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§ 1. INTRODUCTION.

THE statistical material of genetics usually consists of frequency
from which new

distributions—of genes, zygotes and mating couples
distributions referring to their progeny arise. Combination of dis-
tributions by random mating is usually symbolised by the mathematical
sign for multiplication; but this sign is not taken literally for the simple
reason that the genetical laws connecting the distributions of progenitors
and progeny are inconsistent with the laws governing multiplication in
ordinary algebra. This is explained more fully in § 2.

However, there is no insuperable reason why the genetical sign of
multiplication should not be taken literally; for it is possible with any
particular type of inheritance to construct an “‘algebra”—distinct from
ordinary algebra but of a type well known to mathematicians—such that
the laws governing multiplication shall represent exactly the underlying
genetical situation. These ‘“‘genetic algebras’ are of a kind known as
““linear algebras,” of which a simple description is given in § 4.

It is not suggested that the use of ordinary algebraic methods in
conjunction with the specific principles of genetics will not lead to correct
results. It seems, however, that the systematic use of genetic algebras
would simplify and shorten the way to their attainment, and perhaps

enable much more difficult problems to be tackled with equal ease.
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L

The construction of genetic algebras has been described in a somewhat
abstract way in a previous paper (Etherington, 1939 6), to which I shall
refer as G.A. Here I propose to consider the symbolism more from the
geneticist’s point of view, applying it to some simple population problems,
without going into the details of the mathematical background. It will
be recognised that the current treatment of such problems does in reality
make use of genetic algebras without noticing them explicitly. By
elaborating the symbolism and adapting it to more complicated genetical
premises (e.¢. in the manner indicated in G.A. § 14), it should be possible
to avoid the laborious complexity which other methods in such cases
would involve.

Only elementary mathematical knowledge is assumed, and it is hoped
that this paper will be found understandable by geneticists whose mathe-

matical knowledge is quite limited.

§ 2. GENETICAL MULTIPLICATION.

Capital letters will be used to represent frequency or probability
distributions, referring to either a population, a single individual, or a
single gamete; such as (in the case of autosomal allelomorphs)

P =DD =homozygous dominant individual, or population consisting
of such;

P =aDD + BDR + yRR =population with assigned frequencies a.: B:y
of genotypes, or individual with assigned probabilities a, B, v of belong-
ing to one or other genotype;

P = 8D +pR =population which produces D and R gametes in given
numerical ratio, or gamete which has probability & of containing D, p of
containing R.

The multiplication of populations—individuals—gametes—means
the calculation of progeny distribution resulting from their random
mating—mating—fusion. Defining a population as a probability dis-
tribution of genetic types, we may say in all cases that we are multiplying
populations.

Now multiplication in ordinary algebra obeys three laws: (1) the
commutative law PQ=QP, (2) the associative law P(QR)=(PQ)R,
(3) the distributive law P(Q + R)=PQ +PR.

The validity of the distributive law in the genetic symbolism
is sufficiently obvious; it forms the basis of the method of “‘chess-board
diagrams” often used as visual aids in the calculation of progeny
distributions.

The associative law is not obeyed in genetical multiplication. This
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is seen by comparing the progeny of a mating between the offspring from
two individuals or populations, denoted as PQ, and a third individual or
population R (.. the product (PQ)R), with the progeny from P and the
hybrid population QR (7.e. the product P(QR)). There is clearly no
reason why they should be the same, and in fact unless P=R they are
found to be different. Thus genetical multiplication is non-associative,

Regarding the commutative law, (i) if we are considering autosomal
characters it will be obvious that this law applies, since the results of
reciprocal matings are generally speaking identical, although we shall see
below that in certain cases non-commutative multiplication can occur.

(ii) One might be tempted to say that with sex-linked characters
multiplication is non-commutative, since the results of reciprocal matings
are different. But it must be remembered that with sex-linked characters
we can only speak of reciprocal matings in connection with the phenotype
classification of a population; whereas the calculation of progeny dis-
tribution is only possible on the basis of the genotype classification. A
given genotype (either involving the Y-chromosome or not) is either
female or male, so that a reciprocal mating between genotypes is impossible.
Suppose that we are multiplying a male genotype M and a female geno-
type F: then MF and FM both mean the same thing—the genotype
distribution of their offspring; and so multiplication is commutative.

(iii) On the other hand, returning to autosomal inheritance, it is possible
for this to be unsymmetrical in the sexes, through either crossing-over
values or gametic selection being different in male and female. In such
cases it is really optional whether we treat corresponding male and female
genotypes as the same type (since their relevant gene content is the same)
or as distinct types (since they produce different series of gametes). In
the former case, PO and QP have distinct meanings, referring to reciprocal
crosses which do not produce similar distributions of offspring; and
multiplication is non-commutative. In the latter case, the situation is as
with sex-linkage.

To sum up, genetical multiplication is non-associative, but obeys
the commutative and distributive laws; except that in certain cases we
have the option of using a varied form of the symbolism in which the
multiplication is non-commutative as well as non-associative.

§ 3. NON-ASSOCIATIVE PRODUCTS AND POWERS.

Non-commutative algebra of a special kind (matrix algebra) is widely
familiar by reason of its many applications in geometry and physics.
(Also in genetics: ¢f. Hogben, 1933; Geppert and Koller, 1938, Chap. 4.)
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Non-Associative Algebra and the Symbolism of Genetics iy
Hence there is no reason to fear that an algebra which does not obey all
the usual laws will necessarily prove unmanageable. .

But with non-associative algebra some precautions are required to
avoid confusion, especially when dealing with products or powers in\:(ﬂ\'ing
many factors. With such an expression, brackets inserted in different
ways would indicate different orders of association of the factors; and the
corrcspr_mding interpretations of the whole product would refer to the
various pedigrees which could be constructed with given ancestors. For
example, the product {P*(QR)}S represents the pedigree below. The

e v
p2 OR
\\/’/,
P2.QR S
AL Vs
Nt
{P*QR)}S

genotypes or distributions of genotypes. The factor P? may arise through
self-fertilisation of an individual P, or from the mating of two individuals
of the same genetic type, or from random mating within one population

separate factors or ancestors P, P, O, R, S may be thought of as given

P or between two similar populations. The partial products P?, QR,
P2(QR), and the final result {P%(QR)}S are probability distributions which,
for any particular type of inheritance, can be calculated when P, Q, R, S
are known.

To avoid clumsiness of notation, it is convenient to use groups of dots
in place of brackets, fewness of dots between factors conferring prcccdenge
in multiplication. Thus the above product would be written P*. QR : S.
On putting P=Q=R=S, it becomes a power of P. (I have discussed
elsewhere a notation and nomenclature for non-associative powers (1939 &,
§ 2); e.g.the power in question is denoted P**1.  We shall be concerned,
however, with only two simple types of non-associative powers, namely,
the “principal”” and “ plenary” powers described below.)

Similarly, the product appearing at (10.1) below denotes

[{(ad)(cd)}(ef)][{(ad) (cd)}gh)].
The pedigree for this is easily constructed; but it should be noted that
in the context a, &, ¢, . . . denote gametes, so that ab, ¢d, . . . are the

ancestral zygotes.
We shall find it important to distinguish between, e.g., P**=(P*)? and
P4=P{P(P?}=P: P.PP. If mating takes place at random in a popula-
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tion, initially P, the successive generations, supposed discrete, are
represented by the sequence of plenary powers

E P oy e P s s 5D

each the square of the preceding; while the sequence of principal powers

B Pz Py . DPho 9 ; = . (_3‘2)

each obtained from the preceding by multiplication with P, refers similarly
to a mating system in which each generation is mated back to one original
ancestor or ancestral population.

§ 4. LINEAR ALGEBRAS.

Linear algebras have been studied for some ninety years, and there is
an extensive literature of the subject. The following brief description
will be sufficient for the present purpose. Attention is confined to algebras
“over the field of real numbers’’; that is to say, the Greek letters below
denote ordinary real numbers, and this convention will be observed
throughout the paper.

Beginning with a simple case, a commutative * linear algebra of
order 2 is determined when two given symbols or wzits A, B are subject
to a multiplication table consisting of product rules of the form

A2=gA+BB, AB=yA+8B, Bl=eA+(B, . . (41)

the coefficients being given numerical constants. The algebra then
consists of all possible expressions of the form

P=AA+uB, . ; ; - . (4.2)

which are called Zypercomplex numbers.t Addition and multiplication
of hypercomplex numbers are carried out as in ordinary algebra, the
multiplication table (4.1) being used to reduce a product to the “linear”’
form (4.2). Thus if
P=AA+uB, Q=vA +pB,
then
PLQ=(A+»A+(u+p)B, . ; ; . : ; . f4.3)
PQ=AvA%+ (Ap +pv)AB + ppB? |
=Av(aA + BB) + (Ap + uv)(yA + 8B) + pp(eA + {B)

- (4-4)
=(Ava +Apy + pvy + ppe)A + (AwB+ Apd +pvd + pu ) B. '

* Commutative refers to the nature of multiplication; the order is the number of units
on which the algebra is based.

T So called because they are a generalisation of the more familiar complex numbers.
The algebra of complex numbers possesses a rea/ uni# 1 and an imaginary unit 1, which
are subject to the multiplication table 12=1, 1i=i, i*= — 1.
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It was implied in (4.1) that BA=AB. The linear algebra would be
non-commutative, however, if different formule were prescribed for AB
and BA; and then we should have PQ=QP. Unless special conditions
are satisfied by the coefficients in (4.1), multiplication is non-associative.

A linear algebra of order # is defined in an analogous way. It will be
based on # units, and will consist of hypercomplex numbers: a hyper-
complex number is an expression which is linear (z.e. of the first degree
throughout) in the » units; and the algebra will have a multiplication
table giving a linear formula for the square of each unit and for the
product of each pair of units. (See, for example, the multiplication
tables (5.3) and (11.10), which determine linear algebras of orders 3 and 5
respectively.)

The commutative and associative laws of addition,

P+Q=0Q+P, (P+Q)+R=P+(Q+R),
always hold; so do the distributive laws
P(Q+R)=PQ+PR, (Q+R)P=QP+RP;
but multiplication may be non-commutative, non-associative, or both.

It will be seen that a linear algebra is completely determined when its
multiplication table is known.

Given any two linear algebras of orders m and n (7.e. given their
multiplication tables), it is possible by combining their multiplication
tables in a certain way to deduce another linear algebra, of order mu,
which is known as their dérect product. This is of fundamental importance
in the general theory of linear algebras, and we shall find (§ 11; ¢/. G.A.
§ o) that it is also fundamental in the symbolism of genetics. If the units
on which the first algebra is based are A, B, . . ., and those of the second
A’, B’, . . ., then the units of the direct product may be interpreted as
AA’, AB', BA', BB, . . ..

Also (of less importance in the mathematical theory, but equally
fundamental in genetics), from any linear algebra of order » a closely
related linear algebra called its duplicate can be derived, of order $n(n + 1)
if the original algebra is commutative. If the original units are A,
B, . . ., those of the duplicate algebra may be interpreted as A? B?,
AB, . . .. (The process of duplication was described in G.A. § 5; ¢f.
also Etherington, 1941; it occurs here in §§ 5-7.)

§ 5. THE MENDELIAN GAMETIC AND ZYGOTIC ALGEBRAS.

Consider a pair of autosomal allelomorphs D, R and the corresponding

genotypes
CBl . L e ERD

A=DD,

B=DR,
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We shall write optionally DD or D2, RR or R2? In accordance with
mendelian principles and with the notation described at the beginning of

§ 2, we have the two sets of formulae:

D?=D, DR=}D+3R, R2=R; (5.2)
A=A B2=1A +1B +1C, CA=0(, (
BC=1B +1C, CA=B. AB=}A +1B. (5.3)

These give the series of gametes produced by each type of zygote, and the
series of zygotes produced by each type of mating couple, with coefficients
denoting relative frequencies. Z.g., the second of equations (5.2) mean
that a heterozygote produces D and R gametes in equal numbers; the
second of equations (5.3) means that the offspring of a mating DR x DR
are 25 per cent. DD, 50 per cent. DR, 25 per cent. RR.

A population P can be described by the frequencies either of the
gametes which it produces, or of the zygotes which it contains, and
accordingly we write:

(Gametic representation) P=38D+pR, . ; ; . ; . (5.4)
(Zygotic representation) P=aA +BB+yC : . : . . (5.5)
=aDD+BDR +yRR, . Soar . (5.6)

in which we may assume

(Neormalising conditions) &+p=1, at+fB+y=1. . : ; (5.7, 8)

The two representations are connected by (5.2); Z.e. (5.6) implies (5.4) with
d=a+iB, p=3f+y. . . . . (59

An examination of the above formulz in the light of § 4 will show that
by using this symbolism we are really dealing with two distinct linear
algebras, both having commutative and non-associative multiplication,
namely:

(1) The algebra of the symbols D, R with multiplication table (35.2).
This will be called the gametic algebra for simple mendelian inheritance,
and referred to as G. A hypercomplex number in this algebra has the
form (5.4).

(2) The algebra of the symbols A, B, C with multiplication table
(5.3). Call this the zvgotic algebra for simple mendelian inkeritance,
and denote it Z. A hypercomplex number in Z has the form (5.3).
Hypercomplex numbers in G and Z are interpreted as populations only
if their coefficients are all positive; and it is generally convenient to

require that the coefficients shall satisfy the normalising conditions
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rebras is given by (5.1), which means

The relation between the two a
that a hypercomplex number (or Znear form) (5.5) in Z is equivalent to

a guadratic form (5.6) in G. The quadratic form is reduced to a hyper-

complex number in G by using the multiplication table (5.2). That is to
say (¢f- 5:9) the zygotic representation determines the gametic; but not
gice versa, owing to the extra degree of freedom in the zygotic algebra.

Starting from the gametic multiplication table (5.2), the equations

(5.3) are built Ltp by the following process: we take the symbols A, B, C
defined by (5.1) as units of a new algebra, and then

A2=DD.DD=D.D=A, '.
B:=(}D+}R)?=}DD+iDR+}RR=}A+3}B+}C,} . (5.10)
AB=DD.DR=D@{D+3R)=1A + 1.1. '

and so on. Thus the zygotic multiplication table is constructed from the
gametic. This is the process of duplication referred to in § 4, and Z is
thus the duplicate of G.

Suppose that we wish to find the progeny distribution of two mating
populatir_ans P, Q, whose representations, either gametic or zygotic, are
given. We have merely to form the product of the two hypercomplex
numbers: thatis to say (¢f. 4.4), we multiply two corresponding representa-
tions together as in ordinary algebra, substitute (5.2) or (5.3), and simplify.
The validity of the process follows from the fact that it is simply a trans-
lation into symbols of the more self-explanatory procedure of chess-board
diagrams: in other words, it follows from the fact that genetical
multiplication obeys the distributive law.

§ 6. ““SHORTCIRCUITED’" MULTIPLICATION.

By a fundamental property of duplicate algebras (Etherington, 1941,
Theorem 1), multiplication in Z can be “shortcircuited” by working in
G: that is to say, to ind PQ when P and Q are given zygotically, we first
apply (5.2) to obtain the gametic representations, and then multiply
withowt applying (5.2). Similarly, to evaluate in Z a complicated non-
associative product involving any number of factors, all the operations can
be performed in the simpler algebra G, only the final product being left
in quadratic form and interpreted as a hypercomplex number in Z.

This corresponds to a well-known fact in genetics (¢f. Jennings, 1917,
Pp. 101—102): in order to obtain the zygotic frequencies of an #th genera-
tion, provided that no selection acts on the zygotes, and in the absence of
inbreeding, it is sufficient to trace only the gametic frequencies through

the #—1 intervening generations.
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To consider, for example, random mating of a population P inser se,
suppose
PaBDApR, « @ = s o (G
where (5.9) holds if the zygotic representation is given in the first place.
Then the next generation is
F,=P2=§2DD +28pDR +p?RR |
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This is evidently simpler than evaluating P? in Z directly. The conclusion

Bi* =4y, : . . . . (6.9)

is the well-known Pearson-Hardy law.
Evaluating (6.2) in G by use of (5.2),
P2=38(8+p)D +p(8 +p)R
= 8D +pR
if (6.1) is normalised. Thus in G any normalised hypercomplex number
satisfies
PA=P: . . . . . (6.5)

hence all powers of P are equal, showing that the gene frequencies are
undisturbed by random mating, or by random mating followed by any
system of intermating of the generations. The zygotic distribution,
however, in such cases, comes into equilibrium after one generation of
random mating, since in Z we find

P3=P2,  P22=P2 T 2 . (6.6, 7)

and all higher powers of P are equal to P2 These equations follow
immediately from (6.5) if P2 P22 are found by short-circuited

multiplication.

§ 7. THE MENDELIAN COPULAR ALGEBRA.

The procedure of duplication (5.10), by which Z was derived from G,
can be applied to an algebra repeatedly. Let us form K, the duplicate of
Z, and then consider its genetical significance. By analogy with (5.1)
we begin by taking

AA, BB, CC, BC, CA, AB . . . (n1)

as the units of a new algebra. There is no need to introduce fresh symbols.
The multiplication table will consist of 21 equations derived by manipula-
tion of the equations (5.3), for example:

(AA)?=AA, (BB)?={AA+}BB+4CC+3BC+3CA+3AB, etc. (7.2)
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The interpretation is as follows: the coupled symbols (7.1) stand for
the types of family into which the population can be sorted, classified
according to the parental genotypes: or, we may say, they are the types
of couple mated in the preceding generation. Hence (7.2) means that if
a population of offspring of matings A x A is mated at random with itself
or with a similar population, all the matings are of this type A > A but
if the par(—*mal matings were all B x B, then the six couple types occur
in numerical proportions % : 1 :

A population for which the relative frequencies of the couple types are

and so on.

Az oy : : ; . (7:3)

is represented by a hypercomplex number

(Copular representation) P=AAA +uBB +vCC +60BC +¢CA +AB, . (7.4)
wherein
(Normalising condition) Atp+v+l+d+ih=1. . . . . (7.5

From this we can pass by (5.3) and (5.1, 2) to the zygotic and gametic
representations.

As in G and Z, the product of two hypercomplex numbers in K
denoting populations gives in the same representation their offspring by
random mating. This statement assumes that the couple types are not
selected, 7.e. they are of equal average surviving fertility; just as in Z and
G we supposed no selection on zygotes or gametes. As before, multiplica-
tion in K can be short-circuited by working in Z or G.

Corresponding to the Pearson-Hardy law in the zygotic algebra, we
have the following facts: a population, as a distribution of copular types,
comes into equilibrium after fweo generations of amphimixis; after one

generation, the equations
02 = quv, ¢ =4vA, PP=4Ap . : " (7.6)
are satisfied; after two generations the further equation
12 =160 : : : ; . (7.9

is satisfied; these four are the necessary and sufficient conditions for

equilibrium in amphimixis, and imply also other relations such as

4p2=0p=p2 . . . . . (7.8

These results are obtained very simply by using short-circuited multiplica-

tion, observing that P? is necessarily of the form (eA + BB +9C)?%, and

the next generation P*# of the form ((6D +pR)%)2
P.R.S.E,—VOL. LXI, B, 1940—-4I, PART 1. 3




34 [. M. H. Etherington,

§ 8. SYSTEMS OF MATING.

Four systems of mating will be considered. The object in each case
is to obtain the distribution of types in a filial generation from the dis-
tribution in the preceding generation; also, when it can be done simply,
to find the distribution in the »th filial generation, and the equilibrium
distribution which this approaches as #» increases. For other treatment
of these and similar problems, ¢f. Jennings (1916, 1917), Wentworth and
Remick (1916), Robbins (1917, 1918), Hogben (1931, Chap. 6; 1933),
Geppert and Koller (1938, § 20).

(a) Self-fertilisation, or Assortative Mating in Absence of Dominance.
Starting from the zygotic distribution
P=aA + 8B +yC : ; : . (8a.1)
(where A=DD, B=DR, C=RR), if mating proceeds in successive
generations by self-fertilisation, or by each individual mating with another
of the same type, the first filial generation F; will consist of the offspring of
A xA, BxB, CxC, occurring in proportions a : 8 : y; so that

F,=aA2+8B2+yC:. . . . . . (8az2)
=alA+B(FA+1B +1C) +yC . ; : . (8a.3)
=(a+$PA+3BB+(3B+y)C. : ; . (8a.4)

It will be seen that the frequency of heterozygotes is halved; so if the

nth filial generation is denoted

F,=a,A+B,B+y,C, ; ; : . (8a.5)
we shall have
I 1 I P
B=18, B:=1p, Bs=%8B, - - ., Bu= ,I_.S- - - (82.6)
_\]50
a,=a+1p, m=%1B+y. . : . . (8a.7)
Let us find the quantities #;, #,, #,, . . . by which the hypercomplex

number representing the population increases in the successive generations.
We have from (8a.1) and (8a.4):

u=F; ~P=1B3A - B +1C); ... (8a8)
and similarly we shall have

4y=$Bi(3A - B +30) = }B(3A - B +0),

us=%B(3A - B + 10),

I
Up =" fﬁ(ﬁx -B+40). . (8a.9)
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The total increase in 7 generations is therefore

I\
_ ] ek
Uy tugtugt o . . HURS (1+3+3+ . +— |BGA -B+1C). (8a.i0)

5 1

The sum of the geometrical progression in bracbety s o708 Denpe
the #nth filial generation is

1 - [ 1 .‘( ; vy 3 3
F,=aA+fBB+yC+|1 IBEA-B +31C) . : . (8a.11)
| 1;3 1 I.). \ \ 5 1 .-'Xi-‘ 2 Jg al T == L B il (Ba [.,)
=|a+gfd— _.,;: 5P ..I. ) th r+\sp Ty T ey . (0a.12]

As the number of generations increases, this quickly approaches the
limiting stable distribution

(a+3B)A+(y+3B)C. ‘ : ; (8a.13)

(b) Assortative Mating (Dominants x Dominants, Recessives x Recessives).
The initial zygotic distribution
P=aA+8B+yC . 5 » » . (84.1)
may be written phenotypically
P=(a+p)D+9C, . ) .. . (8%.2)
Here
a B aA + B
E___’\|_B_— s

2

, . . . (84.3)
a+f a+ o a+ ;'3 3

representing the genotype distribution of the dominants in P.
With the system of mating under consideration, the first filial
generation is
Fi=(a+p)@*+yC* . 2 2 ; . (84.4)
(aA + BB)2 i
Wit TRl L o o o RS
Therefore

(a+ B)F; =(a?A? +2aBAB + 82B?) + (a + B)yC2?
=a?A +2aB(3A +3B) + BAA +1B +10) + (a4 ﬁ}}!(_'.
(a2 +aB+1BHA +(aB +3BHB + (1B +ay + By)C. . (85.6)

It will be found that F; — P is a multiple of $A - B +{C, and hence
that F, can be found by summation of a series, just as in Case (a). The
series in this case is not a geometrical progression, but it is of a type whose
sum is easily obtained. Following the procedure of Case (), it will be
found that the total increase in » generations can be expressed as
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3f 1B 1B
J___ - “':3_} y __.jl‘,' e — o ' ; .]-J,";?(U, + _1'3]1\ -B+ L( )
l{r.l +3B)a+B) (a+P)a+iB) (a+3n2f)[a+L(n2+1)B] J ;

__{.'l 1____'_'}:,:._ l:_ _____1“ )+ .. i 1 _ .J 1 B'fuil."?}(zz‘%‘”B-i'é
\a+38 a+f a+B a+if/ a+inf a+d(n+1)B/) - i

n ? 174 3\
B a+d(n+1)f

J
“ax ]
{ ,_a[u -t ";8; l

(1 A—-B+ .]‘( A i v " i . (R5%
F3(n + gf (85

The nth filial generation is obtained by adding (86.7) to (84.1). We

obtain
; Bla + Jﬂ
F,=aA +BB +yC+BIA-B+1C) —- (1A-B+10)
7 ,‘3 o 5 B ek I}B p-
. : . PBla+ip) | .
=(a+3fA+EB+9)C - 3A-B+1C). . . (86.8)

L - I}.-’ = Hd

As 7 increases, the fraction with a+4(%+1)B8 in the denominator
approarheq zero. Hence F, approaches a stable distribution, namely,
+3B)A + (3B +y)C, the same as in Case (a). (Cf. 8a.13.)

(c) Fraternal Mating.

In this and the following case it is necessary to use the copular repre-
sentation (7.4), from which of course the zygotic representation can be
deduced. The determination of F, is much more difficult than in Cases
(a) and (4). It is best obtained with the aid of matrix algebra; and as
this is beyond the scope of this paper, I content myself with showing only
in each case how the copular representation of any generation is deduced
from the preceding.

Suppose that initially

P=AAA +uBB +vCC +0BC +¢CA +4AB, i . (8e.1)

and that brothers and sisters are mated at random. Then the filial
generation is

F;=A(AA)? + w(BB)? +v(CC)2+ 6(BC)? +(CA)? +f(AB)2. . o B

Using short-circuited multiplication (z.e. (5.3) instead of (7.2)),

Fi=AMAP +p(3A +4B + 10 +v(C)? +0(3B + 1C)% +d(B)2 +(3A + 1B)?
=AAA +u(#%5AA + }BB + 7% CC +}BC +1CA + 1AB) +»CC
+8(3BB +3BC +}CC) +¢BB +(}AA +1AB +}BB)
=(A+ S+ 3)AA +(Gu+30+6 +10)BB + (e +v+16)CC
+(3p +30)BC+IuCA + Gu + L)AB, . : « [8e.3)
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random. Then the filial

A2+ f(AB)2 . . (8¢.2)

instead of (7.2)),
+A(B)% + (1A +1B)?

1AB) +vCC

+(}AA + 1AB +1BB)
L+v+48)CC

LHAB. ‘ : . (8¢.3)

(844

Non-Associative Algebra and the Symbolism of Genetics

5]
~]

(d) Filial Mating.

Starting from an arbitrary copular distribution as in (¢), suppose that
each individual (or each individual of one sex) is mated with the parent
of oppObltL- sex. Then
Fy=AAA.A +uBB.B+vCC.C+ OBC.(1B +1C) +¢6CA.(AC + 1A)

+ :f;_\ H i (_I:\ + -é-l'i') (84.1)
=AA.A+u(3A+1B+10)B+vC.C+03B +3C)2 +¢6BEC +3A) +J(3A +1B)?
_)AA +u(}AB +3BB +}BC) +vCC +8(3 BB + 3BC + 1CO)

--:-caq:g}'a(: r1 xm—a,w AA +3AB +1BB)

— A+ 3)AA + b+ 10+ J)BB + (v + 16)CC + (b + 30 + 3$)BC

+0.CA+Gu+id+LHAB. . . (8d.2)

§ 9. CompACT MULTIPLICATION TABLES.

If P and Q are any two normalised h\pern omplex numbers in G (say
8D +pR, 8D +p'R, where 8 +p=298"+p'=1), then

PQ=3P+3Q. . . . . . (9.1

Oor more

- 1
Ay

This may be shown directly by multiplying and applying (5.2);
briefly by observing that P + Q) is also normalised, so that by (6.5

'I')Z —_ ]')‘ ()3 e, (’)
. (AP +10)2=1P? +1PQ +}Q?=3P + }PQ +1Q,

\.

from which (g.1) follows.

The result (9.1) may be regarded as a compact form of the gametic
multiplication table, since it includes the three equations (5.2) as special
cases. (It must be noted that (9.1) only applies if P, Q) are normalised.
The more general result is: PQ=1(8"+p" )P +3(8 +p)Q.)

It will be convenient to use the letters a, 4, ¢ . to denote each

either D or R, and then the compact multiplication table may be written
ab=1ta+1b. . . . ] s {g:2)
Applying to this the process of duplication, we obtain

fzrﬁ.rd’=(_l.d - 48)(3e + l\.a"_.l,
z.e.
ab. r.; (u 3 lu(f —_'1."5{' T _%-'{'{?F. . . . i [‘)3)

which gives a compact form of the zygotic multiplication table: for it
includes all the six equations (5.3) as special cases. ZX.g. on putting
a=c¢=D, b=d=R, we get from (9.3) the formula for B2
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LF¥]
o

Similarly, the compact copular multiplication table is

ab.cd:ef gh={s(a+0)(c+d).(e+f)(g+A),

ab.cd : ef . gh=+5ac.eg+ Lac.eh+ . .. (16 terms),. . (9.4)

which includes the 21 equations (7.2).

§ 10. OFFSPRING OF CONSANGUINEOUS MARRIAGES.
Formule for the probability of RR offspring of various kinds of
consanguineous marriages were given by Dahlberg (1929), and his verbal
arguments may be translated into non-associative algebra. As an
example, consider the distribution of genotypes DD, J_')"l{. RR in the
offspring of a marriage between first cousins. This distribution will be
found from a non-associative product of the form

ab.cd :ef i.ab.cd : gh. ; : . . (10.1)

Here each of the letters stands for either D or R; «é and ¢d denote the
genetic constitutions of the common grandparents of the cousins; the two
sibs, parents of cousins, are both represented by aé . cd; and the cousins
themselves by ab . cd : ef and ab . cd : gh respectively.

Simplifying (10.1) by repeated use of (9.1), we have

F‘L! c+d\ e+ la + £+ \ e+
gé_g'{z/:(ff={£|:(— }+___f.|]. f=.l‘ &+ .d.ll.( [
2\

2 z /) 2 ) s /\ 2

1/a+b+c+d e :--f

s==| P e :-—-},.(a+r5:—f—-d+:nf.—3f).
Similarly,
ab.cd:gh=%a+b+c+d+2g+24).
Therefore
ab.cd : ef :.ab.cd : gh=75(a"+ 8%+ + 4%+ 6o product terms). o ez}

We must now take into account whatever information is given about
the genetic constitution of the four grandparents. We might, for example
be given the genotype of one of them. Assuming, however, that they are
merely random members of a stable population,

P=83[)1—)—6—25;)]_}?{1—:031'\’}{:5[') +pR, (8—:9:-—:1)
then the probability of @ being D or R is 8 or p, and so for each of the
ancestral gametes. Hence (10.2) yields for the offspring of first cousins
the probability distribution
A:{(48 +608%)DD +608pDR +(4p +60p*)RR]
=(%8+155)DD +158pDR + (p +15p)RR, (10.3)

agreeing with Dahlberg’s result.
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§ 11. FURTHER GENETIC ALGEBRAS.
Consider inheritance depending on two pairs of autosomal allelo-
morphs, say D, R and D', R". The corresponding gametic algebras G,

G’ have multiplication tables:

D2= D, DR =3D +1R, RtE=R; | fos
D?=D’, D'R'=1D'+4R R2=R'. | W
Taking both pairs into account, there are four gametic types:
DD, DR’, RD’, RR/, 1 5 i (1X:2)
whose multiplication table is constructed as follows:—
DD'.DD'=D2.D"%=DD’, I
pD’.DR’=D2. D'R’=D(}D’ +}R")=}DD’ + }DR’, (11.3)

,_
7

DR .RD'=DR.D'R'=(}D +4iR)(3D’ +4R") = 1DD'+ DR’ +}RD’ + 1K
and so on. (10 equations.)

(It will be seen that although multiplication is non-associative we
assume, ¢.g., DD’ . DR’=D?. D'R’. This is justified because the com-
bination of dashed and undashed symbols is mere juxtaposition, not
genetical multiplication.) This is precisely the process referred to in § 4
of forming the direct product of the two algebras G, G, which is well
known in the theory of linear algebras.

Alternatively, let us use @, & to denote each either D or R, and Gl
similarly for D’ or R’, so that, for example, aa’ can denote any of the four
gametic types. Then we can write the joint multiplication table in the

compact form:

aa’ bb =ab.a't' =(Ra+1b)(ta’ +48), . " . CTE.A)
i.e.
aa' . bb' =laa' +}ab" +1ba' + 108’ : : . (11.5)

The zygotic algebra is obtained by duplicating the gametic, and is the
direct product ZZ’. That is to say, it is immaterial whether the process
of duplication is carried out before or after that of forming the direct
product (Etherington, 1941, Theorem V). There is one point, in this
connection, which requires elucidation. It has been pointed out that by
pairing the four gametic types (11.2) we obtain the ten types of zygote,
namely:

DD’.DD’, DD'.DR’, DD'.RD’, DD’.RR’, DR’.DR/, DR'.RD’,
DR’.RR’, RD'.RD’, RD'.RR’, RR’.RR’, (11.6)

which figure in (11.3). There are, however, only nine genotypes, namely:

DDD'D’, DDD'R/, DDR’R/, DRD'D’, DRD'R’, DRR'R’, RRD'D,
RRD'R, RRR'R/, (11.7)
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there being no distinction between the double heterozygotes DD’ . RR’
and DR’ . RD’, which both give rise to the genotype DRD'R’. The fact
is that for calculating progeny distributions it is really optional whether
we use the zvgotic algebra based on the ten zygotic types (11.6), or the
genotypic alg

ebra based on the nine genotypes (11.7). The latter is
obtained from the former simply by suppressing the distinction between
DD’. RR" and DR’.RD’. To geneticists the genotypic algebra would
seem to be the obvious one to us

; but the zygotic algebra is mathe-

matically much simpler—firstly, because it is a direct product of simpler

algebras; secondly, because it is a duplicate algebra; thirdly, because its
multiplication table can be written in the compact form (11.5). In the
final interpretation of any results obtained by use of the zygotic algebra,
the distinction between the equivalent double heterozygotic types can
be suppressed; just as with any zygotic or genotypic algebra, in the final
interpretation of any calculation, the distinction between genotypes which
are the same phenotype may be dropped in order to obtain a result true
for phenotypes.

Some genetic algebras representing more complicated types of sym-
metrical inheritance were considered in G.A., including (§ 14) a group
of three linked series of multiple allelomorphs, and (§ 15) inheritance in
tetraploids. These algebras can all be manipulated on the lines illustrated
for simple mendelian inheritance, the extra complication being to some
extent offset by the consistent use of compact multiplication tables. As
long as only symmetrical inheritance is considered, and zygotic types
(differing in their gametic formation) are used rather than genotypes
(differing in their relevant gene content), the corresponding gametic,
zygotic and copular algebras are related by duplication; and two or more
independent genetic algebras of the same kind (G, Z or K) can be
combined by forming their direct product.

Let us finally consider briefly an unsymmetrical genetic algebra, 7.e.
representing inheritance which is not symmetrical in the sexes.

Consider a single gene difference D, R on the X-chromosome in
a species where the male is heterogametic. The gametic types are

Ova, D, R; Sperm, D, R, Y:. g . (11.8)
and the zygotic types with the gametes which they produce give the
multiplication rules:

Female, a=DD=D, s=DR=}D+}R, ¢=RR= R; | _

Male, d=DY=}D+}Y, e=RY=}R+1V. |
Hence ad=D(3D +1Y), 6d=(3AD+3R)(3D +1Y), and so on; whence
we have the zygotic multiplication table:
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ad - bd = _}'.’r’ } } b+ _!lr!P t lr cd
(¢ be = } b+ ; o t {\ £E = ¢

Since two males or two females produce no offspring, we (11.10)

must write also

9 72 2 ) a I 7
a==upo= =g t=e"=qp Pe=ca=dae o,

It will be seen that the zygotic algebra is not obtained entirely by the

process of duplication, since this would give, e.g., a®=a. If a population

is denoted
P=qa+Bb+yc+dd+ee, . ’ - (11.11)

and the male and female components are normalised separately:
a+B+y=08+e=1, - : ; (11.12)
and if Q is another population represented in the same manner, then the
product PQ describes the population of offspring, and will be automatically

normalised.
An equally satisfactory scheme is to write instead of (11.9)
a=DD=D, &=DR=3D+}R, ¢=RR=R,

. DYSD4+Y,. #=RY=R+Y, (11.13)

giving
(11.14)

ad=a+d, bd=%a+3b+%d

We deal in this case with the female and male components of a population
separately:
F=aA+ Bé+ye, M = 8d + ee. (a+B+y=08+e=1.) (r1.15)
The offspring by random mating is given by their product, separated
similarly into two components.
The numerical coefficients which appear on the right sides of (11.14)

correspond to the asymmetrical extensors of Hogben's matrix notation

(1933), just as the coefficients in (5.3) correspond to the symmetrical

extensors.

SUMMARY.

The sign x is used by geneticists to indicate crossing of types. Literal
interpretation of this as a symbol of multiplication leads to a type of
algebra in which the associative law Px(QxR)=(PxQ)xR is not

““algebras’ which in this way correspond to the

obeyed. The different
various possible modes of inheritance known in genetics are therefore
necessarily different from the algebra of ordinary numbers. They are of
a kind known as ‘“linear algebras,” and it is shown that various genetical

problems can be conveniently treated by means of a symbolism based

on this fact.
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—

am indebted to Dr ]J. Ffoulkes Edwards for a lengthy correspondence
in which this paper germinated; and to Dr Charlotte Auerbach, of the
Institute of Animal Genetics, University of Edinburgh, for much
constructive criticism.
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