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Entropy Minimization for Solving Sudoku

Jake Gunther and Todd Moon

Abstract—Solving Sudoku puzzles is formulated as an optimization
problem over a set of probabilities. The constraints for a given puzzle
translate into a convex polyhedral feasible set for the probabilities. The
solution to the puzzle lies at an extremal point of the polyhedron where
the probabilities are either zero or one and the entropy is zero. Because
the entropy is positive at all other feasible points, an entropy minimization
approach is adopted to solve Sudoku. To escape local entropy minima
at nonsolution extremal points, a search procedure is proposed in which
each iteration involves solving a simple convex optimization problem. This
approach is evaluated on thousands of puzzles spanning four levels of
difficulty from “‘easy” to “evil”.

Index Terms—Convex optimization, Sudoku.

[. INTRODUCTION

Sudoku is a puzzle in which N = n? different symbols (usually
digits 1 through N) are to be arranged in an N X N array such that the
arrangement agrees with given clues and meets the puzzle constraints.
Solving Sudoku puzzles is of interest in the signal processing commu-
nity because it has ties to decoding error correcting codes [1]-[3]. Yato
and Seta are generally attributed as showing Sudoku to be an NP-com-
plete problem [4], [5].

Approaches to solve Sudoku can be divided into two groups. In the
first group are techniques guaranteed to find one or all solutions if
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they exist. Because of NP-completeness, all known approaches in this
category have a complexity that increases exponentially in the size of
the puzzle. Backtracking, covering and brute force approaches are de-
scribed in [6] and constraint programming in [7]. Exact covering imple-
mented via Knuth’s Dancing Links algorithm [8] is probably the most
efficient method for solving Sudoku. In [9] Sudoku puzzle constraints
were cast as system of linear equality constraints along with binary in-
teger constraints on the parameters, and puzzles were solved using a
binary integer linear program solver.

The second category of Sudoku “solvers” do not guarantee an exact
solution that meets all problem constraints. Instead, this category of al-
gorithms seeks to find near-optimal approximate “solutions”, and, in
many instances, the optimum is attained. Sacrificing guarantees of op-
timality may be viewed as acceptable for several reasons. Suboptimal
algorithms can offer lower complexity than exact solution methods. Be-
cause suboptimal algorithms are often derived by relaxing some of the
hard problem constraints, they can be applied to other related problems
where exact solution methods are not applicable. Such is the case with
the method presented in this correspondence as shown in the sections
that follow.

We note that the Dancing Links algorithm [8] solves any 9 x 9 puzzle
nearly instantaneously on a modern computer. No other exact or ap-
proximate solver of which we are aware can compete with Dancing
Links for speed. We emphasize that our long-range interest is not in
Sudoku per se but rather in applying what is learned from Sudoku to
related problems such as error correction decoding, where information
about bits in a codeword are often available in the form of prior proba-
bilities rather than as hard bit decisions. Though these applications are
beyond the scope of this correspondence, we show that the proposed
technique can be applied to stochastic Sudoku puzzles introduced in
[1] where the clues are not be specified as specific digits but rather as
probability distributions that given cells are filled by each of the digits.
Dancing Links cannot be directly applied to solve stochastic puzzles or
other problems where soft information is given because it operates on
the basis of a hard objective, whether a condition is satisfied or not. The
exact solver by Bartlett [9] can accommodate soft information, but as
we show in Section V it can be slow even for 9 X 9 puzzles. By com-
parison, the method of this correspondence, as well as the one in [10],
are fast and can also accommodate soft information.

There are a number of approximate methods for solving Sudoku in-
cluding approaches based on simulated annealing [11] and quantum
simulated annealing and genetic algorithms [12]. Geometric particle
swarm optimization was shown to find near-optimal solutions [13], and
Sinkhorn balancing was also shown to solve most puzzles to which it
was applied [14].

What Bartlett [9] showed was that a solution to a 9 X 9 Sudoku
puzzle can be represented as a 729 x 1 vector of 81 ones and 648 zeros
that satisfied linear equality constraints. The sparsity of such a solu-
tion was exploited together with the linear constraints in [10] where
Sudoku was solved as a /1 -norm minimization problem. Thus, it was
in [10] where Sudoku was first solved using traditional calculus-based
optimization techniques.

In this correspondence, Sudoku is cast as the problem of minimizing
a concave objective over a polyhedron defined by linear equality con-
straints (as in [9] and [10]) and inequality constraints (because the pa-
rameters are interpreted as probabilities). This is a relaxation of the hard
binary constraints used in [9] whereas no constraints were used in [10].
In the following, concave minimization over a bounded convex set is
converted into a sequence of convex optimization problems which can
be solved efficiently. While we have no proof that this technique will
solve every puzzle, we show that it is capable of solving thousands of
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them with varying levels of difficulty, including puzzles rated as ex-
tremely difficult.

The remainder of the correspondence is organized as follows.
Section II formulates Sudoku in terms of a vector of probabilities
constrained to lie in a polyhedron and highlights connections to [9],
[10]. Section III explains why entropy, a concave function, provides an
effective objective to minimize for solving Sudoku puzzles. Section IV
develops an optimization strategy and formulates an algorithm for
minimizing a concave function over a bounded convex set, and
Section V presents comparative results of different algorithms applied
to thousands of puzzles.

II. PROBLEM FORMULATION

For a 9 x 9 Sudoku puzzle with L given clues, Babu et al. [10] rep-
resented the constraints (all of them linear) as Ax = 1, where

A.
A= {A] (1)

isa (324 + L) x 729 matrix with nine 1’s on each of the first 324 rows,
one 1 on each of the last L rows, and is zero otherwise. The equation
A.x = 1 represents the 324 constraints satisfied by all 9 x 9 Sudoku
puzzles, and A.x = 1 represents the L clue constraints associated
with the given puzzle.

The 729 x 1 vector x is a stack of 81 9 x 1 subvectors, one for
each of the 81 cells in the puzzle. A solution x* to a given puzzle is
characterized by each 9 x 1 subvector being zero except for a 1 in the
position of the digit assigned to that cell. Therefore, a solution to a
given Sudoku puzzle is any x* satisfying the two conditions

Ax* =1, x" €{0,1} 2)

where x* € {0,1} is understood to apply to the elements of x*. We
assume that enough clues are given in any puzzle specification that the
solution to (2) is unique.

In this correspondence, the elements of x are viewed as probabilities
with 0 < x < 1, the inequality applying element wise. The element
of x giving the probability of the ™ digit filling the (4, k)™ cell in
the puzzle is denoted x;;«. A relaxation of the hard constraints in (2)
which represents our model of x as probabilities is

Ax=1,x2>0. 3)

These constraints define a polyhedron which is referred to as the fea-
sible set for a given puzzle. Note that any solution x* is also a feasible
point. The advantage of the relaxation in (3) is twofold. First, it is easy
to find points in the feasible set. Second, it is easy to move along paths
across the feasible set. This is the basis for our solution approach in
Section IIL

It is interesting to consider the size of the feasible set for a given
puzzle. For some puzzles, the feasible set consists of a single point,
i.e., the feasible set (3) and solution set (2) are equal. In other words,
relaxing the binary constraint (2) to the non-negative constraint (3) is
often sufficient to solve a puzzle. In these cases, the solution may be
obtained by solving the constraint satisfaction problem

find x, subjectto Ax =1, x>0, 4)
which can be solved efficiently using standard software packages such
as [15]. Puzzles having a single feasible point that is found by solving
(4) are referred to as easy puzzles, otherwise puzzles will be referred
to as difficult. In Section III difficult puzzles are subdivided into three
levels of difficulty: medium, hard, and evil.

For some puzzles, depending on the given set of clues, the feasible
set defined by (3) contains an infinite number of points, but only one
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solution. In this case the solution to (4) provides a feasible point, not a
solution, and an objective function is needed to judge the desirability
of points in the feasible set.

Babu et al. [10] recognized that the solutions characterized by (2)
are sparse, i.e., only a few of the 729 elements of x are nonzero, and
proposed that Sudoku puzzles could be solved by

minimize ||x|o, subject to Ax = 1. )

In practice, they solved the relaxed /; problem

minimize ||x||1, subjectto Ax = 1. (6)

Notice that (6) omits the non-negativity constraint in (3). Were it to
be included, the {; problem above would be equivalent to the feasi-
bility problem in (4) because, for non-negative parameters, the 1-norm
is constant (||x||; = 17x = 81) for all x satisfying Ax = 1 and
x > 0. Thus, with the additional constraint x > 0, (6) is equivalent
to (4), which is insufficient for solving difficult puzzles. Although (6)
can be solved efficiently using standard software packages, it does not
solve some puzzles. An example was given in [10], along with an it-
erative re-weighted 1-norm minimization algorithm that did solve the
given puzzle.

Inlight of (2), Bartlett e al. [9] cast the Sudoku problem as the binary
integer constraint satisfaction problem

find x, subjectto Ax =1, x € {0,1} @)

and solved this using Matlab’s bintprog function, which solves the
optimization problem

minimize 0" x = 0, subjectto Ax =1, x € {0,1}. (8)

The bintprog function applies a branch and bound tree search tech-
nique in which the tree is explored by linear programming (LP) sub-
problems, where the hard constraint in (2) is relaxed to 0 < ;5 <1
for all but one of the remaining noninteger variables for which the hard
constraint is imposed. Two LPs are solved: one in which the variable in
question is constrained to be zero and the other in which the variable is
constrained to be one. The tree search is discontinued along a branch if
both LPs are found to be infeasible. The disadvantage of this approach
is that it can be time consuming, especially for difficult puzzles.

III. ENTROPY FOR SUDOKU

Although we use a similar representation of the constraints as in [9]
and [10], our interpretation of x and our solution approach are very dif-
ferent. We interpret x as a set of probabilities subject to constraints. We
visualize x as a point in the interior of the convex polyhedron defined
by (3) and use efficient convex optimization routines to move across
the polyhedron to an extremal point that solves the puzzle.

Define the 9 X 9 matrices formed from «; i, when one of 4, j or k
is held fixed, to be slices of the cube x,;,: X;.. is an i-slice, X.;. is
a j-slice, and X..j; is a k-slice. Constraints (3) may be interpreted as
saying that all slices of the cube x;;; along any of its dimensions are
doubly stochastic matrices, i.e., their rows and columns sum to one.

Suppose that =7, solves a given Sudoku puzzle. Then 27, € {0, 1}
holds and the slices of «};, become permutation matrices, a special
doubly stochastic matrix composed of 0’s and 1’s in which every row
and column has exactly one 1. In addition, each 3 x 3 box contains
exactly one 1. The location of the 1’s in the ¢-slices give the loca-
tions of digit ¢ in the solved puzzle. As an aside, we note that be-
cause of the constraints, the slices are orthogonal under the trace inner
product on matrices, i.e., the set of nine ¢-slices are pairwise orthogonal
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trace(Xfﬁ::X,-Q;;) = 0 for all i3 # 71, and the same holds for the set
of j-slices and the set of k-slices.

The Birkhoff-von Neumann theorem [16] states that every doubly
stochastic matrix is a convex combination of permutation matrices. The
Birkhoff polyhedron Bp, which is the set of all N x N doubly sto-
chastic matrices, is the convex hull of N x N permutation matrices.
Put another way, the extreme points of By are permutation matrices.

Define B = By x --- x By (ninefold Cartesian product of By) as
the convex hull of 9-tuples of 9 X 9 permutation matrices. The extreme
points of 535, ext(133), are all possible 9-tuples of 9 x 9 permutation
matrices. Define Sy = {x|Asx = 1,x > 0} to be the Sudoku (size
9) polyhedron, a convex set. It is a subset of /33. The extreme points of
So, given by ext(Sy) = {x|A.x = 1,x € {0,1}}, are all possible
solutions to all Sudoku puzzles. These extreme points are 9-tuples of
orthogonal 9 X 9 permutation matrices in which each permutation ma-
trix (the ¢-slices) satisfy 3 x 3 box constraints. The set Sy is the convex
hull of these extreme points. The extreme points of Sy are also extreme
points of 3.

A Sudoku puzzle specification gives additional clue constraints
A x = 1 that a solution must satisfy. Let Py = {x|A;x =1, A.x =
1,x > 0}= {x|Ax = 1,x > 0} be the polyhedron corresponding
to a given puzzle specification. The clue hyperplanes defined by
A .x =1 cut across Sy and reduce it down to Ps. If enough clues are
given, only one extreme point of Sg remains in Ps and the puzzle is
solved by finding this extreme point.

Summarizing ideas from above, the solution x* to a given Sudoku
puzzle is an extremal point of Py in which x* € {0,1}. But Py may
have extremal points x for which some elements of x are neither O nor
1. We propose to solve Sudoku puzzles by first finding a feasible point,
say by solving (4), and then moving across the feasible set under the
influence of a continuous objective function that favors points x that
have O or 1 elements. By doing so, an extremal point of Py is found
which represents the solution to the puzzle.

The Shannon entropy [17] is a suitable objective function for solving
Sudoku puzzles. For a vector p = [p1,...,Dn] satisfying 1"p=1
and p > 0, a probability mass function (PMF), the entropy is H (p) =
— Y%, pilog pi. The uniform distribution, where p; = L for all 7,
yields a maximum entropy of log n. A PMF where p;, = 1 for some ¢
and p; = 0 for j # 7 yields a minimum entropy of zero.

For the problem at hand, ;1 is a PMF when any two of its sub-
scripts are fixed, e.g., fix ¢ and j then the entropy of ;. is H(x;;.) =
— 22:1 x;;% log ;1. Summing over ¢ and j yields the total entropy

H(X) = — Eﬂ’,‘l‘jk logmijk. (9)

4,5,k

Feasible points in Py that have probability distributed among many el-
ements of x have higher entropy than the extreme point where the prob-
ability is concentrated in 81 of the elements (x € {0, 1}) for which the
entropy is zero. The entropy function is concave. Thus, starting from
any feasible point with high entropy and moving across the feasible set
toward points of lower entropy should ultimately lead to the extreme
point for Py which solves the puzzle. Thus, an optimization problem
for solving Sudoku puzzles is

min . H(x), s.t. Ax=1, x> 0. (10)
Unfortunately, this is not a convex optimization problem because it
attempts to minimize a concave objective [18]. Maximizing in (10) is
an easily solved problem (using software). The next section discusses
ways to solve (10).
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IV. CONCAVE MINIMIZATION OVER A POLYHEDRON

The minimum of entropy (a concave function) over a polyhedron is
achieved at a vertex x* with local minima possibly occurring at other
vertices. On any line between vertices, the entropy will be either mono-
tonic or pass over a peak. Therefore, to find the global minimum of
entropy on the feasible set Py, our algorithm alternates between step-
ping in directions that are locally up hill (to escape local minima) and
locally down hill. We introduce the notation % for exploring entropy in
descent directions and use X when moving in directions of ascent.

‘We adopt a heuristic exploratory strategy for finding the minimum of
entropy on the feasible set Ps. Starting from a feasible point, a descent
direction is derived from local information about the entropy. This di-
rection is explored until a minimum of entropy is reached. If the min-
imum value is zero, corresponding to a {0, 1} extremal point, then the
puzzle is solved. If not, then the starting feasible point must be on the
wrong side of the entropy peak. Therefore, a step is taken in a direction
of increasing entropy with the objective of passing over to the opposite
side of the peak. Then the descent exploration is repeated. Each itera-
tion of this process involves solving convex optimization problems. As
shown in Section V, this solves most Sudoku puzzles in a small number
of iterations. A few remarks about each of these steps is provided and
then a summary is given.

A. Finding a Feasible Point

Finding a point in the feasible set Py for a given puzzle amounts to
solving (4). Using convex optimization software, this problem is solved
as

minimize 0, subjectto Ax =1, x > 0. (11)

Let X be an initial feasible point. It is possible that X solves the
puzzle. This may be ascertained by checking A[x] = 1, where [x]
rounds the elements of x to zero or one: [z] = 1,if 0.5 < = < 1,
and x = 0 otherwise. If [X] does not solve the puzzle, then additional
steps are needed as described in the subsections that follow. The full
initialization procedure may be characterized as follows.

Algorithm INIT: Find Initial Feasible Point

1) Solve the feasibility problem:
minimize 0, subjectto Ax =1, % > 0.

2) If A[x] = 1, then stop. The puzzle is solved.

B. Exploring Down Hill Directions

Using the first-order Taylor approximation for F' around x, F'(x +
F(x) + vz, where y is the gradient of F' (assumed to be
differentiable) at x, the inner-product y” z may be interpreted as the
change in F' for small steps z. The method of steepest descent for un-
constrained minimization chooses a search direction z to maximize the
decrease in F' by minimizing y” z subject to ||z|| < 1. Once the search
direction is found, a line search is performed to minimize F(x + pz)
with respect to p.

Ideas from steepest descent may be applied to decrease entropy
without leaving the feasible set Py. At a feasible point X, let y be an
ascent direction computed from derivatives of H (x) at X. Alternatives
for y include the gradient

z) =

y=VH(x) = 0[;}(:() =—logx—1

X=X

(12)
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and the Newton direction

13)

= _—xologk — %

_ [o*H(x)]”' 0H(x)
- {axaxl' ] ox

X=X

where ) stands for element-wise product of vectors and the logarithm
is applied element wise to x. To decrease H, X should be moved in
a direction opposite to y. However, it is conceivable that X — py is
infeasible for all + > 0. A search direction that keeps the updated point
%X+ z in Py can be found by solving the following convex optimization
problem:

min. f(z), s.t. A(x+2z)=1,%x+z>0 (14

where f(z) = y” z or f(z) = ||ay + 2||. Since y points in a direction
of increasing entropy, when f(z) = y” z (14) looks for z that points
as opposite to y as possible subject to the condition that taking the step
%+z remains in the feasible set for the puzzle Py. The objective f(z) =
||y + z|| measures directions opposite to y using a norm, which is
minimized when z is as close to —ay as possible. The scalar « is a
user defined parameter used to accelerate convergence. Note that when
using the norm objective in (14), the solution z is not the projection of
—ay onto the feasible set because the update X + z is also constrained
to be feasible. While any valid norm may be considered, the results in
Section V considered only the /; and [, norms.

After each descent step the test point X is replaced by x+z, %X «+— X+
z. The termination condition A[%X] = 1 is applied to the updated x. The
descent procedure is started from the most recent up hill step: X = x.
The full descent procedure may be characterized as follows.

Algorithm DOWN: Entropy Descent

1) Compute an ascent direction y at x using (12) or (13).
2) Find a feasible step z by solving

minimize y’ z or ||ay + 2|,

subjectto A(x+z)=1,%x+2z > 0.

3) Update: X — % + z.
4) If A[x] = 1, then stop. The puzzle is solved.

C. Stepping Over the Entropy Peak

Descending entropy from a starting feasible point X € Py by ap-
plying multiple descent steps may not terminate in a solution point with
zero entropy which solves the puzzle. This condition is easily detected
by testing, for example, the norm of the update z, which is zero when
no further descent steps can be taken. In this case, the starting feasible
point X was on the wrong side of the entropy peak. A new descent
search may begin starting from a feasible point on the opposite side of
the peak.

Points on the opposite side of the entropy peak may be reached by
stepping in a direction of locally increasing entropy. Such steps can be
found by replacing the minimization in (14) by maximization. This in
fact steps past the entropy peak to the opposite side of the feasible set
in the direction of locally fastest increasing entropy. The full ascent
procedure may be characterized as follows.

Algorithm UP: Entropy Ascent

1) Compute an ascent direction y at % using (12) or (13).
2) Find a feasible step z by solving

minimize —y' z or |lay — z]|,

subjectto A(k+z)=1,%+2z>0.

3) Update: X «+— %X + z.
4) If A[X] = 1, then stop. The puzzle is solved.

Algorithm Summary

With the procedures defined above, a full Sudoku solver may be de-
scribed by referring to the flow graph below.

Algorithm: Sudoku Solver

% =k
- 2l =0
INIT —>—"+ DOWN |~ = TP |
llzl| >0

The arrows in the flow graph indicate control flow. The diamond
shaped block is the only decision point in the algorithm (aside from
checking for a solution which is done inside each block). The rectan-
gular blocks are algorithmic procedures. The INIT procedure finds an
initial feasible point x which is taken as the initial starting point X = x
for the down hill search. The DOWN procedure takes a single step in
an entropy descending direction yielding a new %. As shown in the flow
graph, descent steps are repeated until the norm ||z|| of the step direc-
tion on the feasible set is zero. Then starting from %, UP takes a step in
an entropy ascending direction yielding a new x. This is taken as the
starting point for a new downward search. This process repeats until a
solution is found. The stopping condition A[x] = 1 is checked after
each update inside the procedure blocks.

V. RESULTS

The proposed Sudoku solver based on entropy minimization was
applied to 4000 puzzles across four levels of difficulty: “easy”,
“medium”, “hard” and “evil”. One thousand puzzles in each category
were generated in Matlab using Wang’s puzzle generation code [19].
Three different Matlab-coded puzzle solvers were compared: the
sparse optimization approach [10] which solves (6), the binary integer
programming approach [9], and the entropy minimization approach
of this correspondence. The number of puzzles that a technique could
not solve are recorded in Table I, in the columns labeled “F.”, along
with statistics (mean and standard deviation) on running times for
each of the methods. For the entropy-based method, statistics (mean
and standard deviation) on the total number of iterations is also given.

A. General Remarks

From the perspective of the techniques discussed in this correspon-
dence, a puzzle is particularly easy to solve if the feasible set Py con-
sists of a single point, then the puzzle is solved simply by finding a
feasible point. This is easily accomplished using the INIT procedure
which solves (4). In these cases, the sparse optimization (6) also solves
the puzzle.
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TABLE I
SUMMARY OF EXPERIMENTS WITH THREE SUDOKU SOLVERS
Easy Medium Hard Evil
F. Time Iter. F. Time Tter. F. Time Iter. F. Time Iter.

" o u o “w o o o " o " o o o o o
Al 0 019 004 204  0.19 0.03 750  0.19 0.03 958 0.18 0.02
B| 0 026 0.04 22 877 5333
C 0 0.1  0.03 0 0 0 013 0.06 022 049 0 022 012 095 1.03 2 029 025 145 2.02
D| O 01 001 0 O 0 0.14 02 031 179 0 03 054 175 513 1 048 156 331 1449
E 0 0.1 0.01 0 0 1 025 1.01 053 392 5 1.2 359 245 8.89 0 1.5 1.73  2.89 2.97
F 0 01 001 0 O 0 029 042 029 0.68 1 1.01 121 146 2.04 3149 165 227 2.84
G | (g,0)=(12,1.0)-10"2 | (u,0) = (4.7,1.6) - 106 (u,0) = (1.3,0.1) - 10~3 (u,0) = (1.4,0.1) - 10—3
A | Sparse optimization
B | Binary integer linear programming
C | Entropy: DOWN(objective = yT'z, % + % + z), UP(objective = —y Tz, & < %X+ 2)
D | Entropy: DOWN(objective = yT'z, % + % + 0.5z), UP(objective = —yT'z, & + % + 0.52)
E | Entropy: DOWN(objective = ||10y + z[1, X + % + 2), UP(objective = ||10y — z||1, X + %X + 2)
F | Entropy: DOWN(objective = ||10y + z||2, X + X + 2), UP(objective = |10y — zl|2, X < X + z)
G | Dancing Links

A situation in which the minimum entropy method quickly solves
a puzzle is when the initial feasible point x falls close enough to the
solution x* that the thresholding operation [x] = x* solves the puzzle.
This frequently happens when the feasible set Py is “small” due to a
large number of given clue constraints.

Of the 4000 puzzles used, all 1000 easy puzzles were solved by the
initial feasible point. In other words, the initial feasible point was either
the solution or close enough so that thresholding produced a solution.
In the sets of medium, hard and evil puzzles, 795, 250, and 42 were
solved by the initial feasible point, respectively. These cases did not
test the entropy minimization algorithm because they were solved by
the initial value.

Remarks on Sparse Optimization

Comparing the numbers of puzzles not solved by the sparse opti-
mization approach (6) (see line A in Table I) to the numbers of puzzles
solved by the initial feasible point suggests that the sparse approach is
really only finding a feasible point and that the /1 -norm minimization
offers no benefit. For example, the 42 evil puzzles solved by sparse op-
timization were also solved by (4), the INIT procedure, without min-
imizing the /4 -norm. This observation holds true in all 4000 puzzles
except for one medium puzzle.

Remarks on Binary Integer Linear Programming

As the data in line B of Table I show, the 1000 easy puzzles were
quickly solved by the binary integer programming approach. However,
the time required to solve medium puzzles by this technique increased
dramatically: almost 9 seconds on average for each puzzle. The Table
shows that 22 out of 1000 medium puzzles were not solved. In these
22 instances, the solver exceeded its internal maximum number of iter-
ations and exited. These 22 instances required between three and eight
minutes each. The other 978 medium puzzles that were solved took less
than one minute for the solution to emerge. If given enough time and
iterations, the binary integer programming approach would certainly
find a solution to any puzzle. The time required for this technique to
solve hard and evil puzzles increased dramatically. In some cases, the
solver did not return after more than an hour of processing. Therefore,
we did not apply this technique to puzzles at the hard and evil levels.

Remarks on Dancing Links

The mean and standard deviation time (y, o) for solving Sudoku
puzzles using the Dancing Links algorithm are shown on line G of
Table 1. Notice that Dancing Links solved the easy, hard and evil puz-
zles in about 1.3 milliseconds (ms) with standard deviations for the
hard and evil puzzles of 0.1 ms. Interestingly, the puzzles rated medium

were solved much faster with an average solution time of 4.7 microsec-
onds (ps) and standard deviation of 1.6 ps. It is not too surprising
that Dancing Links is so much faster than the other techniques because
Dancing Links performs no mathematical operations. It simply exam-
ines the satisfaction or not of a hard constraint as it searches a tree in
depth first order, backtracking whenever a constraint is violated. These
results show that for 9 x 9 puzzles, this exploration is very fast.

Remarks on Entropy Minimization

To properly interpret the iteration statistics in Table I, we note that
the initialization procedure INIT was not counted as an iteration. Each
call to UP and DOWN increased the iteration count by one. The easy
puzzles were solved in zero iterations because they were all solved by
the initial feasible point produced by INIT. The average number of
iterations required to solve the medium puzzles is less than one because
795 of them were solved in zero iterations by the initial feasible point.

Because the initial feasible point solved many of the puzzles, the
proposed entropy minimization strategy was really only tested on 205
medium, 750 hard and 958 evil puzzles. Here we report on results for
several different variations depending on which objective was used and
the update step size. In all cases, the Newton direction in (13) was used
in the DOWN and UP procedures. The maximum number of DOWN
and UP steps was set to 15 of each. In some cases, increasing the max-
imum number of steps would allow a puzzle to be solved. For lines C
and D in Table I, the inner product objective was used in the UP and
DOWN procedures. For lines E and F, the /1 and /> norms were used
with & = 10. In line C of the Table, the update in the UP and DOWN
procedures was set to the half step x «— x+ 0.5z. In all other cases, the
full step x «— x4 z was used. None of these entropy-based approaches
solves all of the puzzles, but all of the puzzles are solved by one of
these four approaches. Many other variations are possible by using dif-
ferent search directions, mixing different objectives, and varying the
step sizes in the UP and DOWN procedures. In general as the difficulty
of the puzzle increases, more iterations are required to solve the puzzle.
Since each iteration requires solving a convex optimization problem,
the complexity is quite low. As our algorithm required the evaluation
of logarithms, to avoid calculation of log 0, after every update in the
algorithm, probabilities below 10™% were set to 10™%.

B. Stochastic Sudoku Puzzles

One way to state the exact cover problem is: Given a matrix whose
elements are either zero or one, find a subset of the rows of the
matrix so that there is a single one in each column of the selected
rows. Knuth’s Algorithm X, and its efficient implementation known
as Dancing Links, is a depth-first backtracking search algorithm for
solving exact cover problems [8].
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Fig. 1. A stochastic Sudoku puzzle. The filled in cells provide clues, which are
given as a probability distribution on the contents of filled cells. In this case,
uniform probabilities are assumed if a cell contains more than one digit. For
example, one clue is that the fourth cell on the first row may be filled by one of
the digits 4, 6, 7, or 9 with equal probability.

The clues in a standard Sudoku puzzle require that certain cells be
filled by certain digits. This sort of puzzle may be formulated as an
exact cover problem and solved efficiently by Dancing Links. Now con-
sider a variation on Sudoku in which clues specify probability distribu-
tions on the contents of certain cells. Fig. 1 shows an example of such
a puzzle taken from [1]. This sort of stochastic Sudoku puzzle cannot
be directly formulated as exact cover. Without exactness in the clues,
Dancing Links does not apply. However, the stochastic puzzle specifi-
cations can be accommodated in the framework presented in this cor-
respondence. The proposed algorithm solved this puzzle in 2 seconds
after 16 iterations. A full study of stochastic puzzles is beyond the scope
of this correspondence.

We provide this example to suggest that alternatives to Dancing
Links are valuable because many problems including stochastic Su-
doku, error correction decoding, and others can not be formulated as
exact cover problems. Furthermore, other techniques such as Bartlett’s
[9] that do guarantee a solution to exact cover and that can accom-
modate probabilistic specifications can be very slow. The algorithm
in this correspondence offers modest computational complexity for
Sudoku, and while it does not guarantee a solution, it does solve over
99% of puzzles in all levels of difficulty, and it can solve stochastic
puzzles. Applications of our approach to error correction decoding
will be reported in a forthcoming publication.

VI. CONCLUSION AND FUTURE WORK

The Sudoku puzzle problem was formulated in terms of finding a
vector of 729 probabilities obeying certain constraints. The constraint
set for a given puzzle is a polyhedron with one {0, 1} extremal point
having zero entropy. All other feasible points have entropy greater than
zero. Therefore, entropy minimization was proposed as a means for
solving Sudoku puzzles. However, entropy can have local minima on
the boundary of the feasible set. Because entropy is a concave function,
an iterative procedure was developed to step over local peaks in entropy
to find the extremal point solution. Each step of the procedure involves
choosing a search direction, an objective function, and a step size. This
iterative procedure was tested on thousands of puzzles. Linear, [;, and
l> objectives with the Newton search direction and full or half steps
were able to solve every puzzle tested.

The framework presented here accommodates other choices for ini-
tial conditions, search directions, step sizes and objectives. Our fu-
ture work in this area aims to find a combination of these that solves
any puzzle. Rounding procedures offer another avenue for exploration.
An alternative to the ordinary rounding used in this work, geometric
rounding [20], will also be explored in future work.
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