1. Let \(\{z_n\} \) be a sequence of complex numbers satisfying \(\text{Re } z_n \geq 0 \). Suppose that \(\sum z_n \) and \(\sum z_n^2 \) both converge. Show that \(\sum |z_n|^2 \) converges.

2. Suppose that \(f \) is entire and that \(f(z) \) is real if and only if \(z \) is real. Show that \(f \) can have at most one zero. (Put a circle \(C \) around a couple of supposed zeros of \(f \) and apply the argument principle. Then break up the image curve \(f \circ C \) into three pieces with index 0,0,1 respectively with respect to 0.)

3. Find the number of zeros of (two of these is enough)
 \[
 f_1(z) = 3e^z - z \text{ in } |z| \leq 1 \\
 f_2(z) = e^z/3 - z \text{ in } |z| \leq 1 \\
 f_3(z) = z^4 - 5z + 1 \text{ in } 1 \leq |z| \leq 2 \\
 f_4(z) = z^6 - 5z^4 + 3z^2 - 1 \text{ in } |z| \leq 1
 \]

4. Find a conformal map between the domains \(S \) and \(T \) if (three of these is enough)
 \[
 S = \{ z = x + iy : -2 < x < 1 \} \text{ and } T = \{ |z| < 1 \} \\
 S = T = \text{open upper half plane} \\
 S = \{ z = re^{i\theta} : r > 0, 0 < \theta < \pi/4 \} \text{ and } T = \{ x + iy : 0 < y < 1 \} \\
 S = \{ |z| < 1 \} - [0,1) \text{ and } T = \{ |z| < 1 \} \\
 S = \text{the region between } |z| = 1 \text{ and } |z - 1/2| = 1/2 \text{ and } T \text{ is a half plane} \\
 S = \text{the inside of the right-hand branch of the hyperbola } x^2 - y^2 = 1 \text{ and } T \\
 \text{is the open unit disc. (Map the focus to 0 and the vertex to } -1)\]

5. Find the Laurent expansion for
 \[
 1/(z^4 + z^2) \text{ about } z = 0 \\
 \exp(1/z^2)/(z - 1) \text{ about } z = 0 \\
 1/(z^2 - 4) \text{ about } z = 2
 \]

6. Let \(f_n \) be analytic on an open set \(D \) and suppose \(f_n \) converges uniformly on compact subsets of \(D \). Let \(S = \{ z \in D : f_n(z) = 0 \text{ for some } n \geq 1 \} \) and suppose that \(f \) is not identically zero. Show that \(f \) vanishes exactly at the limit points of \(S \).

7. Prove that if \(u \) is continuous and bounded on the closed upper half plane, harmonic on the open upper half plane, and vanishes on the real axis, then it is a constant.

8. For \(z \) in the upper half plane, let \(u(z) \) be the angle under which the interval \([0,1] \) is seen from the point \(z \). Show that \(u \) is a harmonic function by finding an analytic function \(f \) such that \(u = \text{Re } f \). (Consider first the angle under which the real axis from 0 to \(\infty \) is seen from \(z \).)