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We prove the NP-hardness of a consistency checking problem that arises in certain elimination strategies
for solving Sudoku-type problems.
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1. Introduction

A Sudoku is a combinatorial number-placement puzzle where
the objective is to fill a 9 × 9 grid with digits so that (i) each
column, (ii) each row, and (iii) each of the nine 3 × 3 sub-grids
that compose the grid contains all the digits from 1 to 9. The puzzle
provides a partially completed grid, and the goal is to extend this
to the full grid. Sudoku puzzles and their variations have become
very popular in recent years. We refer the reader for instance to
[1,2] for mathematical results and observations on mathematical
solution approaches to Sudokus. Provan [4] considers the following
mathematical model of Sudoku-type problems.

• A finite ground set S models the grid squares.
• A finite color set C models the digits from 1 to 9.
• A family B of subsets of S models the rows, columns, and 3× 3

sub-grids. These subsets are called blocks, and they all have the
same cardinality as C.

• A function C : S → 2C models the initial situation of the
Sudoku.

The function C specifies for every element s ∈ S the set C(s) of
colors that can feasibly be assigned to s. If C(s) contains a single
element, then the contents of the grid square s is fixed right from
the beginning. If C(s) = C, then the grid square s is initially empty,
and any color in C may be assigned to it. The goal is to find a
coloring γ : S → C of the elements such that γ (s) ∈ C(s) for all
s ∈ S, and such that in every block B ∈ B every color is assigned
to exactly one element.
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A common approach to Sudoku puzzles are elimination
strategies that step by step eliminate colors from the feasible color
sets C(s), until each set has been cut down to a single element.
Provan [4] investigates a particular family of elimination strategies
which he calls one-block strategies. Every single step of a one-
block strategy can eliminate a single color from a single set C(s)
by drawing conclusions based on a single block. Hence one-block
strategies are centered around the following algorithmic problem.

Problem: One-Block Elimination
Input: A block B ∈ B; color sets C(s) for all s ∈ B; a fixed
element s0 ∈ B and a fixed color c0 ∈ C(s0).
Question: Does there exist a coloring γ : B → C such that
every color in C is assigned to exactly one element in B, such
that γ (s) ∈ C(s) for all s ∈ B, and such that γ (s0) = c0?

Whenever a one-block strategy detects aNO instance ofOne-Block
Elimination, it makes progress by eliminating the color c0 from set
C(s0). According to Provan [4] this simple strategy solves about 90%
of all Sudoku puzzles; for the remaining 10% it reduces the search
space considerably.

It is easy to see that the problem One-Block Elimination is
a bipartite perfect matching problem, and hence is well behaved
and solvable in polynomial time. Provan [4] derives the following
beautiful characterization result from this: A Sudoku can be fully
solved by a one-block strategy if and only if a certain underlying
linear equation system has a non-negative solution over the real
numbers. Provan poses the open question whether there also is a
good description of two-block strategies that are centered around
the following problem.

Problem: Two-Block Elimination
Input: Two blocks B1, B2 ∈ B; color sets C(s) for all s ∈ B1 ∪B2;
a fixed element s0 ∈ B1 ∪ B2 and a fixed color c0 ∈ C(s0).
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Question: Does there exist a coloring γ : B1 ∪ B2 → C such
that every color in C is assigned to exactly one element in B1
and to exactly one element in B2, such that γ (s) ∈ C(s) for all
s ∈ B, and such that γ (s0) = c0?

In this technical note we will prove that Two-Block Elimination,
in fact, is an intractable problem.

Theorem 1. Problem Two-Block Elimination is NP-complete.

This hints at a negative answer to Provan’s open question:
Whenever NP-hardness rears its ugly head, there is little hope for
beautiful characterizations and fast algorithms.

2. The hardness proof

Weprove the NP-hardness of the problem Two-Block Elimina-
tion by a reduction from the following variant of the satisfiability
problem (see [3]).

Problem: Satisfiability
Input: A set X = {x1, . . . , xn} of n logical variables; a set K =

{k1, . . . , km} of m clauses over X where every variable occurs
twice as negated and once as unnegated literal.
Question: Is there a truth assignment for X that satisfies all
clauses in K?

Note that [3] only says that the satisfiability problem remains NP-
complete if each variable (negated or unnegated) occurs at most
three times. It is straightforward to add some clauses and to negate
some variables without changing the nature of the problem.

Now consider an arbitrary instance of Satisfiability. Without
loss of generality we assume that every clause contains at least
two literals; this impliesm ≤ 3n/2. We construct a corresponding
instance of Two-Block Elimination that consists of the following
colors, elements, and color sets:

• For every variable xi we introduce a corresponding color c(i).
• If the unnegated literal xi occurs in clause kj then we create a

corresponding color c(xi, kj), and if the negated literal xi occurs
in clause kj then we create the corresponding color c(xi, kj).

• Finally, there is a special color c0.

Since every variable occurs (negated or unnegated) in exactly three
clauses, the overall number of colors in C equals 4n + 1.

• For every clause kj we introduce a corresponding clause
element s(kj) that belongs to both blocks B1 and B2. The color
set of s(kj) contains all colors c(ℓ, kj) for which ℓ is a literal in
clause kj.

• If the unnegated literal xi occurs in clause kj then we create
a corresponding literal element s(xi, kj) that belongs to both
blocks B1 and B2. The color set of element s(xi, kj) consists of
color c(i) and color c(xi, kj).

• If the negated literal xi occurs in clause kj then we create
a corresponding literal element s(xi, kj). Every negated literal
occurs in two clauses, and one of its corresponding literal
elements belongs to B1−B2 and the other one belongs to B2−B1.
The color set of element s(xi, kj) consists of the colors c(i) and
c(xi, kj).

• Finally, there is a special element s0 with color set C(s0) = {c0},
and there are 4n − 2m dummy elements with color set C. The
special element belongs to B1 ∩ B2, and the dummy elements
are equally divided between B1 − B2 and B2 − B1.

Note that both blocks contain 4n+1 = |C| elements, and that their
intersection B1 ∩ B2 contains n + m + 1 elements.

Lemma 2. If the Satisfiability instance has answer YES, then the
constructed instance of Two-Block Elimination has answer YES.
Proof. Consider a satisfying truth assignment t . If t(xi) is TRUE
then color the (unique) corresponding unnegated literal element
s(xi, kj) by color c(i), and color both the corresponding negated
literal elements s(xi, kj) by their corresponding color c(xi, kj).
Similarly, if t(xi) is FALSE then color the (unique) corresponding
unnegated literal element s(xi, kj) by its corresponding color
c(xi, kj), and color both the corresponding negated literal elements
s(xi, kj) by color c(i). Note that for a true variable xi this leaves the
color c(xi, kj) free, and that for a false variable xi this leaves the two
colors c(xi, kj) (with two distinct clauses kj) free.

Since every clause contains at least one true literal, these free
colors can be used to feasibly color all clause elements. The special
element s0 is colored by c0. Finally, the 2n − m dummy elements
in each block Br (r = 1, 2) are colored by the 2n − m remaining
colors that have not been used in this block so far. �

Lemma 3. If the Two-Block Elimination instance has answer YES,
then the Satisfiability instance has answer YES.

Proof. Consider a feasible coloring. Suppose for the sake of
contradiction that there is a variable xi and two clauses ka and
kb such that the clause elements s(ka) and s(kb) are colored by
colors c(xi, ka) and c(xi, kb), respectively. Then the color c(xi, ka)
cannot be used for the element s(xi, ka), and hence this element
must be colored by c(i). Similarly, the color c(xi, kb) cannot be used
for element s(xi, kb) and also that element must be colored by the
same color c(i). Since s(xi, ka) lies in both blocks, color c(i) is used
twice in the same block. That is the desired contradiction.

This observation suggests the following truth assignment:
Whenever a clause element s(kj) is colored by c(xi, kj)with xi ∈ kj,
then variable xi is set to TRUE. Whenever a clause element s(kj) is
colored by c(xi, kj) with xi ∈ kj, then variable xi is set to FALSE.
All remaining variables are set to TRUE. This yields a valid truth
assignment that by definition satisfies all clauses. �

This completes the proof of Theorem 1, and Two-Block
Elimination indeed is a hard problem.

3. A more realistic variant of two-block elimination

There is something extremely dissatisfying about the NP-
hardness construction in the preceding section: Every Sudoku
puzzle in the real world has a solution. Whenever we invoke an
algorithm for Two-Block Elimination while solving a Sudoku, we
want to know whether by assigning color c0 to element s0 we
jump from a solvable situation into an unsolvable situation. But the
instance constructed above does not reflect this behavior: Color c0
is the only feasible color for element s0, and the solvability of the
instance does not depend at all on the way we color s0. In the rest
of this paper, wewill showhow to slightlymodify our construction
so that the coloring decision for s0 becomes crucial.

Problem: Real-world Two-Block Elimination
Input: An instance of the standard version of Two-Block Elim-
ination plus a second color c ′

0 ∈ C(s0) with c ′

0 ≠ c0. This in-
stance has a feasible coloring γ ′

: B1∪B2 → C with γ ′(s0) = c ′

0.
Question: Does there also exist another feasible coloring γ :

B1 ∪ B2 → C with γ (s0) = c0?

Our NP-hardness proof for Real-world Two-Block Elimina-
tion closely follows the arguments in the preceding section. Hence
we will only sketch how to modify these arguments.

We construct a gadget that relies on a directed out-tree T =

(Y , A). The vertex set Y consists of 3m vertices ui, vi, wi with 1 ≤

i ≤ m (where m is the number of clauses in K ). For 1 ≤ i ≤ m, the
tree contains the arcs ui → vi and ui → wi, and for 1 ≤ i ≤ m−1,
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the tree furthermore contains the arc vi → ui+1. This out-tree is
rooted at u1, and all vertices y ≠ u1 have a unique father. We de-
fine for every vertex y ∈ Y a corresponding element s(y) and a cor-
responding color c(y). Elements s(ui) are put into B1∩B2, elements
s(vi) into B1−B2, and elements s(wi) into B2−B1. The element s(u1)
corresponding to the root has color set C(s(u1)) = {c0, c(u1)}. For
a non-root vertex ywith father z, we define C(s(y)) = {c(y), c(z)}.

We add the new elements and colors from this out-tree gadget
to the old construction. Furthermore we create a brand new color
c ′

0. The color set for the special element s0 is updated to C(s0) =

{c0, c ′

0}. The color set of the jth clause element s(kj) receives c(wj)
as additional new color. In order to account for the 3m + 1 new
colors we also addm+ 1 new dummy elements to each of B1 − B2
and each of B2 − B1 (that all can be colored by any possible color).
Then both blocks have 3m + 4n + 2 elements, and there are
3m + 4n + 2 colors available. Here are two useful observations:

(i) Assume that element s0 is colored by c0. Then element s(u1)
must be colored by color c(u1), and an easy inductive argument
shows that all other elements s(y) in the gadget must be
colored by the color c(y) that corresponds to the same vertex
y. In this case all colors c(y) with y ∈ Y are absorbed by the
gadget elements. In particular, the colors c(wj) cannot be used
to color the clause elements, and the arguments in Lemmas 2
and 3 hold as before.

(ii) Assume that element s0 is colored by c ′

0. Then element s(u1)
may be colored by c0, and for every non-root vertex y with
father z we may color s(y) by c(z). This yields a feasible
coloring for the gadget that leaves them colors c(wi) with 1 ≤

i ≤ m free for the m clause elements. It is straightforward to
extend this coloring to a feasible coloring of the entire instance.

Summarizing, the new instance possesses the feasible coloring
described in (ii). Furthermore by (i) it is NP-hard to decidewhether
assigning color c0 to element s0 makes the situation to jump from
solvable to unsolvable. This completes our argument.

Theorem 4. Problem Real-world Two-Block Elimination is NP-
complete.
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