arXiv:cs/0507053v1 [cs.DS]| 20 Jul 2005

Nonrepetitive Paths and Cycles in Graphs
with Application to Sudoku

David Eppstein

Computer Science Department
Donald Bren School of Information & Computer Sciences
University of California, Irvine
eppst ei n@ici . edu

Abstract. We provide a simple linear time transformation from a die€lobr undirected graph with labeled edges
to an unlabeled digraph, such that paths in the input grapiihich no two consecutive edges have the same
label correspond to paths in the transformed graph and gy Using this transformation, we provide efficient
algorithms for finding paths and cycles with no two conseuéqual labels. We also consider related problems
where the paths and cycles are required to be simple; we fiiwiket algorithms for the undirected case of these
problems but show the directed case to be NP-complete. Wg app path and cycle finding algorithms in a
program for generating and solving Sudoku puzzles, and shperimentally that they lead to effective puzzle-
solving rules that may also be of interest to human Sudokalpolvers.

1 Introduction

In an edge-labeled directed or undirected graph, we sayathmth or cycle (not necessarily simple) is
nonrepetitiveif no two consecutive edges share the same label. We aresirerin this paper in finding
such nonrepetitive paths and cycles. We provide the foligwiew results:

— We show how to transform any input graghwith n vertices andn labeled edges into a new directed
graph nfG) with O(m) edges and vertices, such that any nonrepetitive paBidorresponds to a path
in nr(G) and vice versa. The transformation can be performed infitiee, if we assume that the edges
at each vertex of the input are grouped according to the@l$afin practice this grouping can achieved
efficiently using a hash table if it does not exist already).uBing strong connectivity analysis in(@),
we show how to identify, in linear time, all edges @Gfthat belong to nonrepetitive cycles. By using
depth first search in (&) we identify, given a vertex and labelL, all edges ofG that belong to a
nonrepetitive path starting fromwith initial edge labelL, again in linear time.

— We provide efficient algorithms for finding nonrepetitivangile paths in undirected graphs. In linear
time, we can test whether there exists such a path betweetwanyertices of the input graph. In time
O(n?), we can list all edges of the graph that belong to nonrepetitimple cycles.

— We show that, for edge-labeled directed graphs, it is NPpieta to test for the existence of a nonrepet-
itive simple path between two vertices, or to test whethavarngedge belongs to a nonrepetitive simple
cycle.

— We consider a rule-based approach to solving Sudoku pufZlekat attempts to model human rea-
soning more accurately than would a brute-force backtreckearch for the solution. We define several
polynomial time puzzle-solving rules for Sudoku based anadgiorithms for nonrepetitivity analysis in
graphs, and validate experimentally their effectivenés®lzing randomly generated Sudoku puzzles.

Readers interested primarily in Sudoku may skip directlgeotionB. In the remainder of this section
we discuss prior research related to our concept of nontiefigt and in Sectiod 2 we describe in detail our
algorithmic results on nonrepetitive paths and cycles.

http://arXiv.org/abs/cs/0507053v1

1.1 Prior Work

We are not aware of previous work on our version of nonrapigyit but there has been some research
on related concepts of repeated labels in paths and cydgwelious work on certain number-theoretic
algorithms [4] we noted that the problem of finding a path lestavtwo vertices that uses each label at most
once (regardless of consecutivity) is NP-complete; this loa proven by a simple reduction from 3SAT.
In that paper, we found such paths by resorting to a heussticch that lists short paths until one without
repetitions is found; alternatively, if the number of pbssilabels is a small numbéy it is straightforward

to find such paths by dynamic programming in the fixed-pararrteactible time boun®(2m). The idea

of avoiding repeated labels also occurs in the color codiogpriique of Alon, Yuster, and Zwick [1] for
finding long paths and cycles in unlabeled graphs.

Another concept closely related to nonrepetitivity is thigdlternating paths in graph matchings; indeed,
an alternating path is just a nonrepetitive simple path iraglgin which edges have been labeled as belong-
ing to or not belonging to a given matching, so Edmonds’ ldossontraction algorithm [3] can be seen as a
special case of searching for nonrepetitive paths in uadidegraphs. Our results on simple paths show that
alternating path search algorithms can be extended moerabnto the case of undirected nonrepetitive
simple paths, but not the case of directed nonrepetitivplsimpaths.

2 Nonrepetitive Paths and Cycles

In this section we describe our results on algorithms forifigechonrepetitive paths and cycles in arbitrary
graphs. We begin with algorithms for finding paths and cytiies need not be simple.

2.1 Paths and Cycles Without Requiring Simplicity

Our algorithms for finding paths and cycles that need not tnplsi operate by replacing each vertex by a
gadget a subgraph that allows paths to connect through the vertigxvehen the path edges that enter and
exit the vertex have different labels. The obvious way td@aahthis is to use a gadget consisting of a pair
of vertices per label, one for incoming edges and one forantgedges with that label, and to connect each
incoming vertex to each differently-labeled outgoing errtHowever, this would result in nonlinear size

for the replacement graph when vertices can have many lafmtent to them. It is possible, however, to

replace vertices by somewhat more complex gadgets thatdieeeroportional to the number of labels at

each vertex; this technique leads to a linear overall size@dor our replacement graph.

Lemma 1. For any k, there is a directed graph D with(&) vertices and edges, one vertex labeled x for
each integerl < x <k, and one vertex labeledfor each integed < x <k, such that x can reachin D if
and only if x£y.

Proof. ForD = 2, the result is clear: simply use four vertices, and conbéo® and 2 tal. For largeD, we
construct by induction a gragd’ with labels in the range £ x < [k/2]. For each K x <k, lety = x+1

if xis odd,y =x—1if xis even, and = [x/2]. We conneck toy, y to x, bothx andy to the vertex labeled
zin D/, and the vertex labeledin D’ to x andy. It is easily verified by induction that the resulting graph
satisfies the requirements of the lemma, and®@s vertices and edges. O

The implementation of these algorithms that we use in ouoBwgrogram uses a similar but slightly
more complicated construction that, when possible, grtalpss into triples instead of pairs; an example of
this triple grouping gadget for labels consisting of theeniligits of a Sudoku puzzle is shown in Figlite 1.

We are now ready to define (@). Suppose we are given a gra@twith labeled edges. For each vertex
vin G, use Lemma@ll to create a gadget ifiGirfor v, with the numbek of incoming and outgoing labels in

2

RN
N =l N

{

@@@Q@Q@QQ

Fig. 1. Gadget for transforming nonrepetitive paths into unlathg@iaths. Each of the nine labeled vertices at
the top can reach eight of the nine vertices at the bottonyeéixg the one with the matching label.

the gadget equal to the number of distinct labels on edgéeinctov in G. For each edgév,w) labeledx in

G, create an edge in (&) from the vertex labeled in V's gadget to the vertex labeledn w's gadget. This
construction results in a graph wi®(m) vertices and edges; it can be performed in t@{en) if the input
graphG has its edges grouped by label at each vertex. If this grguibires not already exist, it can be found
efficiently using hashing. The following result follows inegliately from the properties of the replacement
gadgets used to construct &):

Lemma 2. If 1tis a path innr(G), the sequence of gadgets through whicpasses corresponds to a non-
repetitive path in G. Conversely, ifis a nonrepetitive path in G, there exists a patmintG) that passes
through a sequence of gadgets corresponding to the verices

Theorem 1. Given a labeled graph, in ®n) time we can identify all edges that belong to nonrepetitive
cycles of G.

Proof. We construct niG) and compute its strongly connected components. EBdgg with labelx belongs
to a nonrepetitive cycle i@ if and only if the vertex labeled in V's gadget in nfG) and the vertex labeled
xin w's gadget in nfG) belong to the same strongly connected component, whiche&ssked in constant
time per edge if we label each vertex in @) by the identity of the component containing it. O

Theorem 2. Given a labeled graph, a vertex v, and a label x, itn@ time we can identify all edges that
belong to nonrepetitive paths of G that have v as their ihitertex and x as their initial edge label.

Proof. We construct niG) and use depth first search to identify all vertices reacHate the vertex labeled
xin Vv's gadget in nfG). It is possible for a nonrepetitive path @to reach edgéu, w) with labely, starting
from v and with initial labelx, if and only if the vertex labeleg in u's gadget is one of the vertices reached
by the search. O

Due to the path-preserving nature of our transformationcavealso use it as part of efficient nonrepet-
itive versions of other path algorithms: for instance, sb&irnonrepetitive path&;shortest paths, shortest
cycles, etc. The hierarchical nature of our vertex gaddéis/sthem to be updated by edge insertions or
deletions that may change the label sets at vertices, imitbgac time per update. We omit the details.

By applying our transformation to an undirected graphin which we label each edge by its own
identity, we obtain a directed graph(@) such that paths in (&) correspond to paths i6 that do not
traverse the same edge consecutively in opposite directidris application of our nonrepetitivity analysis
may be of use for path problems in undirected graphs withthegaeights but no nontrivial negative cycles.

3

Fig. 2. Gadget for conversion of an undirected nonrepetitive stnmalth reachability problem with multiple
edge labels into one with only two labels, via Lema 3.

2.2 Undirected Simple Paths and Cycles

The requirement that paths be simple (that is, each verteMrsat most once) is unimportant for our
Sudoku applications, but it seems to make the problem ofrfqhdon-repetitive paths more complex, even
in undirected graphs. However, such paths can still be fefficlently. To begin with, we describe a gadget
similar to that of Lemma&l1 that allows us to assume that ouplgsaedges only have two labels (which by
convention we can assume are the numbers 0 and 1).

Lemma 3. For any labeled undirected graph G, we can construct in Iméme a transformed graph
usp(G), such that the edges obp(G) have only two labels, 0 and 1, and such that simple nonrépetit
paths in G correspond to simple nonrepetitive pathespG) and vice versa.

Proof. We replace each vertex @, connected to edges withlabels, by a gadget withk2- 1 vertices in
uspG): (vi,0), (vi,1), andv. For each edgév,w) labeledi in G, we connecty,i,0) and(w,i,0) in uspG)
by an edge labeled 0. In addition, we connetit each(v,i,0) with label 1, and to eacfy,i, 1) with label O,
and we connediv,i,0) to (v,i,1) with label 1.

Then, for any nonrepetitive pathiin G, we can find a nonrepetitive path in Y& as follows: for
each edge im, include the corresponding edge in (G, and for each consecutive pair of edges through
v labeledi and j, include the path through vertic€s i,0), v, (v, j,1), and(v, j,0). This clearly forms a
nonrepetitive simple path in ugB). Conversely, for any nonrepetitive simple path in (&p we can form
a path inG by keeping only the edges @& corresponding to edges of the fokmi,0) to (w,i,0) in uspG).
Whenever such a path passes through a vertex gadget (@ uspmust pass through the central vertgx
and simplicity prevents it from leavingthrough the same vertéx,i,0) from which it entered. O

In Figure[2 we depict the gadgets used to replace each vertbe proof of Lemmal3.

Goldberg and Karzanov [6] defineskew-symmetric grapto be a directed graph, together with an
involution o on its vertices that reverses the orientation of each edugy define the-reachability problem
to be one of finding a path in a skew-symmetric graph from argiwertexs to a(s) such that, for each
vertexv of the graph, at most one efando(v) is used in the path. Such a path may be assumed to be
simple, for any loops can be removed without violating thevslsymmetric condition. As we now show,
nonrepetitive simple paths in undirected graphs with lyiredge labels can be transformed into a skew-
symmetric reachability problem.

0 o(s)

Fig. 3. Conversion of an undirected binary nonrepetitive simpléh paachability problem into a skew-
symmetricr-reachability problem, via Lemnia 4.

Lemma 4. Let G be an undirected graph in which the edges are labeled agd)1, and let p and g be
two chosen vertices in G. Then in linear time we can consfiaat skew-symmetric graphs, and nodes s
in these graphs, such that s angs) are r-reachable in one of the two graphs if and only if theresesxa
nonrepetitive simple path in G from p to q.

Proof. For each vertex in G we construct two vertice@/, 0) and(v,1) in ssqG), with o((v,i)) = (v,1—1).
For each edgév,w) labeled 0 inG we connecty, 1) to (w,0) and(w,1) to (v,0) in ssgG). For each edge
(v,w) labeled 0 inG we connectv,0) to (w,1) and (w,0) to (v,1) in ssqG). Additionally we create new
verticess anda(s) in ssqG). To test whether there exists a simple nonrepetitive paim fo to q starting
and ending on the label 0, we connstb (p,1) and(qg,1), and connectp,0) and(q,0) to a(s); such a path
exists if and only ifs ando(s) arer-reachable. The same construction with a slightly diffeighoice of
connections frons ando(s) allows testing for paths starting and ending with the othez¢ combinations
of labels. O

One of the four skew-symmetric graphs constructed in thefpgbLemma# is shown in Figuld 3.

Theorem 3. Given any undirected edge-labeled graph, and vertices pcgnale can test in linear time
whether the graph contains a nonrepetitive simple path fpotm g.

Proof. We use Lemma@l3 to reduce the problem to one with only two lalbsis Lemmal4 to transform it
into one of skew-symmetric-reachability, and apply Goldberg and Karzanov's linearetskew-symmetric
r-reachability algorithm. O

To test whether an edde, v) belongs to a nonrepetitive simple cycle, we may remove tige edd its
incompatible neighboring edges from the graph and app$yréachability test. In this way, we can find all
edges belonging to nonrepetitive simple cycles, in tdfar).

A faster time bound is possible to test for the existence afigles nonrepetitive simple cycle, following
closely related algorithms of Gabow et al. [5] and Cook [2hyAvertex in a graph with binary edge labels
that is incident only to edges with a single label can not bé plsuch a cycle, and can be removed;
also, any bridge in the graph can not be part of a simple cyelege(itive or no) and can be removed. If
repeatedly removing single-label vertices and bridgegelea nontrivial remaining graph, it must contain

5

D 2%

O

;S
A

Fig. 4. Gadgets for proof of NP-completeness of directed nonrigesimple path problems. Left: variable
gadget; center: clause gadget; right: connecting the gadge

a nonrepetitive simple cycle; we omit the details. As Gabowle[5] show, dynamic graph algorithms
can be used to implement this removal process in l@(lmlogo(l) n). Unfortunately, it is possible that,
even after the removal process terminates, there exissdatigedo not belong to any nonrepetitive simple
cycle. Perhaps there is some way of combining this idea witkeaontraction to find all cyclic edges more
efficiently.

2.3 Directed Simple Paths and Cycles

LemmadB extends easily to directed graphs. Unfortunatedyrest of the algorithms in the previous section
do not.

Theorem 4. It is NP-complete, given a directed graph with binary eddeela and two specified vertices p
and g, to determine whether the graph contains a nonrepetg#imple path from p to g, or whether an edge
from g to p belongs to a simple nonrepetitive cycle.

Proof. We provide a standard NP-completeness reduction from 3§#iKfiability of Boolean formulas in
conjunctive normal form with at most three variables peuséa That is, given such a formula, we construct
a labeled digraph such that there exists a nonrepetitivplgipath if and only if the formula is satisfiable.

The graph we construct has a subgraph for each vanaldeariable gadgetshown in Figuré#4, left.
This subgraph has incoming and outgoing edges labeled l¢amdonnect these two edges along either
of two paths. The vertices with incoming 1-edges and outgéiedges along these two paths are labeled
v along one path and labeledv along the other path. We also include in our constructiongfch clause
of the form e.g(uU ~vU ~w), aclause gadgetshown in Figurél4, center. This gadget again has incoming
and outgoing 1-edges, which can be connected through amhyesf paths, each of which goes through one
of the vertices with the appropriate label from a variablégg. Each such labeled vertex should occur in at
most one clause gadget, so the paths in the variable gadgetil e made long enough to create as many
labeled vertices as will be needed.

The overall structure of the constructed graph connectthafle gadgets in an arbitrary sequence by
their incoming and outgoing 1l-edges. A simple path from ttaet 40 the end vertex in this graph thus
chooses one path for each gadget; we cannot form paths thptgut of sequence from variable gadgets
to clause gadgets or vice versa because the nonrepetitmitstraint disallows such paths. Thus, a simple
nonrepetitive path exists if and only if we can choose an edusriable label per clause gadget, which
happens if and only if we can choose the paths through thahlargadgets in such a way that each clause

6

gadget has an unused variable label, which happens if agdfamd can assign truth values to the variables
in such a way that each clause has a true variable.

To modify the proof to handle the question of whether an edderiys to a simple nonrepetitive cycle,
simply add an edge from, the end of the path constructed above, badg, tand test that edge. O

3 Sudoku

Sudoku [7] is a popular puzzle, printed daily in newspapedapan, the United Kingdom, and the USA, in
which the aim is to fill a < 9 matrix of cells with digits from 1 through 9. Each puzzle sisits of a grid in
which some digits have already been filled in, and the goal fdlin the remaining cells so that each digit
appears once in each row, once in each column, and once iroéaife 3x 3 squares into which the grid
has been subdivided. Several (difficult) examples of suazlps are shown in the figures of this section.

A proper Sudoku puzzle must have a unique solution, and iildhoe possible to reach that solution
by a sequence of logical deductions without trial and e#tihough Sudoku, when generalizedBd x B2
grids to be filled in by numbers from 1 &%, is NP-complete [8], it is not difficult for a computer progrdo
solve most Sudoku puzzles quickly by a brute force backingc&earch. However, it is of interest to instead
attempt to mimic human Sudoku solvers, and derive rulessiblge Sudoku puzzles without backtracking,
first for the standard Al reason that such attempts can teaaotugh about the power of human and machine
reasoning, and second because human-like problem solajpapdities allow us to automatically estimate
the difficulty of Sudoku puzzles for human solvers by exangrthe rules necessary to solve each puzzle.
In particular, the more accurately we can model the poweunaoidm-like reasoning by a rule-based Sudoku
solver, the more accurately we will be able to automaticditinguish “proper” puzzles that allow human
step-by-step solution from “improper” puzzles that seeggtyimequire trial and error for their solution.

To model the requirement of step-by-step deductive salutie first require that all rules used by our
solver must be implementable as algorithms that, when géped toB? x B? sized puzzles, take time poly-
nomial inB. Since in actual Sudoku puzzl&sis a small number, three, we can tolerate polynomialB of
with moderately large exponents in our runtimes. Howeves, polynomial time restriction would not by
itself prevent us from including rules that perform a lindi@mount of backtracking, such as experimentally
filling one cell and then applying other rules in sequencedieiinine whether that choice leads to an in-
consistency. To avoid such limited backtracking rules, i8e demand (although this is less mathematically
well defined) that our rules perform a single action, typicakarching for some pattern that will allow us to
resolve whether or not some digit can be placed in some edtier than merely determining consequences
of tentative decisions.

3.1 Local Rules

In the Sudoku solving program we implemented, many of theleuzolving rules ardocal; that is, they
examine only one or two digits, rows, columns, or squarefi®fpuzzle at a time, rather than considering
the puzzle as a whole. In order to place our new nonlocal inlése context of our solver, and make sense
of our experimental results, we briefly describe the othealloules we have implemented:

— If a digit x has only one remaining cell that it can be placed in, withimsw@ow, column, or square, then
we place it in that cell. Any potential positions wincompatible with that cell (because they lie in the
same row, column, or square) are removed from future coradida.

— If a cell has only one digik that can be placed in it, we plagén that cell. Incompatible positions for
are removed from future consideration.

— If some three cells, formed by intersecting a row or columthwisquare, have three digits whose only
remaining positions within that row, column, or square ar®ag those three cells, we prevent all other

digits from being placed there. We also remove positiongHose three forced digits outside the triple
but within the row, column, or square containing it.

— If the cells of a square that can contain a dig#ll lie in a single row or column, we eliminate positions
for x that are outside the square but inside that row or columnil&iw if the cells that can contair
within a row or column all lie in a single square, we eliminatesitions that are inside that square but
outside the row or column.

— If two digits x andy each share the same two cells as the only locations they malpded within some
row, column, or square, then all other digits must avoid ¢hes cells.

— If the placement of digik in cell y can not be extended to a placement of nine copiescolvering each
row and column of the grid exactly once, we eliminate gdtom consideration as a placement for

— If the placement of a digik in cell y within a single row, column, or square can not be extended to a
complete solution of that row, column, or square, then waiekte that placement from consideration.

Among these rules, the last two are the most interesting fanalgorithmic point of view. In both
cases, they can be performed using an algorithm based atparatching in bipartite graphs. For instance,
a placement of nine copies of the digitcan be viewed as a perfect matching in a graph in which the
vertices are the rows and columns of the grid, and in which\rertices are connected by an edge when
x can be placed in the cell shared by the row and column cometipg to those vertices. By finding a
single perfect matching, orienting the edges of the grapimfrows to columns on matched edges and
from columns to rows on unmatched edges, and selecting timatched edges whose endpoints belong to
different strongly connected components of this orienteghly, we can find the positions where a placement
of one copy ofx can not be extended to a complete placement of all nine coSieslarly, solving a
subproblem consisting a single row, column, or square carefiresented as finding a perfect matching in
a graph the vertices of which correspond to the nine digitstha nine cells of the row, column, or square,
and a similar strong connectivity analysis finds the plaggméat can not be part of such a solution. In
generalizedB? x B2 Sudoku grids, both of the final two rules involve computingfeet matchings and
strongly connected components @(B?) graphs, each of which has82 vertices, and can therefore be
performed in total timed(B’).

The connection with matching also allows us to reformulbtefinal two rules via Hall's theorem, in a
way that appears superficially less general but closer toemuirement that each rule search for a pattern
that a human could be expected to find:

— Ifthere exist setSof rows andTl of equally many columns, such that the only cells among i®where
digit x can be placed also belong to the columng irthenx can not be placed in a cell that lies in a
column of T but does not lie in a row db

— If for some row, column, or squargthere exists a s@of digits, and a set of equally many cells of),
such that the digits db can only be placed ig within the cells ofT, then only digits ofScan be placed
in the cells ofT.

These two rules could also be restated, reversing the rblesvs and columns in the first rule, and of
digits and cells in the second, but that would not add any rgdityeor solving power to them. This reinter-
pretation makes clear that several of our earlier rulesudyelsned by our two matching rules; however, it is
useful to include the simpler rules in our solver both for poting speed and to allow us to classify puzzles
as more easily solvable.

3.2 Nonrepetitive Cycle Rule

In contrast to the local rules described above, our nonitejitytbased Sudoku rules are all nonlocal, in
that a single application of the rule may consider any cetligit of the puzzle. We begin by describing the

8

513 7T6] |2 9

112/6/3 9 |5 7 8
7 9|5 2 6 3 8

2163 |5 |9 4 7

7 2 9|3 5 6

9/4/5/7 6 3 2 8 1 1

3] 4|6 8 5 7 9 2

69 74 3 2 5 8
5 2(9 1 7] 6 3 O

Fig. 5. A Sudoku grid and its bilocation graph.

bilocation graphof a partially completed puzzle grid, an important tool thalps to visualize the relations
among cells and digits of the puzzle.

In the bilocation graph, we draw a vertex for each unfilled okthe grid. We connect two vertices by
an edge, labeled with a digx if the corresponding two cells lie in a single row, columnsquare of the
grid, and if, within that row, column, or square, those twéschave been determined to be the only ones
that can contain digik. The same pair of cells may be identified as an edge by both amdva square, or
a column and a square; in that case we draw only a single ediyeevdr, the bilocation graph may have
two edges connecting the same pair of vertices, with twefit labels. More than two labels for the same
vertex pair would indicate an inconsistency that prevams3udoku puzzle from being solved.

An example bilocation graph (for an easy Sudoku configunqii® shown in Figur€l5. For instance, the
edge in the upper right square of the figure is labeled witldihie 1 because its endpoints are the only ones
in their square that can contain that digit, and is also &be&lith the digit 4 (so should be thought of as a
multiple adjacency) because its endpoints are the only iorteir column that can contain that digit.

Lemma 5. The bilocation graph has at mo3B* edges.

Proof. Each of the B2 rows, columns, and squares of the puzzle can contribute stBA@dges, one per
digit. O

Nonrepetitive paths in the bilocation graph indicate chaifforcing relationships. For instance, suppose
that we have a path of three edges, labedeg andz. If the first cell of the path is filled in by a digit other
thanx, the first edge forces the second cell to be filled in withxatihe second edge in turn forces the third
cell to be filled in with ay, and the third edge forces the fourth cell to be filled in with &lowever, any
single cell of the path may take on a value other than one ahttident edge labels without inconsistency.
Nonrepetitive cycles lead to much stronger restrictionshencell contents than do nonrepetitive paths:

Lemma 6. In a partially completed Sudoku puzzle, suppose that cedlenigs to a nonrepetitive cycle in
the bilocation graph. Then ¢ may only be filled with one of the digits that label its incident edges in the
cycle.

Proof. Letthose two incident edge labels vandy, and suppose that the solution to the puzzle does not fill
c with x. Then by following the forced values around the cycle, asrilesd above, starting with the edge
labeledx and continuing around the cycle urtils reached again, we see tltahust be filled withy. O

9

5 2 9 5[3] 4] 2
3| 9 |8 1134/ 9 2/ 8
4 7 9 4 6 7| 39
1|5 2 1|5 2 4
9 3 |8 4 92 |3/18 4
7 6|3 5 |9 763 1 2
1 2 6 1 |9|2 4 57 6
5 13 |2 5(7/3 |2
7 8 70 |68
779/6]85 3 4 2 1
o |5/13/4 9 287 6
85 6 2/a8/16 75 3 ¢
6 3 1|5 2 4 9 8 7
9273186 5 4
5 5 85 4/9 7 6 3 1 2
118/ 9|24 5 7 6 2
465731 29 d
o 3 O 137 26 8 9 1 4

Fig. 6. Example of the nonrepetitive cycle rule. The initial stata &udoku puzzle is shown on the top left;

on top right, we see the same puzzle after the local rulescif@®€3.] have been applied to it. On the bottom
left is shown a nonrepetitive cycle in the bilocation grapkthe partially solved puzzle. Due to the existence
of this cycle, we can deduce that only the digits 5 or 6 can aegal in the top left and top right empty cells

of the cycle, in the second row of the puzzle, leaving onlynglsi cell in that row that can contain the digit

7. Once the 7 is placed, the remaining puzzle is easy to saévghiown on the bottom right.

10

Based on Lemmi 6, we define thenrepetitive cycle rulas follows. We identify the se of all edges
that belong to nonrepetitive cycles in the bilocation graghng Theorenill. For each unfilled cell of the
puzzle, we examine the corresponding graph vertex, andatdhe set of edge labels belonging to edges of
Sincident to that vertex. If this set of labels has three orertbgits in it, we have identified an inconsistency
that prevents the puzzle from being solved. If it has twotdjgnowever, we eliminate all other digits as
possibilities for the values of that cell. An example apgiion of the nonrepetitive cycle rule is illustrated
in Figure[®.

If we maintain, as we fill in the puzzle, a set for each digit &ath group of cells of the unfilled
cells in that group available to that digit, we may identifyobation edges in total tim&®(B%), and the
strong connectivity analysis needed to perform the algoriabove also takes this much time. Therefore,
the nonrepetitive cycle rule is a polynomial time rule, agagpiire for our search procedure. Indeed, despite
its global nature it may be more efficient than several of tizall rules we have already defined.

3.3 Repetitive Cycle Rule

If the nonrepetitive cycle rule does not make progress orrtzafig solved Sudoku puzzle, we may still be
aided by other cycles in the bilocation graph.

Lemma 7. Let C be a cycle in the bilocation graph, in which exactly oa@ pf consecutive edges shares
a repeated label. Then the vertex shared by the edges witiepleated label must correspond to a cell that
is filled with that label.

Proof. If the cell were filled with a different digit, its two neightmin the cycle would have to be filled with
the same label, leaving sorke- 3 cells (wherek is the length of the cycle) between them to be filled with
k— 2 values. O

Thus, we define the repetitive cycle rule, as illustratedigufe[d: search for a cyclé satisfying the
criteria of Lemmdl7, and if one is found then fill in the cell icated by the lemma. The search can be
performed by, for each unfilled caland digitd, using Theorerl2 to test whether there exists a nonregetitiv
path that starts and ends with cethnd edge labal. If such a path is found, we fill cetl with digit d. Each
such test takes tim®(B*), so the overall worst case time complexity of this rul©(s®).

3.4 Conflicting Path Rule

We can generalize the repetitive cycle somewhat, by allgwonfigurations that resemble repetitive cycles
except that one of the links may not even be an edge in thedbitotgraph.

Lemma 8. Suppose Pand B are two paths in the bilocation graph, both beginning witlualglabels at
the same cell, and both ending with equal labels at distietifsavithin the same row, column, or square of
the puzzle. Then, in any solution of the puzzle, the stdrottie paths must be filled with the start label of
the paths.

Proof. If this cell were not filled with this label, the forcing reiabships represented by the paths would
cause the end cells of the paths to have the same label, imctavith each other. O

The rule based on Lemr 8 is illustrated in Figure 8.

To search for conflicting pairs of paths, we use Thedrkm 2 tbtfie pairs of cells and labels reachable
by paths from each initial cell and label. If some label canttme last label on edges to more thBA
cells, some two of these cells must conflict; otherwise weteahfor conflicts among the reachable cells
for conflicts by bucket sorting them by their rows, columnsy aquares, i©(B?) time. There aré(B*)

11

3] 18 95 3[1]8/ 6] 7 9 5
6|4 7|2 5/9 64 7 2 3 1 4
2| [1/8/7/9 5 3 6 4 3

7 1 97 |3 21 6 4
1 3 1 |86 3 7
5 2 36 |5 7] 21

6 6 1|7 |5 2 8
6/1 8|4 7 6 1 8/ 4 5
85 3 |1 85 |23 |17 6
472/3[1/8 6 7 9 9

2 59 6|47 2 31 4
414 1879 5 3 6 4 4
8 97 53 2 1 8 6 4
5”400 211 4/86 95 3 7
316854 79 2 1

9 614117 9 5 2 8 2

i 7/3/2/6 1 8 45 ¢
8592 3 4 1 7 d

Fig. 7. Example of the repetitive cycle rule. The initial state oftal8ku puzzle is shown on the top left; on
top right, we see the same puzzle after the local rules of @d8i1 have been applied to it. On the bottom
left is shown a cycle with one repeated edge label in the &fion graph of the partially solved puzzle; the
repeated label is the 4 on the two edges incident to the slalak lvertex. Due to the existence of this cycle,
we can deduce that the cell corresponding to the solid bladiex must contain the digit 4; once this cell is
filled, the remaining puzzle is easy to solve, as shown onotietn right.

12

371 9 37116 5[| o 4
7 3 87 4|5 6 3
4 |6 1 4563 |1 |8
15 of| [6/2 1[5 83 |9

4 36 2 5| |47 93 6 2/ 8 1 5

8 16 85 3 16
2 3 8 1] 12|45 3] | 8

5 4 5 |8 4 3
3 51| [7/3]4 6 5 1

371]6]7 8 5 2 9 4

98 72 145 6 3

! 2/4/5/6 3 9 1 7 ¢

6 2 1|5 7 8 3 4 ¢

91 2 479036 2 81 4

2 85394 16 2 1

6 ! 19 2[4 5 3 7 8 ¢
98 o 56/ 819 7 4 3 2
73 4|8 2 6 95 1

Fig. 8. Example of the conflicting paths rule. The initial state ofual&ku puzzle is shown on the top left; on
top right, we see the same puzzle after the local rules of @d8i1 have been applied to it. On the bottom
left are shown two paths in the bilocation graph of the plytisolved puzzle, both ending with the same
label (9) in the same row. Due to the existence of these pathsan deduce that the cell at the start of the
paths must contain the start label of the paths, 2. Once th@laded, the remaining puzzle is easy to solve,
as shown on the bottom right.

13

5|3 7/ 6 2/ 9 8
1 2/6/3 9 S 7 8 a.i
7, 9|5 2 6 3 O 8
2,63 5 9 4 7
7 2 913 5 6 C}—% 18 48
9457 6/ 3 2 8§ 1
3 4168 5 7 9 2
6|9 74 3 2 5 O\O
52|91 7] 6 3 8

Fig. 9. A Sudoku grid and its bivalue graph.

choices for initial cell and label of an incident edge in tlledation graphB? final labels to test, an@(B?)
time per test, so once we have performed the reachabilitysisave can do all testing for conflicts @(B®)
time. Thus, this is the worst case time bound for the configcpath rule.

In our actual implementation, we test for conflicts amongheble vertices using bitmasks instead of
by sorting; this has a somewhat slower worst case running lbm works well in practice.

3.5 The Bivalue Graph

The rules above have all been based on the bilocation graprpaftially completed Sudoku puzzle. But
there is another graph, thévalue graph that also allows for a similar set of rules. In this graph,cseate

a vertex for each cell of the Sudoku grid that has not yet bdkenl fin but for which we have restricted
the set of digits that can fill it to exactly two digits. We caah two such vertices by an edge when the
corresponding two cells both lie in a single row, column,quare, and can both be filled by the same digit;
the label of the edge is the digit they can both be filled by. ®ameple bilocation graph (for the same Sudoku
configuration that we used as an example for the bilocatiaptgris shown in Figur 9.

As with the bilocation graph, nonrepetitive paths in theahie graph represent cascading chains of
deductions, but in a slightly different way: in the bilocatigraph, if the first vertex in the path is not filled
with the label of its edge, then the other endpoint is fillethvhat label, the next vertex in the path is filled
with the next label, and so on. In the bivalue graph, if th fiestex in the path is filled with the label of its
edge, then the other endpoint is not, and must be filled wstbther possible value, which forms the label
of the next edge, and so on. To describe these cascadingtideduin more visual terms, one can imagine
that, in the bilocation graph, a cell filled with a mismatchaoel at the start of the path pushes all the edge
labels to the farther cells, while in the bivalue graph, afilidd with a matched label at the start of the path
pulls all the edge labels to the nearer cells.

In any case, the cascading behavior of digit placement Ia ohonrepetitive paths in the bivalue graph
lets us define Sudoku rules analogous to those for the hidocgtaph:

— If an edge in the bivalue graph belongs to a nonrepetitivéecybe digit labeling it must be placed at
one of its two endpoints, and can be ruled out as a potentiiag ¥ar any other cell in the row, column,
or square containing the edge.

14

7 419 3 8

98 5|6 2

206/ 3|4 7/ 5
5 714 2 8/ 6
8 9|2 3 2
6 3 7/ 5 9
4,386 5 2
2/9(8 4 7
7/5/6|3 9

Fig. 10. Q(B®) lower bound for bivalue graph complexity: if all copies ofiagie digit (here, the digit 1)
and all main diagonal squares are emptied, each dB#@ptied squares h&¥(B*) bivalue graph edges.

— If the bivalue graph has a cycle in which a single pair of contiee edges has a repeated label, that
label can not be placed at the cell shared by the two edgebatodll must be filled by the other of its
two possible values.

— If the bivalue graph contains two paths, both starting with same label from the same cell, both
ending at cells in the same row, column, or square, and sathrtlthe two ending squares the values
not occurring on the incident edge labels are equal, thepeahat the start of the paths can not be filled
by the start label of the paths, and must be filled by the othits two possible values.

We can also form a version of the conflicting paths rule thatxa one of the two paths to be from the
bilocation graph and the other to be from the bivalue graph.

We omit the correctness proofs of these rules, as they ard tikec those for the bilocation graph.
However, the time analysis is different, as the bivalue lyregn be significantly denser than the bilocation
graph. As Figur€Z0 shows, there exist generalized Sudokzi@paonfigurations (with a single solution) in
which the bivalue graph ha®(B°®) edges: start with a filled-in puzzle, empty all cells in theags along
the main diagonal of the puzzle grid, and also remove allaopf a single digit. Then, in each of the
emptied squares, all but one of the cells is bivalued, with afithe two possible values for each cell being
the removed digit, so there afB*) edges per square @(B®) overall. We have not been able to prove any
bound on the number of bivalue graph edges better than thiewsb®(B®) that one gets by summing the
numbers of edges that can be contained in each row, colurdrscarare of the grid. It remains an interesting
open question how to narrow the gap betw€sB°) andO(B®) in these bounds, or (of more relevance for
actual Sudoku puzzle solution) whether better bounds nbghobtained in grids to which no local rules
may be successfully applied.

Plugging the bounds on bivalue graph size into the previoa$yais for our rules, we see that the bivalue
nonrepetitive cycle rule can be implemented to ru@{iB®) time, the bivalue repetitive cycle rule ®(B*°)
time, and the bivalue conflicting paths rule@B'°) time. In practice these higher time bounds do not seem
to be a serious issue with these rules, as the bivalue grappicslly much sparser than our analysis would
suggest. But, from the algorithmic point of view, it is uniskctory that these rules have worst case time
bounds that are much slower than the similar bilocal grapgsriherefore, for the rest of this section, we
describe a modification of the bivalue graph and of our répigyi analysis that allows these rules to be
implemented with faster worst-case time bounds.

15

A flagin a graph is a pair consisting of a vertex and an edge inciteitit we say that a graph #ag-
labeledif there is a label associated with each flag, and that a padhfleng-labeled graph is nonrepetitive
if, for any two consecutive edges, the flags at the vertex #ieye have different labels. Our techniques
for transforming an edge-labeled gra@hinto an unlabeled graph (@) such that nonrepetitive paths @&
correspond to paths in (@) and vice versa generalize easily to the flag-labeled case.

Define thebipartite bivalue graptas follows. There is one vertex per bivalued calf the given Sudoku
puzzle, and in addition one vertex per paird) whereg is a row, column, or square of the puzzle ahi$
any digit of the puzzle. We connect each adly six edges, to the paifg,d) where row, column, or square
g contains celt and wheral is one of the two values that may be placed in cellhus, the bipartite bivalue
graph has at most3# vertices and at most3 edges. In addition, for each edge connectirig (g,d), we
label the flag at by the digitd and we label the flag db,d) by the cellc. In this way, any nonrepetitive
path in the bivalue graph that follows an edge lab&ldbm c; to ¢, corresponds to a nonrepetitive path in
the bipartite bivalue graph that follows two edges, fronto (g,d) and from(g,d) to c,, and vice versa.

To implement the bivalue nonrepetitive cycle rule, we cam the flag-labeled version of Theoréin 1 to
identify edges that can belong to nonrepetitive cycles efttipartite bivalue graph, and examine the set of
cyclic edges incident to each vertéx d). Every pair of cyclic edges connedig, d) to two cells belonging
to the same strongly connected component ¢&ijiyand so can be completed to a cycle; therefore, if there
are more than two cyclic edges @ d), the application of the cycle rule to each pair would elinténall
cells of g as locations fod, showing the puzzle to be inconsistent. If on the other haedetare exactly
two cyclic edges, connectin@,d) to c; andcy, we eliminate all cells of other thanc, andc, as possible
locations ford. In this way, the nonrepetitive cycle rule can be implemeritetime O(B%). Similarly, by
performing nonrepetitive reachability analysis using flag-labeled version of Theoreloh 2 on the bipartite
bivalue graph, we can implement the repetitive cycle rutkthe conflicting paths rules in tin@(B®) each.

3.6 Experimental Results

We generated a set of 33302 Sudoku puzzles at random usifigltiveing procedure: repeatedly choose at
random an unfilled cell, its symmetric partner, and digitéiltahose two cells, consistent with previously
filled in parts of the puzzle. Then, use the simplest of ouvetotules to propagate the consequences of
these choices to other cells of the puzzle. If we discovenaansistency, we abort the process and restart
it. Otherwise, the sequence of chosen cells and their vétuess an initial state of a Sudoku puzzle that is
guaranteed to be solvable by our simplest rules. Then, isdhee order in which we added them, we attempt
emptying pairs of cells from this initial state, and use aéiforce searcher to test whether the simplified
puzzle still has a unique solution. If it does, we make theawhpermanent, and continue testing subsequent
pairs. At the end of this removal process, we have a puzztdagminimal in the sense that all filled digits
are necessary either to preserve a unique solution or teqpeethe symmetry of the puzzle’s filled cell set.

We used our non-backtracking solver to test the difficultyhese randomly generated puzzles. Among
them, 1460 puzzles (4.4%) were unsolvable with our curralg set without backtracking. Among the
remaining solvable puzzles, 3859 of them (11.6% of the tatall2.1% of the solvable puzzles) could be
solved only by the use of nonlocal rules based on nonregetitaiths and cycles, as described in this paper.
Put another way, our nonlocal rules allow us to solve 72.5%hefproblems that would be unsolvable
using only local rules. We conclude that these nonlocakrsignificantly reduced the number of unsolvable
puzzles generated by our procedure, and can be an effectiveanent in a rule-based Sudoku puzzle solver.
Close examination of the remaining as-yet unsolvable prablmay provide inspiration for additional rules
that may in future enable our program to solve many more ohthe

We leave for the reader to complete the solution to a Sudokalpuhat is one of the more difficult we
generated, but solvable by our rules. The puzzle is depintBayure[T1.

16

5 1 8
6
6 2|5 7
9 2 5|1
4 1 3
8|3 9 2
/7/6|9| 8
5
8 1 3

Fig. 11. A difficult but not unsolvable puzzle generated by our progra

Acknowledgements

We would like to thank Jacqueline Hargreaves for helpfutalsions in the sudoku livejournal community
regarding Sudoku and its automated solution.

References

=

N. Alon, R. Yuster, and U. Zwick. Color-coding. Assoc. Comput. Mach2(4):844—-856, July 1995.

M. Cook. Still life theory.New Constructions in Cellular Automatap. 93—-118. Oxford University Press, Santa Fe Inst.

Studies in the Sciences of Complexity, 2003.

. J. Edmonds. Paths, trees, and flow&anad. J. Math17:449-467, 1965.

. D. Eppstein. Ten algorithms for Egyptian fractiohathematica in Education and Resear(2):5-15, 1995.

5. H. N. Gabow, H. Kaplan, and R. E. Tarjan. Unique maximumchmiag algorithmsProc. 31st ACM Symp. Theory of
Computing pp. 70-78, 1999.

6. A.V. Goldberg and A. V. Karzanov. Path problems in skemsyetric graphsProc. 5th ACM-SIAM Symp. Discrete
Algorithms pp. 526-535, 1994.

7. Sudoku.Wikipedia: The Free Encyclopedia005, http://en.wikipedia.org/wiki/Sudaoku. Onlinecassed July 15, 2005.

8. T.Yato and T. Seta. Complexity and completeness of findimgjher solution and its application to puzzI#3SJ SIG Notes

2002-AL-87-2, 2002, http://www-imal.Is.s.u-tokyo.ayyato/data2/SIGAL87-2.pif.

n

Hw

17

http://en.wikipedia.org/wiki/Sudoku
http://www-imai.is.s.u-tokyo.ac.jp/~yato/data2/SIGAL87-2.pdf

	Nonrepetitive Paths and Cycles in Graphs with Application to Sudoku

