〉 : D is a Hamiltonian digraph}, which is a 01-language that
encodes Hamiltonian digraphs,

and carry out the proof in two steps:

• we first show thatHAMG4p HAMD andHAMD 4p HAMG; and then

• we show thatSAT4p HAMD.

Lemma 6.25 HAMG4p HAMD andHAMD 4p HAMG.

Proof. For every graphG = (V,E) let DG = (V,E′) denote the digraph with the
same set of vertices whose set of edges is

E′ = {(u,v) ∈V2 : {u,v} ∈ E}.

Clearly, there exists a polynomial algorithm that converts〈G〉 to 〈DG〉 and it is easy
to see thatG is a Hamiltonian graph if and only ifDG is a Hamiltonian digraph
(Homework 6.11). Therefore,HAMG4p HAMD.

Now, letD = (V,E) be a digraph and letGD = (V ′,E′) be a graph constructed
from G as follows. For eachv ∈ V we add three verticesv0,v1,v2 to V ′ and two
edges{v0,v1} and {v1,v2} to E′ replacing thus each vertex ofD by a path of
length 2 inGD. Moreover, for each edge(u,v) in E we add an edge{u2,v0} to
E′. An illustration of this proces is given in Fig. 6.3. Clearly,|V ′| = 3|V| and
|E′| = |E|+2|V|, so the reduction is polynomial. It is also easy to see thatD is a
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Figure 6.3: Two digraphs and their associated graphs

Hamiltonian digraph if and only ifGD is a Hamiltonian graph (Homework 6.11).
Therefore,HAMD 4p HAMG. ¤

Theorem 6.26 HAMG is NP-complete.

Proof. According to Theorem 6.24 it suffices to show thatSAT4p HAMG. We shall
actually show thatSAT4p HAMD and then useHAMD 4p HAMG established in
Lemma 6.25. Therefore, for every Boolean formulaF(x1, . . . ,xn) in CF we have to
construct a not too complicated digraphDF such thatF is satisfiable if and only if
DF has an oriented Hamiltonian cycle.

Let F(x1, . . . ,xn) be a Boolean formula given in its conjunctive form:

F(x1, . . . ,xn) = C1(x1, . . . ,xn)∧C2(x1, . . . ,xn)∧ . . .∧Ck(x1, . . . ,xn).

Recall that each clauseCi(x1, . . . ,xn) is a disjuction of literals

Ci(x1, . . . ,xn) = (l i1∨ l i2∨ . . .∨ l imi )

and each literall i j is a variablexi j or a negated variable¬xi j . We construct a
digraphDF with 2nk+ k vertices as follows. For each variablexi we have2k
verticesui1, vi1, ui2, vi2, . . . ,uik, vik, and for each clauseCi we have a vertexci . The
verticesui j , vi j are connected by edges as in Fig 6.4(a). We choose a direction,
say from left to right, and say that thatxi evaluates totrue if we traverse vertices
that correspond toxi in that direction, while it evaluates to false if we traverse the
vertices that correspond toxi in the oposite direction.
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x1 →

x2 →

...

xn →

u11 v11 u12 v12 u1k v1k

u21 v21 u22 v22 u2k v2k

un1 vn1 un2 vn2 unk vnk

c1 c2 ck. . .

. . . . . .

. . . . . .

. . . . . .

...
...

...
...

...
...

true

Figure 6.4: The construction of the digraphDF , Part I: vertices that correspond to
variables
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x1 →

x2 →

xn →

u11 v11 u12 v12 u13 v13

u21 v21 u22 v22 u23 v23

u41 v41 u42 v42 u43 v43

c1 c2 c3

x3 → v31u31 u32 u33v32 v33

true

Figure 6.5: The construction of the digraphDF , Part II: vertices that correspond to
clauses

Next, we describe how to connect vertices that correspont to clauses to vertices
that correspond to variables. If a variablexi appears in a clauseCj and it is not
negated inCj , we add the edgesui j → c j andc j → vi j . If, however,xi is negated
in Cj we add the edgesvi j → c j andc j → ui j . So, if a variablexi is not negated
in a clauseCj we add edges that go “in the direction of truth”. Ifxi is negated in
Cj , we add edges that go “in the direction oposite of truth”. An example is given
in Fig. 6.5 (for clarity, the figure indicates only the edges incident to vertices that
represent clauses; edges connectingui j ’s to vi j ’s have been omitted). The digraph
in Fig. 6.5 corresponds to the boolean formulaF(x1,x2,x3,x4) =C1∧C2∧C3 where
C1 = x1∨x2∨x4, C2 = ¬x2∨x3 andC3 = ¬x1∨x3. The full graph that represents
F is given in Fig. 6.6.

It is easy to see that this construction can be carried out in polynomial time. Let
us finally show thatF is satisfiable if and only ifDF has an oriented Hamiltonian
cycle. Recall that traversing a row of vertices that corresponds toxi from left to
right meansτ(xi) = true while traversing from right to left meansτ(xi) = false.
The idea is that an oriented Hamiltonian cycle through the digraph represents an
assignment of truth values to the variablesx1, . . . ,xn.

Assume the formulaF is satisfiable by some truth assignmentτ. Choose one
true literal in each clause, traverse the graph moving across each variableŠs path



6.3. COMPLEXITY ISSUES 125

x1 →

x2 →

xn →

u11 v11 u12 v12 u13 v13

u21 v21 u22 v22 u23 v23

u41 v41 u42 v42 u43 v43

c1 c2 c3

x3 → v31u31 u32 u33v32 v33

true

Figure 6.6: The digraphDF for F(x1,x2,x3,x4) = (x1 ∨ x2 ∨ x4)∧ (¬x2 ∨ x3)∧
(¬x1∨x3)
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in the appropriate direction, and take a diversion to a clause-node for each literal
chosen above. This oriented path is a Hamiltonian cycle.

Conversely, suppose there exists an oriented Hamiltonian cycleH in DF . Then
H traverses each variableŠs row either from left to right or from right to left and
thus determines an assignment of truth valuesτ to variables. Each clause-node is
visited by a side-trip from a variable row. This variable corresponds to a true literal
in the clause. Hence, each clause evaluates totrueunderτ and henceτ(F) = true,
i.e.F is a satisfiable formula. ¤

Homework

6.1. Let D be an Eulerian digraph. Prove that each closed Eulerian walk inD
can be partitioned into oriented cycles in such a way that every edge ofD
belongs to exactly one of the cycles. (Hint: use induction on the length of
the walk.)

6.2. Prove Theorem 6.5.

6.3. Complete the proof of Theorem 6.6.

6.4. There are five regular polyhedra: tetrahedron, hexahedron, octahedron,
dodecahedron and icosahedron (Fig. 6.7). Which of them could have been
used instead of the dodecahedron in the Hamilton’s Voyage Around the
World puzzle?

6.5. Complete the proof of Corollary 6.10.

6.6. Prove Corollary 6.12. (Hint: for(a) show thatcl(G) is a complete graph
and use the Bondy-Chvátal Theorem;(b) follows from (a).)

6.7. (Ore 1960) LetG be a graph withn vertices. Ifδ (u)+δ (v) > n−1 when-
everu andv are distinct, nonadjacent vertices ofG thenG has a Hamilto-
nian path. (Hint: add a new vertex toG and connect it by an edge to every
vertex ofG; show that the new graph is Hamiltonian using a similar result
for Hamiltonian graphs.)

6.8. Show that a transitive tournament has exactly one Hamiltonian path.

6.9. Show that each tournament which is not strongly connected can be turned
into a strongly connected tournament by changing the orientation of only
one edge.

6.10. Prove Theorem 6.16. (Hint: induction onk using the fact that a Hamilto-
nian tournament is strongly connected; fork= 3show thatE(O(v), I(v)) 6=
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Figure 6.7: The five regular polyhedra

∅; for the induction step modify slightly the idea used in the proof of The-
orem 6.15.)

6.11. Complete the proof of Lemma 6.25 by showing that

• G is a Hamiltonian graph if and only ifDG is a Hamiltonian di-
graph; and

• D is a Hamiltonian digraph if and only ifGD is a Hamiltonian graph.

Exercises

6.12. (a) For eachn > 2 give an example of a graph withn vertices which is
neither Eulerian nor Hamiltonian.

(b) For eachn > 3 give an example of a graph withn vertices which is
both Eulerian and Hamiltonian.

(c) For eachn> 4 give an example of a Hamiltonian graph withn vertices
which is not Eulerian.
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Figure 6.8: Exercise 6.19

(d) For eachn > 5 give an example of an Eulerian graph withn vertices
which is not Hamiltonian.

6.13. Prove that an Eulerian graph with no isolated vertices has no cut-edges.

6.14. For a digraphD and a set of edgesF ⊆E(D) letW be the set of all vertices
of D incident to an edge inF and letD[F ] = (W,F) denote thesubdigraph
of D induced byF .

Let D be a weakly connected digraph. Prove thatD is Eulerian if and only
if there exists a partition{F1, . . . , Fk} of E(D) such that eachD[Fi ] is an
oriented cycle.

6.15. Let A be a finite set with at least three elements. OnV = P(A)\{∅,A} as
a set of vertices we define a graphG as follows: two proper subsetsX and
Y of A are adjacent if and only ifX ⊂Y or Y ⊂ X (i.e., if and only if one
of them is a proper subset of the other one). Show thatG is an Eulerian
graph.

6.16. Let G be an Eulerian graph with no isolated vertices and withn(G) odd.
If ∆(G) 6 bn

2c show thatG is an Eulerian graph.

6.17. Let G ne an Eulerian graph with no isolated vertices and withn(G) odd.
If d(G) > 3 show thatG is an Eulerian graph.

6.18. Let G be a connected graph with2k odd vertices. Show thatE(G) can be
partitioned intok edge-disjoint trails.

6.19. Is it possible to partition the edge-set of the graph in Fig. 6.8 into five
edge-disjoint paths of legth 8?

6.20. Which of the graphs in Fig. 6.9 are Hamiltonian?

6.21. (a) Let G be a bipartite Hamiltonian graph and let{X,Y} be a partition
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(b) (c) (d)

(a)

Figure 6.9: Exercise 6.20

of the set of its vertices that demonstrates thatG is bipartite. Show that
|X|= |Y|.
(b) Is the graph in Fig. 6.10 Hamiltonian?

6.22. A vertex cover of a graphG is a set of verticesW ⊆V(G) such that every
edge inG is incident to a vertex fromW. Show that ifG has a vertex cover
W such that|W|< 1

2n(G) thenG is not Hamiltonian.

6.23. Let G be a graph withn vertices andm edges such thatm >
(n−1

2

)
+ 2.

Show thatG is a Hamiltonian graph.

Figure 6.10: Exercise 6.21
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6.24. Show that the complement of a regular disconnected graph is a Hamilto-
nian graph.

6.25. Show that a hypercube of dimensionk > 2 is a Hamiltonian graph.

6.26. Show that every strongly connected tournament withn > 4 vertices con-
tains a vertexv such that after changing the orientation of all the edges
incident tov we again obtain a strongly connected tournament.

6.27. Show that a strongly oriented tournament withn > 3 vertices has at least
n−2oriented triangles. (An oriented triange is an oriented cycle of length 3.)

†6.28. Let s1 6 s2 6 . . . 6 sn be the scores in a tournamentT with n vertices. If
sn− s1 < n

2, show thatT is a Hamiltonian tournament. (Hint: show that
sj −si < n

2 wheneveri < j and conclude thatT is strongly connected.)



Chapter 7

Planar graphs

The main point about graphs is that we can draw them. Speaking about graphs
as abstract objects without the appropriate accompanying drawing is unheard of.
Because drawing graphs is so important, graphs with particularly nice drawings are
particularly important.

Planar graphs are graphs that can be drawn in the Euclidean plane in such a way
that no two edges have a common internal point. Planarity is therefore introduced
as a geometric concept. However, one of the deepest results in graph theory tells
us that there is a combinatorial characterisation of planar graphs, showing that,
although introduced as a geometric concept, planarity is a combinatorial property
of graphs.

In this chapter we first introduce planar graphs as graphs which have “nice”
drawings and then present the results of Kuratowski (1930) and Wagner (1937)
that characterise planar graphs in a purely combinatorial fashion. At the end of the
chapter we discuss regular polyhedra. Euler’s proof that there are only five regular
polyhedra is in the heart of Euler’s formula for planar graphs.

7.1 Planarity as a geometric concept

An arc (or aJordan curve) in R2 is any injective continuous mappingγ : [0,1]→
R2, where the real interval[0,1] andR2 are endowed with the usual topologies.
Pointsγ(0) and γ(1) are called theend-points ofγ. Arcs γ,γ ′ : [0,1] → R2 are
internally disjoint if {γ(x) : 0 < x < 1}∩ {γ ′(x) : 0 < x < 1} = ∅, Fig. 7.1. Let
Arc(R2) denote the set of all arcs inR2. A drawing of a graphG = (V,E) is a pair
of mappings(ν ,ε) whereν : V →R2 is injective,ε : E→Arc(R2) is injective, and
the following compatibility requirement is satisfied (see Fig 7.2):

if e= {u,v} andε(e) = γ then{γ(0),γ(1)}= {ν(u),ν(v)}.

131
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γ(0)
γ(1) = γ ′(0)

γ ′(1)

Figure 7.1: Two internally disjoint arcs

γ(0) = ν(u) γ(1) = ν(v)

γ = ε(e)

Figure 7.2: The compatibility ofε andν

A planar representation of a graphG is a drawing(ν,ε) of G such thatε(e1)
andε(e2) are internally disjoint arcs whenevere1 ande2 are distinct edges ofG. A
graphG is planar if there is a planar representation ofG.

Example 7.1 In 1884 Edwin A. Abbott wrote a fascinating novelFlatland: A ro-
mance of many dimensionsin which two-dimensional beings live in a two-dimensional
universe. Here is an excerpt from the introduction:

“I call our world Flatland, not because we call it so, but to make
its nature clearer to you, my happy readers, who are privileged to live
in Space.

Imagine a vast sheet of paper on which straight Lines, Triangles,
Squares, Pentagons, Hexagons, and other figures, instead of remain-
ing fixed in their places, move freely about, on or in the surface, but
without the power of rising above or sinking below it, very much like
shadows – only hard with luminous edges – and you will then have a
pretty correct notion of my country and countrymen. [. . . ]

The most common form for the construction of a house is five-
sided or pentagonal [. . . ]. The two Northern sides [. . . ] constitute the
roof, and for the most part have no doors; on the East is a small door
for the Women; on the West a much larger one for the Men; the South
side or floor is usually doorless. [. . . ]”

In the twnetieth century, the Flatlanders were faced with the Water-Gas-Electricity
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W G E

W G E

?

(a) (b)

Figure 7.3: The Water-Gas-Electricity problem in Flatland

problem: provide each house with water, gas and electricity. It is easy to provide
two houses with all of the three resources (Fig. 7.3(a)), but is it possible to do
it with three houses (Fig. 7.3(b))? Of course, water pipes, gas pipes and electric
wires are not allowed to intersect. [Answer: No, see below.]

Example 7.2 (a) K4 is a planar graph; see
the adjacent figure for a nonplanar and a pla-
nar representation ofK4.

(b) K5−e is a planar graph, see Fig. 7.4(a).
(c) K3,3−e is a planar graph, see Fig. 7.4(b).

(a) (b)

Figure 7.4: Planar representations ofK5−eandK3,3−e

Lemma 7.3 Every subgraph of a planar graph is a planar graph.

A subsetΩ ⊆ R2 of the real plane isarcwise connectedif for every a,b∈ Ω,
a 6= b, there is an arcγ : [0,1]→Ω such thatγ(0) = a andγ(1) = b. A region is an
open, arcwise connected subset ofR2, Fig. 7.5(a). A closed Jordan curvein R2 is
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any continuous mappingγ : [0,1]→R2 such that the restrictionγ|[0,1) : [0,1)→R2

is injective andγ(0) = γ(1).

Ω

a b
interior of γ

exterior ofγ

γ

(a) (b)

Figure 7.5:(a) A region;(b) Jordan’s Theorem

Theorem 7.4 (Jordan) Every closed Jordan curveγ splits the plane into two re-
gions. One of them is bounded and is called theinterior of γ. The other is un-
bounded and is called theexterior ofγ. (Fig. 7.5(b))

A planar graph has many planar representations and from Jordan’s Theorem
it follows that every planar representation of a planar graph splits the plane into
regions calledfacesof the representation. The famous result of Euler shows that
although the geometry of planar representations may differ significantly, the num-
ber of faces does not depend on the representation.

Ω1

Ω2 Ω3

Ω1

Ω2

Ω3

Ω1

Ω2

Ω3

Ω4

Ω4

Ω4

Figure 7.6: Three planar representations of the same graph

Example 7.5 In Fig. 7.6 we have three distinct planar representations of the same
graph with 7 vertices and 9 edges. Each of the three representations has 4 faces
(three bounded regions, and one unbounded region).
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Fact 7.6 Let (ν ,ε) be a planar representation of a planar graphG which is not a
tree and letebe an edge ofG that belongs to a cycle ofG. According to Lemma 7.3,
G−e is a planar graph. Let(ν ,ε ′) be a representation ofG−eobtained by restrict-
ing ε to E\{e}. This is clearly a planar representation ofG−e. If f is the number
of faces of(ν,ε) and f ′ the number of faces of(ν ,ε ′) then f = f ′+1, see Fig. 7.7.

e

this representation ofG
has f faces hasf −1 faces

this representation ofG−e

Figure 7.7: Removing an edge on a cycle increases the number of faces of the
representaiton

Theorem 7.7 (Euler 1792)Let (ν,ε) be a planar representation of a connected,
planar graphG with n vertices andm edges. If f is the number of faces of the
representation, thenn−m+ f = 2.

Proof. The proof is by induction onm. If m = 0 thenn = 1 and f = 1, so the
claim is obviously true. Suppose that the claim of the theorem is true for all planar
representations of all connected, planar graphs with< m edges and letG be a
connected planar graph withmedges. Let(ν ,ε) be any planar representation ofG
and let f be the number of faces of this representation. IfG is a tree thenf = 1 and
m= n−1 son−m+ f = 2. Assume now thatG is not a tree. Then there is an edge
e that belongs to a cycle ofG. According to Lemma 7.3,G−e is a planar graph.
Let (ν,ε ′) be a representation ofG−e obtained by restrictingε to E \ {e}. This
is clearly a planar representation ofG−e. Let m′ be the number of edges ofG−e
and let f ′ be the number of faces of(ν ,ε ′). According to the induction hypothesis,
n−m′+ f ′ = 2. Fact 7.6 impliesf = f ′+1 which together withm= m′+1 gives
n−m+ f = 2. ¤

Theorem 7.8 Let (ν ,ε) be a planar representation of a planar graphG with n
vertices,m edges andω connected components. Iff is the number of faces of the
representation, thenn−m+ f −ω = 1.
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Ω2

Ω1 Ω3

Figure 7.8: Boundaries of faces

As we have just seen, the number of facesf depends on the planar graph itself,
rather than on the planar representation of the graph. In the sequel we therefore
refer to f as thenumber of faces of the planar graphG and denote the number
by f (G).

The boundaryb(Ω) of a faceΩ of a planar representation of a planar graphG
consists of arcs representing some edges ofG. If b(Ω) consists ofp edges and ifq
of them are cut-edges, thenp+q is thelength ofΩ and it is denoted byl(Ω). Note
that cut-edges count twice!

Example 7.9 (a) Consider the plane representation of a planar graph given in
Fig. 7.8. It has three faces whose lengths arel(Ω1) = 6, l(Ω2) = 3 andl(Ω3) = 9.

(b) The graph has three faces; two of them have length 3, and the
length of the third face is 6.

(c) An extreme example is the graph with only one faceΩ. Here
l(Ω) = 4.

Fact 7.10 Let G be a planar graph with at least two edges, let(ν ,ε) be any planar
representation ofG and letΩ be a face of(ν ,ε). Thenl(Ω) > 3. If G is bipartite
thenl(Ω) > 4 sinceG has no odd cycles.

As a main corollary of Theorem 7.7 we shall now show that a planar graph
cannot have “too many edges”.

Corollary 7.11 Let G be a planar graph withn > 2 vertices andmedges such that
G 6∼= P2. Thenm6 3n−6. Moreover, ifG is bipartite, thenm6 2n−4.

Proof. Let G = (V,E) be a planar graph withn vertices,m edges,ω connected
components andf faces. Ifm= 1 thenG 6∼= P2 implies n > 3 andm6 2n−4 6
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3n−6 trivially holds.
Assume now thatm> 2. First, from Theorem 7.8 we know thatn−m+ f =

ω +1> 2. Let us estimate the number of facesf in terms ofn andm. Let (ν ,ε) be
a planar representation ofG and letΩ1, . . . ,Ω f be the faces of this representation.
Since each edge which is not a cut-edge belongs to boundaries of exactly two faces,
it follows that

l(Ω1)+ . . .+ l(Ω f ) = 2m.

On the other hand,l(Ωi) > 3 for all i (Fact 7.10), so

l(Ω1)+ . . .+ l(Ω f ) > 3 f .

Therefore,2m> 3 f i.e.
2
3

m> f . Now

n−m+
2
3

m> n−m+ f > 2

whencem 6 3n− 6 as required. The proof of the other part of the theorem is
analogous. Just use the fact thatl(Ωi) > 4. ¤

Corollary 7.11 is our main tool for showing that graphs arenotplanar. The idea
behind all such proofs is that if a graph has “too many edges” it cannot be a planar
graph (see Lemma 7.15).

Corollary 7.12 If G is a planar graph, thenδ (G) 6 5.

Proof. Let G = (V,E) be a planar graph withn vertices andm edges. Ifn = 1 or
G∼= P2 thenδ (G) 6 1. Otherwise, we have thatm 6 3n− 6, so the assumption
δ (G) > 6 yields2m= ∑v∈V δ (v) > 6n, which contradictsm6 3n−6. ¤

C

Figure 7.9: A planar Hamiltonian graph
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We close this section by a discussion of planar Hamiltonian graphs. LetG be
a planar Hamiltonian graph with the Hamiltonian cycleC and let(ν ,ε) be a planar
representation ofG. Then the representation ofC under(ν ,ε) is a closed Jordan
curve which splits the plane into two regions, the interior ofC and the exterior ofC,
Fig. 7.9. LetintC(l) denote the number of faces of(ν,ε) of lengthl which are in
the interior ofC, and letextC(l) denote the number of faces of(ν ,ε) of length l
which are in the exterior ofC.

Example 7.13 For the planar representation of the Hamiltonian graph in Fig. 7.9
we haveintC(3) = 2, intC(4) = 1, intC(5) = 1, extC(4) = 2, extC(5) = 1, and all
otherintC andextC values are 0.

Theorem 7.14 (Grinberg 1968)Let C be a Hamiltonian cycle of a planar Hamil-
tonian graphG with n> 3 vertices. Take any planar representation ofG. Then with
respect to this represention,

n

∑
l=3

(l −2)(intC(l)−extC(l)) = 0.

Proof. Let (ν ,ε) be a planar representation ofG and letε(C) denote the closed
Jordan curve that representsC. The cycleC contains all the vertices ofG. Some of
the edges fromE(G)\E(C) belong to the interior ofε(C), and the others belong to
the exterior ofε(C). Assume thats edges fromE(G)\E(C) belong to the interior
of ε(C). Thesesedges divide the interior ofε(C) into s+1 regions, whence

n

∑
l=3

intC(l) = s+1. (7.1)

Each of theses edges belongs to the boundary of two faces in the interior ofε(C)
while each of the edges fromE(C) belongs to the boundary of exactly one face in
the interior ofε(C). Therefore,

n

∑
l=3

l · intC(l) = 2s+n. (7.2)

Multiplying (7.1) by 2 and subtracting from (7.2) yields
n

∑
l=3

(l −2) · intC(l) = n−2.

By the same argument,
n

∑
l=3

(l −2) ·extC(l) = n−2,

and the theorem follows by subtracting the last two equalities. ¤
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7.2 Combinatorial characterization of planar graphs

We are now going to present two deep results that show that, although defined in
geometric terms, planarity is a purely combinatorial property of graphs. We start
by showing that two small graphs are nonplanar.

Lemma 7.15 The graphsK5 andK3,3 are not planar graphs.

Proof. For K5 we havem = 10 and n = 5. Sincem > 3n− 6 it follows from
Corollary 7.11 thatK5 is not a planar graph. Similarly, forK3,3 we havem= 9 and
n = 6, som> 2n−4 andK3,3 is not a planar graph. ¤

The graphsK5 andK3,3 are paradigms of nonplanar graphs: theorems of Ku-
ratowski and Wagner (see below) show that a graph is nonplanar if and only if it
contains a sort of a copy ofK5 or K3,3. In order to make this notion more precise,
we introduce two graph editing operations: edge splitting, and edge contraction,
Fig. 7.10.

Edge splitting: Let e∈ E(G), e= {u,v}, and letx /∈V(G) be a new vertex. Let
G∗e be a new graph obtained fromG by replacing the edgee by the path
u e1 x e2 v wheree1 = {u,x} ande2 = {x,v}. More precisely,

V(G∗e) = V(G−e)∪{x}
E(G∗e) = E(G−e)∪{e1,e2}.

The we say thatG∗e is obtained fromG by splitting the edgee.

Edge contraction: Let e∈ E(G), e= {u,v}, and letx /∈ V(G) be a new vertex.
Let G/e be a new graph obtained fromG by replacing verticesu andv by
the vertexx and joining the neighbours ofu andv to x. More precisely,

V(G/e) = V(G−u−v)∪{x}
E(G/e) = E(G−u−v)∪{{x,w} : w∈ (NG(u)∪NG(v))\{u,v}}.

The we say thatG/e is obtained fromG by contracting the edgee.

A graphH is a subdivision of a graphG if H can be obtained fromG by a
finite sequence of edge spilttings. A graphH is a contraction of a graphG if H
can be obtained fromG by a finite sequence of edge contractions. A graph, one of
its subdivisions and one of its contractions is depicted in Fig. 7.11.

Planarity is invariant under edge splittings and edge contractions, as the fol-
lowing lemma shows.
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split

u

v

u

v

x

v

u

contract x

G G∗e G G/e

Figure 7.10: Edge splitting and edge contraction

G a subdivision ofG a contraction ofG

Figure 7.11: A subdivision and a contraction of a graph

Fact 7.16 If H is a subdivision ofG, thenG is planar if and only ifH is planar. A
contraction of a planar graph is a planar graph. The converse of the last statement
does not hold: just takeK5 and any of its contractions.

Finally, the following pair of theorems shows that the presence ofK5 or K3,3 is
the main reason for nonplanarity of a graph.

Theorem 7.17 (Kuratowski 1930)A graph is planar if and only if it does not have
a subgraph that is a subdivision ofK5 or K3,3.

Theorem 7.18 (Wagner 1937)A graph is planar if and only if it does not have a
subgraph that is a contraction ofK5 or K3,3.

Example 7.19 Finding subdivisions ofK5 or K3,3 in a nonplanar graph can be
tricky. For example, the Petersen graph is easily seen to have aK5 as its contraction,
while it is not so easy to find a subgraph that is a subdivision ofK3,3, Fig. 7.12.
Surprisingly, no subgraph of the Petersen graph is a subdivision ofK5.
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Figure 7.12: The Petersen graph and a subdivision ofK3,3 as its subgraph

7.3 Regular polyhedra

The five regular polyhedra, or Platonic bodies: tetrahedron, hexahedron, octahe-
dron, dodecahedron and icosahedron (see Fig. 7.13), had been known to geometers
of Ancient Greece, but there was no proof that these are the only ones until L. Euler
proved a version of Theorem 7.7. We shall now demonstrate the application of the
graph-theoretic version of the Euler’s result to show that these are indeed the only
regular polyhedra.

To each regular polyhedronP we can in an obvious way assign a planar graph
G(P): vertices ofP correspond to vertices ofG(P), and edges ofP correspond to
the edges ofG(P). Clearly, faces of every planar representation ofG(P) correspond
to faces ofP. Now, regularity of the polyhedron translates to the requirement that
G(P) be a regular graph and that all faces of a planar representation ofG(P) be of
the same length. Graphs of the five regular polyhedra are given in Fig. 7.14.

Lemma 7.20 Let P be a regular polyhedron. Then
(a) 3 6 δ (v) 6 5 for every vertexv of G(P), and
(b) 3 6 l(Ω) 6 5 for every faceΩ of every planar representation ofG(P).

Proof. (a) Take any vertexv of G(P). For geometric reasons we haveδ (v) > 3,
while δ (v) 6 5 follows from Corollary 7.12 sinceG(P) is a regular graph.

(b) Take any faceΩ of a planar representation ofG(P). Then l(Ω) > 3 for
geometric reasons. All faces ofP have the same length sinceP is a regular poly-
hedron, so in order to provel(Ω) 6 5 it suffices to show that there exists a face
whose length is6 5. Using the ideas from proofs of Corollaries 7.11 and 7.12 it
is easy to show thatm6 3 f −6 whence there exists a faceΩ′ such thatl(Ω′) 6 5
(Homework 7.10). ¤

Let P be a regular polyhedron withn vertices,medges andf faces. ThenG(P)
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Figure 7.13: The five regular polyhedra

Figure 7.14: Graphs of the five regular polyhedra
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is a planar connected graph, son−m+ f = 2 by Theorem 7.7. Moreover,G(P)
is a regular graph and every face of every planar representation ofG has the same
length. Letδ be the common degree of vertices ofG(P) and letl be the common
length of faces of planar representations ofG(P). Then from the First Theorem of
Graph Theory and by the counting argument we used to prove Corollary 7.11,

n·δ = l · f = 2m.

Now, 4n−2m−2m+4 f = 8 together withn ·δ = l · f = 2m yields4n−n ·δ − l ·
f +4 f = 8 whence

n(4−δ )+ f (4− l) = 8.

From Lemma 7.20 we know thatδ ∈ {3,4,5} and l ∈ {3,4,5}, so there are nine
cases to discuss.

(1) δ = l = 3: thenn+ f = 8 and3n = 3 f , whencen = f = 4 andP is the
tetrahedron.

(2) δ = 3, l = 4: thenn= 8and3n= 4 f , whencef = 6andP is thehexahedron.

(3) δ = 3, l = 5: thenn− f = 8 and3n = 5 f , whencen = 20, f = 12 andP is
thedodecahedron.

(4) δ = 4, l = 3: then f = 8 and4n= 3 f , whencen= 6 andP is theoctahedron.

(5) δ = l = 4: then0 = 8 – impossible.

(6) δ = 4, l = 5: then− f = 8 – impossible.

(7) δ = 5, l = 3: then−n+ f = 8 and5n = 3 f , whencen = 12, f = 20andP is
the icosahedron.

(8) δ = 5, l = 4: then−n = 8 – impossible.

(9) δ = l = 5: then−n− f = 8 – impossible.

Therefore, there are only five regular polyhedra.

Homework

7.1. Prove Lemma 7.3.

7.2. Prove Theorem 7.8.
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7.3. Complete the proof of Corollary 7.11 by showing thatm6 2n−4 if G is
a bipartite planar graph withn vertices andmedges.

7.4. A maximal planar graphis a graphG = (V,E) such that

• G is a planar graph, and

• if G′ = (V,E′) is a planar graph with the same set of vertices and with
E′ ⊇ E thenE′ = E.

Show that every maximal planar graphG is connected andl(Ω) = 3 for
every faceΩ of every planar representation ofG.

7.5. Let G be a planar graph withn > 3 vertices andmedges. Show thatG is a
maximal planar graph if and only ifm= 3n−6.

7.6. Show that among nonplanar graphsK5 has the smallest number of vertices
andK3,3 has the smallest number of edges.

Ω

Figure 7.15: An outer planar graph

7.7. A graph G is calledouter planar if there exists a planar representation
(ν ,ε) of G and a faceΩ of this representation such that all vertices ofG
belong to the boundary ofΩ. An example of an outer planar graph is given
in Fig. 7.15.

For a graphG let G∗ denote the graph obtained by adding a new vertex
to G and joining the new vertex to every vertex ofG. More precisely, if
x /∈V(G), let

V(G∗) = V(G)∪{x}
E(G∗) = E(G)∪{{x,v} : v∈V(G)}.

Show thatG is an outer planar graph if and only ifG∗ is a planar graph.

7.8. Show that a graph is outer planar if and only if it does not have a subgraph
that is a subdivision ofK4 or K2,3.
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7.9. Show that a graph is outer planar if and only if it does not have a subgraph
that is a contraction ofK4 or K2,3.

7.10. Let G be a connected planar graph withm edges andf faces such that
δ (G) > 3.

(a) Show thatm 6 3 f − 6. (Hint: Use the idea of the proof of Corol-
lary 7.11 together with the fact that2m> 3n.)

(b) Show that every planar representation ofG has a faceΩ such that
l(Ω) 6 5. (Hint: Use(a) and the idea of the proof of Corollary 7.12.)

Exercises

7.11. (a) Show that the two graphs in
the adjacent figure are not planar.

(b) Show thatQ3 is not a planar
graph.

7.12. Find two 3-regular graphs with the same number of vertices such that one
of them is planar and the other is not.

7.13. (a) Let G be a planar graph such thatδ (G) > 5. Show thatG has at least
12 vertices whose degree is exactly 5.

(b) Find an example of a planar graph with 12 vertices such that the degree
of every vertex of the graph is exactly 5.

7.14. Let G be a graph withn> 10vertices. Show that at least one of the graphs
G, G is not planar.

7.15. Find all treesT such thatT is a planar graph.

7.16. Let G be a connected planar graph withδ (G) > 4. Show that every planar
representation ofG has a face of length 3.

7.17. Let G be a planar graph withn vertices andm edges and letg > 0 be the
minimal length of a cycle inG. Show that

m6 g
g−2

(n−2).

7.18. (a) Show thatQn contains a subdivision ofKn+1.

(b) Find alln such thatQn is a planar graph.
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7.19. Let G= (V,E) be a nonplanar graph. Thethickness ofG, denoted byθ(G),
is the smallest positive integerk with the property that there is a partition
{E1, . . . ,Ek} of E such that(V,Ei) is a planar graph for alli.

(a) Let G be a graph withn > 3 vertices andmedges. Show that

θ(G) > m
3n−6

.

(b) Show thatθ(K6s−1) > s.

7.20. Let T be a tree with at least 4 vertices and lete1, e2, e3 ∈ E(T) be three
edges not inT. Show thatT +e1 +e2 +e3 is a planar graph.

7.21. (a) Show that a graph with three edge-disjoint spanning trees cannot be
planar.

(b) Show that a bipartite graph with two edge-disjoint spanning trees can-
not be planar.

7.22. Is there a convex polyhedron (not necessarily a regular one) whose faces
are hexagons?

7.23. The graphG in Fig. 7.16 is clearly a Hamiltonian graph. Is there a Hamil-
tonian cycle ofG which contains edgese1 ande2?

e1 e2

Figure 7.16: A planar Hamiltonian graph

7.24. For a connected graphG let τ(G) denote the number of distinct (possibly
isomorphic) spanning trees ofG. Show thatτ(G) = τ(G−e)+τ(G/e) for
anye∈ E(G).



Chapter 8

Graph colourings

Colouring vertices and edges of graphs is one of the most popular topics in graph
theory. Popularity aside, applications of graph colourings range from scheduling
meetings of committees to compiler optimizations.

In this chapter we address some basic problems concerning colouring vertices
and colouring edges of graphs. We discuss the famous Four Colour Problem which
states that every planar graph is 4-colourable.

8.1 Colouring vertices

Supposep senatorsx1, . . . , xp are members ofq committeesM1, . . . , Mq, of the
University Senate and suppose that a senator can be a member of more than one
committee. Then a schedule of meetings of theqcommittees has to be made in such
a way that committees that share members cannot meet at the same time. When
planning committee meetings, one of the fundamental parameters of the schedule
is the number of time slots that have to be allocated.

A graph-theoretic interpretation of this problem can be made as follows. Con-
sider a graphG with verticesM1, . . . , Mq whereMi is adjacent toM j if i 6= j and
committeesMi andM j share a member. If we enumerate time slots by1, . . . ,k and
assign a committeeMi a time slotsi then clearlysi 6= sj wheneverMi is adjacent
to M j . This is because adjacent vertices inG correspond to committees that share
members and hence the meetings are not allowed to be scheduled at the same time.

Let B be a finite nonempty set that we think of as theset of colours. A vertex
colouring of a graphG = (V,E) is any mappingf : V → B. A vertex colouringf :
V → B is calledproper if adjacent vertices are coloured by distinct colours, that is,
{u,v} ∈E implies f (u) 6= f (v), for all u,v∈V. A graphG= (V,E) is k-colourable
if there exists a proper colouringf : V → {1, . . . ,k}. Thechromatic number ofG

147
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1
2

34

5
1

23

4

5

1
2

31

2
1

23

1

2

1
2

12

?

(a) (b) (c)

Figure 8.1: A graph with(a) a proper vertex colouring with 5 colours;(b) a proper
vertex colouring with 3 colours;(c) no proper vertex colouring with 2 colours

denoted byχ(G) is the least positive integerk such thatG is k-colourable.
We see that if a graphG is k-colourable, then it isl -colourable for everyl > k.

This is because we arenot obliged to use all the colours fromB. It is also easy to
see that ifH 6 G thenχ(H) 6 χ(G).

Example 8.1 Consider a graphG in Fig. 8.1(a). As we can see, the graph is 5-
colourable. It is also easy to see that the same graph in 3-colourable, Fig. 8.1(b),
and that it isnot 2-colourable, Fig. 8.1(c). Therefore,χ(G) = 3.

Note thatχ(G) 6 k is equivalent to the fact thatG is k-colourable. On the other
hand, to show thatχ(G) = k we have to show

• thatk colours suffice for proper vertex colouring ofG, that isχ(G) 6 k; we
usually show this by exibiting an explicite proper vertex colouring ofG with
k colours; and

• thatk colours are necessary for proper vertex colouring ofG, that isχ(G) >
k; we usually show this by assuming thatk colours suffice and then deriving
a contradiction, or by showing thatKk is a subgraph ofG.

Lemma 8.2 (a) χ(G) = 1 if and only if E(G) =∅.
(b) χ(G) = 2 if and only if E(G) 6=∅ andG is a bipartite graph.
(c) χ(Kn) = n.
(d) If Ks 6 G thenχ(G) > s.
(e) χ(C2s) = 2 andχ(C2s+1) = 3.

Proof. We shall prove(c) and the second part of(e).
To show(c) note first thatn colours suffice to colour vertices ofKn, soχ(Kn) 6

n. On the other hand, we need at leastn colours to colour the vertices ofKn prop-
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erly since every pair of vertices ofKn is adjacent, whenceχ(Kn) > n. Therefore,
χ(Kn) = n.

To show the second part of(e), note first that from(a) and(b) it follows that
χ(C2s+1) 6= 1,2, so χ(C2s+1) > 3. On the other hand, it is easy to see that three
colours suffice to colourχ(C2s+1), whenceχ(C2s+1) = 3. ¤

Finding the exact value ofχ(G) is usually a very complicated task. We shall
therefore present two standard upper bounds. For a graphG let

inf(G) = max{δ (H) : H 6 G}.

Theorem 8.3 χ(G) 6 inf(G)+1.

Proof. The proof is by induction onn = n(G). The claim is trivially true for
n = 1,2,3. Assume thatχ(H) 6 inf(H) + 1 for all graphsH with less thann
vertices and letG be a graph withn vertices. Letv∈V(G) be a vertex ofG such
thatδ (v) = δ (G), let d = δ (v) andN(v) = {w1, . . . ,wd}. PutH = G− v. By the
induction hypothesis we haveχ(H) 6 inf(H)+ 1, so there is a proper colouring
f : V(H)→ B of H with |B| = inf(H)+1 colours. In order to complete the proof
we are going to extend the colouringf to a proper colouring ofG.

FromH 6 G it follows that inf(H) 6 inf(G) (Homework 8.2) so letB′ ⊇ B be
a superset ofB such that|B′| = inf(G)+ 1 and let f ′ : V(H) → B′ be a mapping
such thatf ′(v) = f (v) for all v∈V(H). Clearly, f ′ is a proper vertex colouring of
H with inf(G)+1 colours. The colouringf ′ uses at mostd colours for colouring
the neighboursw1, . . . ,wd of v. Now d = δ (G) 6 inf(G), so at least one of the
inf(G)+1 colours fromB′ is not used for colouring of neighbours ofv. Therefore,
B′ \ { f ′(w1), . . . , f ′(wd)} 6= ∅. Take anyc∈ B′ \ { f ′(w1), . . . , f ′(wd)} and define
f ∗ : V(G)→ B′ by

f ∗(x) =

{
c, x = v

f ′(x), otherwise.

It is easy to see thatf ∗ is a proper vertex colouring ofG by inf(G)+1 colours, so
χ(G) 6 inf(G)+1. ¤

The parameterinf(G) is not one of the “standard” parameters. Although rather
easy to compute (see Homework 8.3), we prefer to replace it by more convenient
ones.

Corollary 8.4 χ(G) 6 ∆(G)+1.

Proof. Sinceδ (H) 6 ∆(H) 6 ∆(G) for everyH 6 G, it is easy to see thatinf(G) 6
∆(G). ¤
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The following theorem shows that odd cycles and complete graphs are the only
classes of graphs where the upper bound in the above corollary is reached. The
proof of this fact is surprisingly complicated and we shall omit it.

Theorem 8.5 (Brooks, 1941)LetGbe a graph which is neither the complete graph,
nor the odd cycle. Thenχ(G) 6 ∆(G).

Finally, we shall present an upper bound on the chromatic number ofχ(G)
which depends on the number of edges of the graph.

Theorem 8.6 Let G be a graph withmedges. Thenχ(G) 6 1
2

+

√
2m+

1
4

.

Proof. Let k = χ(G) and let f : V(G) → {1, . . . ,k} be a proper vertex colour-
ing of G. For i ∈ {1, . . . ,k} let Vi = {v ∈ V(G) : f (v) = i} be the set of all ver-
tices ofG coloured by the colouri. ThenE(Vi ,Vj) 6= ∅ wheneveri 6= j (Home-

work 8.5), whencem>
(

k
2

)
=

1
2

k(k−1). Solving fork we obtainχ(G) = k 6

1
2

+

√
2m+

1
4

. ¤

8.2 The Four Colour Problem

Around 1850, Francis Guthrie (1831–1899) showed how to colour a map of all
the counties in England using only four colours so that any two neighboring re-
gions have different colours. He became interested in the general problem and
conjectured that the smallest number of colours needed to colour any planar map
so that any two neighboring regions have different colours is four. Guthrie talked
about his conjecture with his brother, Frederick. Frederick talked about it with his
mathematics teacher, Augustus DeMorgan (from the DeMorgan’s laws in logic),
who sent the problem to William Hamilton (for whom Hamiltonian mechanics is
named). Hamilton was evidently too interested in other things to work on the four
colour problem, and it seemed to have been forgotten for about 25 years. In 1878,
Arthur Cayley made the scientific community aware of the problem again, and
shortly thereafter, British mathematician Sir Alfred Kempe devised a “proof” that
was unquestioned for over ten years. However, in 1890, another British mathemati-
cian, Percy John Heawood, found a mistake in Kempe’s work. The Four Colour
Problem remained unsolved until 1976, when Kenneth Appel and Wolfgang Haken
produced a proof involving an intricate computer analysis of 1936 different con-
figurations. Although some mathematicians have expressed dissatisfaction with
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Figure 8.2: A political map of Europe and its associated planar graph

Appel’s and Haken’s proof, there is still no proof of the Four colour Problem that
does not involve computer analysis.

Colouring maps is closely related to colouring vertices of planar graphs. To
each region of a planar map we assign a vertex of a graph and join two vertices by
an edge if the two regions have a common border. The main observation is that
if a map is not too weird (i.e. no country has a hole, which is the case with Italy
where Vatican makes a hole, or no country consists of two or more parts, which
is the case with Russia where the region around Kaliningrad is detached from the
rest of the country) then the graph associated to the map is planar and every proper
colouring of the map uniquely determines a proper vertex colouring of the graph.
For example, a political map of Europe (as of year 2001, and ignoring Vatican and
the region around Kaliningrad to make Italy and Russia simply connected) together
with the associated planar graph is given in Fig. 8.2. The Four Colour Problem now
becomes a statement about planar graphs:χ(G) 6 4 for every planar graphG.

As an easy consequence of Theorem 8.3 we immediately obtain the solution to
the “Six Colour Problem”:
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Corollary 8.7 χ(G) 6 6 for every planar graphG.

Solving the “Five Colour Problem” requires a little bit more work:

Theorem 8.8 (Heawood 1890)χ(G) 6 5 for every planar graphG.

Proof. The proof is by induction on the number of vertices ofG. For planar graphs
with 1, 2, 3, 4 and 5 vertices the statement is obviously true. Assume that every
planar graph with< n vertices satisfiesχ 6 5 and letG be a planar graph with
n vertices. As we have seen,δ (G) 6 5 so there is a vertexv ∈ V(G) such that
δG(v) 6 5.

If δG(v) 6 4, let G′ = G−v. ThenG′ is a planar graph
with < n vertices and by the induction hypothesis there is a
proper vertex colouringf ′ : V(G′)→ {1, . . . ,5} of G′ with
5 colours. Sincev has at most four neighbours, at least one
colour c doesnot appear as a colour of one of the neigh-
bours ofv, so

1

2

3
4

c
v

f (x) =

{
c, x = v

f ′(x), otherwise.

is a proper vertex colouring ofG with 5 colours.

w1 w3
v

e1 e3 e3

w3

G G/e1 (G/e1)/e3

z

Figure 8.3: The “Five Colour Problem” for planar graphs

Assume now thatδG(v) = 5 and letw1, . . . , w5 be all the neighbours ofv.
There existi 6= j such thatwi andw j are not adjacent, for otherwiseG[w1, . . . ,
w5] would be isomorphic toK5. Suppose thatw1 andw3 are not adjacent and let
e1 = {v,w1} ande3 = {v,w3}. ConsiderG′ = (G/e1)/e3 and denote the new vertex
obtained by contracting edgese1 ande3 by z, Fig. 8.3. ThenG′ is a planar graph
(since planarity is invariant under contracting edges) with< n vertices and by the
induction hypothesis there is a proper vertex colouringf ′ : V(G′)→ {1, . . . ,5} of
G′ with 5 colours. Take ac∈ {1, . . . ,5}\{ f ′(z), f ′(w2), f ′(w4), f ′(w5)} and define
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f ∗ : V(G)→{1, . . . ,5} by

f ∗(x) =





c, x = v

f ′(z), x = w1 or x = w3

f ′(x), otherwise.

It is easy to see thatf ∗ is a proper vertex colouring ofG with five colours, whence
χ(G) 6 5. ¤

However, even more is true:

Theorem 8.9 (Appel, Haken 1976)χ(G) 6 4 for every planar graphG.

Theorem 8.10 (Grötzsch 1959)Let G be a planar graph such thatC3 66 G. Then
χ(G) 6 3.

8.3 Colouring edges

Let B be a finite nonempty set of colours. Anedge colouring of a graphG= (V,E)
is any mappingf : E → B. A colouring f : E → B is calledproper if adjacent
edges are coloured by distinct colours, that is,|e1∩e2|= 1 implies f (e1) 6= f (e2),
for all e1,e2 ∈ E. A graphG = (V,E) is k-edge-colourableif there exists a proper
colouring f : E→{1, . . . ,k}. Thechromatic index ofG (sometimes also called the
edge chromatic number ofG) denoted byχ ′(G) is the least positive integerk such
thatG is k-edge-colourable.

1

2

3

4
5 6

2

1

1

2
3 3

1

1

2

2 3

3

4

4

5

5

(a) (b) (c)

Figure 8.4: (a) K4 is 6-edge-colourable;(b) K4 is 3-edge-colourable;(c) K5 is
5-edge-colourable
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Example 8.11 The graphK4 is 6-edge-colourable (Fig. 8.4(a)), but also 3-edge-
colourable (Fig. 8.4(b)). K4 is not 2-edge-colourable since it has a vertex of de-
gree 3, soχ ′(K4) = 3. The graphK5 is 5-edge-colourable (Fig. 8.4(c)), but not
4-edge-colourable as we shall see below. Therefore,χ ′(K5) = 5.

Clearly, χ ′(G) > ∆(G). A surprising theorem due to Vizing states thatχ ′(G)
is either∆(G) or ∆(G)+1.

Theorem 8.12 (Vizing, 1964)For every graphG, ∆(G) 6 χ ′(G) 6 ∆(G)+1.

While there are only rough estimates forχ(G), the “dual” notion ofχ ′(G) is
strictly bounded. Therefore, determining the chromatic index of a graph reduces to
deciding which of the two possible values occurs. A general strategy for findingχ ′
is to try to construct an edge colouring with∆ colours. From Vizing’s Theorem 8.12
it follows that if such a colouring exists thenχ ′ = ∆, otherwiseχ ′ = ∆+1.

Theorem 8.13 Let n > 3. Thenχ ′(Kn) =

{
n−1, n is even

n, n is odd.

Proof. Let n be an even integer. To show thatχ ′(Kn) = n−1 = ∆(Kn) it suffices
to produce a proper edge colouring ofKn with n−1 colours. Let{0,1, . . . ,n−1}
be the set of vertices ofKn and let us consider a particular representation ofKn in
Euclidean plane where vertices 0, . . . ,n−2 are vertices of a regular(n−1)-gon
andn−1 is its center, Fig. 8.5(a) and(b). For eachj ∈ {0, . . . ,n−2} let E j be
the following set of edges ofKn:

E j =
{{ j,n−1}}∪{{u,v} : u+v≡ 2 j (mod n−1)

}
,

see Fig. 8.5(c0), . . . , (c6) whereE0, . . . , E6 are depicted in case ofK8. Note that
the set of edgesE j understood as a geometric configuration is a rotation ofE0 about

n−1 through the angleϕ j = j · 2π
n−1

. The edges in eachE j are independent (i.e.

no two are adjacent), and{E0, . . . ,En−2} is a partition ofE(Kn) (Homework 8.8).
Therefore, the edge colouringf : E(Kn)→{0, . . . ,n−2} given by

f (e) = j if and only if e∈ E j

is a proper edge colouring ofKn with n−1 colours.
For the second part of the proof, letn be an odd integer and let us show that

χ ′(Kn) 6= ∆(Kn) = n−1. Then by Vizing’s Theorem 8.12 it follows thatχ ′(Kn) =
∆(Kn) + 1 = n. Assume to the contrary thatχ ′(Kn) = ∆(Kn) = n− 1 and let f :
E(Kn)→ {1, . . . ,n−1} be a proper edge colouring ofKn with n−1 colours. Let
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Figure 8.5: A proper edge colouring ofK8 with 7 colours
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E1 = {e∈ E(Kn) : f (e) = 1}. Since every vertex ofKn is of degreen−1 and since
edges incident to the same vertex have to be coloured by distinct colours, it follows
that every vertex ofKn is incident with an edge fromE1. Therefore,n = 2 · |E1|
which is an even integer—contradiction. ¤

Theorem 8.14 (König 1916)If G is a bipartite graph thenχ ′(G) = ∆(G).

Proof. We use induction onm = m(G). If m = 0 the claim is obviously true.
Assume thatχ ′(H) = ∆(H) for all bipartite graphsH with < m edges and letG
be a bipartite graph withm edges. Take anye= {u,v} ∈ E(G) and letH = G−e.
ThenH is a bipartite graph with< m edges, soχ ′(H) = ∆(H) by the induction
hypothesis. Since∆(H) 6 ∆(G) we obtain thatχ ′(H) 6 ∆(G), i.e. H is ∆(G)-
edge-colourable.

Let f : E(H)→ {1, . . . ,∆} be a proper edge colouring ofH where∆ = ∆(G).
Forx∈V(G) = V(H) let B(x) denote the set of all colours that occur as colours of
edges incident tox, that is, the set of allc∈ {1, . . . ,∆} such that there is an edge
d∈ E(H) incident tox and f (d) = c. If c∈ B(x) we say that the colourc is present
at x; otherwise we say thatc is absent atx. The colouringf takes care of all the
edges ofG except for the edgee= {u,v}. Our intention is to adjustf so as to turn
it into the edge colouring of entireG.

SinceδH(u) = δG(u)−1< ∆ andδH(v) = δG(v)−1< ∆, at least one colour is
absent atu and at least one colour is absent atv. If there is a colourc∈ {1, . . . ,∆}\
(B(u)∪B(v)) that is absent both atu and atv, we can straightforwardly extendf
to f ∗ : E(G)→{1, . . . ,∆} given by

f ∗(d) =

{
c, d = e

f (d), otherwise

which is a proper edge colouring ofG with ∆ colours.
Assume now thatB(u)∪B(v) = {1, . . . ,∆}, i.e., that every colour is present

at u or at v. Let b ∈ {1, . . . ,∆} \B(u) be a colour that is absent atu and c ∈
{1, . . . ,∆} \B(v) a colour that is absent atv. According to the assumption,b 6= c,
b∈ B(v) andc∈ B(u). Let e1 = {v,w1} be an edge incident withv with f (e1) = b
and let

P = v e1 w1 e2 w2 e3 w3 . . . ek wk

be the longestalternatingb/c-path that starts withv e1, that is, the longest path
starting withv e1 such thatf (e1) = b, f (e2) = c, f (e3) = b, f (e4) = c etc, Fig. 8.6.

Let us show thatu /∈ {v,w1, . . . ,wk}. Suppose to the contrary thatu appears
as a vertex ofP, sayu = wl , and letP′ = v e1 w1 e2 . . . wl−1 el u. Note first that
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Figure 8.6: A maximal alternatingb/c-path

f (el ) = c becauseb /∈ B(u). SinceP, and henceP′, is an alternatingb/c-path that
starts with an edge coloured byb, from f (el ) = c it follows that the length ofP′ is
even. Therefore,P′+e is a cycle of odd length—contradiction with the fact thatG
is a bipartite graph.

u

v

e c

w1

w2

w3

w4

wk

· · ·

e1

e2

e3

e4

ek

c

b

c

b

b

Figure 8.7: Recolouring the path

Let us recolour all the edges ofP by swapping the coloursb andc, Fig 8.7. By
the maximality ofP the adjacent edges inH are still coloured by distinct colours
and thus we obtain another proper edge colouring ofH (Homework 8.9). SinceP
does not pass throughu no edge incident tou was recoloured. Therefore, in this
new colouringb is absent both atu and atv, so we can useb to colour the edgee.
More precisely, the required edge colouring ofG is given by

f ∗(d) =





b, d = e

b, d ∈ E(P) and f (d) = c

c, d ∈ E(P) and f (d) = b

f (d), otherwise

which concludes the proof. ¤
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Homework

8.1. Show Lemma 8.2(b) and(d).

8.2. Show thatinf(H) 6 inf(G) wheneverH 6 G.

†8.3. Let G be a graph withm(G) > 0. Let v1 be a vertex with the least positive
degree inG andd1 = δG(v1), let v2 be a vertex with the least positive de-
gree inG−v1 andd2 = δG−v1(v2), let v3 be a vertex with the least positive
degree inG−v1−v2 andd3 = δG−v1−v2(v3), and so on as long as there are
edges inG−v1− . . .−v j . We thus obtain a sequence of positive integers
d1, d2, . . . ,ds. Show thatinf(G) = max{d1, d2, . . . ,ds}.

8.4. Give a direct proof of Corollary 8.4. (Hint: take a vertexv∈ V(G) such
thatδ (v) = ∆(G) and use induction onG−v.)

8.5. Let k = χ(G) and let f : V(G)→ {1, . . . ,k} be a proper vertex colouring
of G. For i ∈ {1, . . . ,k} let Vi = {v ∈ V(G) : f (v) = i} be the set of all
vertices ofG coloured by the colouri. Show thatE(Vi ,Vj) 6=∅ whenever
i 6= j.

8.6. Prove Corollary 8.7. (Hint: use Theorem 8.3 and the fact thatδ (G) 6 5
for every planar graphG.)

8.7. Complete the proof of Theorem 8.8 by showing thatf ∗ is a proper vertex
colouring ofG.

8.8. Complete the proof of Theorem 8.13 by showing that the edges in eachE j

are independent and that{E0, . . . ,En−2} is a partition ofE(Kn).

8.9. Complete the proof of Theorem 8.14 by showing that swapping the colours
along a maximal alternatingb/c-path in a bipartite graph produces a proper
edge colouring.

Exercises

8.10. Recall that for a graphG by G∗ we denote the graph
obtained by adding a new vertex toG and joining the
new vertex to every vertex ofG. Then graphC∗n−1 is
called thewheel withn verticesand denoted byWn,
see the adjacent figure. Findχ(Wn) and χ ′(Wn) for
n > 4. W10

8.11. Find χ andχ ′ of: (a) the Petersen graph;(b) Qn.
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8.12. Show thatχ(G)+ χ(G) 6 n+1, wheren = n(G).

8.13. Show thatχ(G) ·χ(G) > n, wheren = n(G).

8.14. Show thatχ(G)+ χ(G) > 2
√

n, wheren = n(G).

8.15. Let G be a regular graph withn vertices and letδ = δ (G). Show that

χ(G) > n
n−δ

.

8.16. Let e1, . . . ,ek bek independent edges inKn. Find χ(Kn−e1− . . .−ek).

8.17. Let G be a graph such thatE(G) 6= ∅. Show that there exists a regular
graphH such thatχ(H) = χ(G), ∆(H) = ∆(G) andG is an induced sub-
graph ofH.

8.18. Let G be a graph with the property that every pair of odd cycles inG has a
common vertex. Show thatχ(G) 6 5.

8.19. Let n > 4 be an even integer and letH be a Hamiltonian cycle ofKn. Find
χ(Kn−E(H)).

†8.20. Let D be a digraph,G its base andl(D) the length of the longest oriented
path inD. Show thatl(D) > χ(G)−1.

8.21. Find χ ′(G) whereG is a regular Hamiltonian graph withδ (G) = 3.

8.22. Let G be a regular graph withn vertices wheren is odd. Show thatχ ′(G) =
∆(G)+1.

8.23. Let G be a graph such thatE(G) 6= ∅. Show that there exists a regular
graphH such thatχ ′(H) = χ ′(G), ∆(H) = ∆(G) and G is an induced
subgraph ofH.

8.24. Let β (G) denote the greatest cardinality of an independent set of edges
of G. Show thatχ ′(G) = ∆(G)+1 if m(G) > ∆(G) ·β (G).


