GRADUS AD PARNASSUM
 BERNARD RUSSO-IRVINE-OCTOBER 18, 2011

1 ALGEBRAS

1. Prove Proposition 2: FIX A MATRIX A in $M_{n}(\mathbf{C})$ AND DEFINE

$$
\delta_{A}(X)=A X-X A
$$

THEN δ_{A} IS A DERIVATION WITH RESPECT TO MATRIX MULTIPLICATION
2. Prove Proposition 3: FIX A MATRIX A in $M_{n}(\mathbf{C})$ AND DEFINE

$$
\delta_{A}(X)=[A, X]=A X-X A
$$

THEN δ_{A} IS A DERIVATION WITH RESPECT TO BRACKET MULTIPLICATION
3. Prove Proposition 4: FIX A MATRIX A in $M_{n}(\mathbf{C})$ AND DEFINE

$$
\delta_{A}(X)=A X-X A
$$

THEN δ_{A} IS A DERIVATION WITH RESPECT TO CIRCLE MULTIPLICATION
4. Let A, B are two fixed matrices in $M_{n}(\mathbf{C})$.

Show that the linear mapping

$$
\delta_{A, B}(X)=A \circ(B \circ X)-B \circ(A \circ X)
$$

is a derivation of $M_{n}(\mathbf{C})$ with respect to circle multiplication.
(cf. Remark following Theorem 4)
5. Show that $M_{n}(\mathbf{C})$ is a Lie algebra with respect to bracket multiplication.
6. Show that $M_{n}(\mathbf{C})$ is a Jordan algebra with respect to circle multiplication.
7. Let us write $\delta_{a, b}$ for the linear mapping $\delta_{a, b}(x)=a(b x)-b(a x)$ in a Jordan algebra. Show that $\delta_{a, b}$ is a derivation of the Jordan algebra by following the outline below. (cf. problem 4 above.)
(a) In the Jordan algebra axiom

$$
u\left(u^{2} v\right)=u^{2}(u v)
$$

replace u by $u+w$ to obtain the equation

$$
\begin{equation*}
2 u((u w) v)+w\left(u^{2} v\right)=2(u w)(u v)+u^{2}(w v) \tag{1}
\end{equation*}
$$

(b) In (1), interchange v and w and subtract the resulting equation from (1) to obtain the equation

$$
\begin{equation*}
2 u\left(\delta_{v, w}(u)\right)=\delta_{v, w}\left(u^{2}\right) . \tag{2}
\end{equation*}
$$

(c) In (2), replace u by $x+y$ to obtain the equation

$$
\delta_{v, w}(x y)=y \delta_{v, w}(x)+x \delta_{v, w}(y),
$$

which is the desired result.

2 TRIPLES

8. Prove Proposition 5: FOR TWO MATRICES $A \in M_{m}(\mathbf{C}), B \in \mathrm{M}_{n}(\mathbf{C})$, WITH $A^{*}=-A, B^{*}=$ $-B$, DEFINE $\delta_{A, B}(X)=A X+X B$. THEN $\delta_{A, B}$ IS A DERIVATION WITH RESPECT TO TRIPLE MATRIX MULTIPLICATION. (Use the notation $\langle a b c\rangle$ for $a b^{*} c$)
9. Prove Proposition 6: FIX TWO MATRICES A, B IN $M_{n}(\mathbf{C})$ AND DEFINE $\delta_{A, B}(X)=$ $[[A, B], X]$. THEN $\delta_{A, B}$ IS A DERIVATION WITH RESPECT TO TRIPLE BRACKET MULTIPLICATION. (Use the notation $[a b c]$ for $[[a, b], c]$)
10. Prove Proposition 7: FIX TWO MATRICES A, B IN $M_{m, n}(\mathbf{C})$ AND DEFINE $\delta_{A, B}(X)=$ $\{A, B, X\}-\{B, A, X\}$. THEN $\delta_{A, B}$ IS A DERIVATION WITH RESPECT TO TRIPLE CIRCLE MULTIPLICATION. (Use the notation $\{a b c\}$ for $a b^{*} c+c b^{*} a$)
11. Show that $M_{n}(\mathbf{C})$ is a Lie triple system with respect to triple bracket multiplication. In other words, show that the three axioms for Lie triple systems in Table 4 are satisfied if $a b c$ denotes $[[a, b], c]=(a b-b a) c-c(a b-b a)(a, b$ and c denote matrices). (Use the notation [abc] for $[[a, b], c])$
12. Show that $M_{m, n}(\mathbf{C})$ is a Jordan triple system with respect to triple circle multiplication. In other words, show that the two axioms for Jordan triple systems in Table 4 are satisfied if $a b c$ denotes $a b^{*} c+c b^{*} a\left(a, b\right.$ and c denote matrices). (Use the notation $\{a b c\}$ for $a b^{*} c+c b^{*} a$)
13. Let us write $\delta_{a, b}$ for the linear process

$$
\delta_{a, b}(x)=a b x
$$

in a Lie triple system. Show that $\delta_{a, b}$ is a derivation of the Lie triple system by using the axioms for Lie triple systems in Table 4. (Use the notation $[a b c]$ for the triple product in any Lie triple system, so that, for example, $\delta_{a, b}(x)$ is denoted by $[a b x]$)
14. Let us write $\delta_{a, b}$ for the linear process

$$
\delta_{a, b}(x)=a b x-b a x
$$

in a Jordan triple system. Show that $\delta_{a, b}$ is a derivation of the Jordan triple system by using the axioms for Jordan triple systems in Table 4. (Use the notation $\{a b c\}$ for the triple product in any Jordan triple system, so that, for example, $\left.\delta_{a, b}(x)=\{a b x\}-\{b a x\}\right)$
15. On the Jordan algebra $M_{n}(\mathbf{C})$ with the circle product $a \circ b=a b+b a$, define a triple product

$$
\{a b c\}=(a \circ b) \circ c+(c \circ b) \circ a-(a \circ c) \circ b
$$

Show that $M_{n}(\mathbf{C})$ is a Jordan triple system with this triple product.
Hint: show that $\{a b c\}=2 a b c+2 c b a$
16. On the vector space $M_{n}(\mathbf{C})$, define a triple product $\langle a b c\rangle=a b c$ (matrix multiplication without the adjoint in the middle). Formulate the definition of a derivation of the resulting triple system, and state and prove a result corresponding to Proposition 5. Is this triple system associative?
17. In an associative algebra, define a triple product $\langle a b c\rangle$ to be $a b c$. Show that the algebra becomes an associative triple system with this triple product.
18. In an associative triple system with triple product denoted $\langle a b c\rangle$, define a binary product $a b$ to be $\langle a u b\rangle$, where u is a fixed element. Show that the triple system becomes an associative algebra with this product. Suppose further that $\langle a u u\rangle=a$ for all a. Show that we get a unital involutive algebra with involution $a^{\sharp}=\langle u a u\rangle$.
19. In a Lie algebra with product denoted by $[a, b]$, define a triple product $[a b c]$ to be $[[a, b], c]$. Show that the Lie algebra becomes a Lie triple system with this triple product.
(Meyberg Lectures, chapter 6, example 1, page 43)
20. Let A be an algebra (associative, Lie, or Jordan; it doesn't matter). Show that the set $\mathcal{D}:=$ $\operatorname{Der}(A)$ of all derivations of A is a Lie subalgebra of $\operatorname{End}(A)$. That is, \mathcal{D} is a linear subspace of the vector space of linear transformations on A, and if $D_{1}, D_{2} \in \mathcal{D}$, then $D_{1} D_{2}-D_{2} D_{1} \in \mathcal{D}$.
21. Let A be a triple system (associative, Lie, or Jordan; it doesn't matter). Show that the set $\mathcal{D}:=\operatorname{Der}(A)$ of derivations of A is a Lie subalgebra of End (A). That is, \mathcal{D} is a linear subspace of the vector space of linear transformations on A, and if $D_{1}, D_{2} \in \mathcal{D}$, then $D_{1} D_{2}-D_{2} D_{1} \in \mathcal{D}$.

3 SUPPLEMENT (ALGEBRAS AND TRIPLES)

22. In an arbitrary Jordan triple system, with triple product denoted by $\{a b c\}$, define a triple product by

$$
[a b c]=\{a b c\}-\{b a c\} .
$$

Show that the Jordan triple system becomes a Lie triple system with this new triple product. (Meyberg Lectures, chapter 11, Theorem 1, page 108)
23. In an arbitrary associative triple system, with triple product denoted by $\langle a b c\rangle$, define a triple product by

$$
[x y z]=\langle x y z\rangle-\langle y x z\rangle-\langle z x y\rangle+\langle z y x\rangle .
$$

Show that the associative triple system becomes a Lie triple system with this new triple product.
(Meyberg Lectures, chapter 6, example 3, page 43)
24. In an arbitrary Jordan algebra, with product denoted by $x y$, define a triple product by $[x y z]=$ $x(y z)-y(x z)$. Show that the Jordan algebra becomes a Lie triple system with this new triple product.
(Meyberg Lectures, chapter 6, example 4, page 43)
25. In an arbitrary Jordan triple system, with triple product denoted by $\{a b c\}$, fix an element y and define a binary product by

$$
a b=\{a y b\} .
$$

Show that the Jordan triple system becomes a Jordan algebra with this (binary) product. (Meyberg Lectures, chapter 10, Theorem 1, page 94 - using different language; see also, Harald Upmeier, Symmetric Banach Manifolds and Jordan C*-algebras, 1985, Proposition 19.7, page 317))
26. In an arbitrary Jordan algebra with multiplication denoted by $a b$, define a triple product

$$
\{a b c\}=(a b) c+(c b) a-(a c) b
$$

Show that the Jordan algebra becomes a Jordan triple system with this triple product. (cf. Problem 15)
(Meyberg Lectures, chapter 10, page 93-using different language; see also, Harald Upmeier, Symmetric Banach Manifolds and Jordan C*-algebras, 1985, Corollary 19.10, page 320)
27. Show that every Lie triple system, with triple product denoted $[a b c]$ is a subspace of some Lie algebra, with product denoted $[a, b]$, such that $[a b c]=[[a, b], c]$.
(Meyberg Lectures, chapter 6, Theorem 1, page 45)
28. Find out what a semisimple associative algebra is and prove that every derivation of a finite dimensional semisimple associative algebra is inner, that is, of the form $x \mapsto a x-x a$ for some fixed a in the algebra.
(G. Hochschild, Semisimple algebras and generalized derivations, Amer. J. Math. 64, 1942, 677-694, Theorem 2.2)
29. Find out what a semisimple Lie algebra is and prove that every derivation of a finite dimensional semisimple Lie algebra is inner, that is, of the form $x \mapsto[a, x]$ for some fixed a in the algebra. (Meyberg Lectures, chapter 5, Theorem 2, page 42; see also G. Hochschild, Semisimple algebras and generalized derivations, Amer. J. Math. 64, 1942, 677-694, Theorem 2.1)
30. Find out what a semisimple Jordan algebra is and prove that every derivation of a finite dimensional semisimple Jordan algebra is inner, that is, of the form $x \mapsto \sum_{i=1}^{n}\left(a_{i}\left(b_{i} x\right)-b_{i}\left(a_{i} x\right)\right)$ for some fixed elements a_{1}, \ldots, a_{n} and b_{1}, \ldots, b_{n} in the algebra.
(N. Jacobson, Structure of Jordan algebras, 1968, around page 320 and Braun-Koecher, Jordan Algebren, around page 270)
31. In an associative triple system with triple product $\langle x y z\rangle$, show that you get a Jordan triple system with the triple product $\{x y z\}=\langle x y z\rangle+\langle z y x\rangle$. Then use Theorem 7 to prove Theorem 5.

THEOREM 7

EVERY DERIVATION OF $M_{m, n}(\mathbf{C})$ WITH RESPECT TO TRIPLE CIRCLE MULTIPLICATION IS A SUM OF DERIVATIONS OF THE FORM $\delta_{A, B}$.

THEOREM 5
EVERY DERIVATION ON $M_{m, n}(\mathbf{C})$ WITH RESPECT TO TRIPLE MATRIX MULTIPLICATION IS A $\underline{\text { SUM }}$ OF DERIVATIONS OF THE FORM $\delta_{A, B}$.
32. Find out what a semisimple associative triple system is and prove that every derivation of a finite dimensional semisimple associative triple system is inner (also find out what inner means in this context).
(R. Carlsson, Cohomology for associative triple systems, P.A.M.S. 1976, 1-7)
33. Find out what a semisimple Lie triple system is and prove that every derivation of a finite dimensional semisimple Lie triple system is inner, that is, of the form $x \mapsto \sum_{i=1}^{n}\left[a_{i} b_{i} x\right]$ for some fixed elements a_{1}, \ldots, a_{n} and b_{1}, \ldots, b_{n} in the Lie triple system.
(Meyberg Lectures, chapter 6, Theorem 10, page 57)
34. Find out what a semisimple Jordan triple system is and prove that every derivation of a finite dimensional semisimple Jordan triple system is inner, that is, of the form $x \mapsto \sum_{i=1}^{n}\left(\left\{a_{i} b_{i} x\right\}-\right.$ $\left\{b_{i} a_{i} x\right\}$) for some fixed elements a_{1}, \ldots, a_{n} and b_{1}, \ldots, b_{n} in the Jordan triple system.
(Meyberg Lectures, chapter 11, Theorem 8, page 123 and Corollary 2, page 124)

