Chapter 1

Basic Concepts

In this chapter F denotes an arbitrary (commutative) field.

1. Definitions and first examples
1.1. The notion of Lie algebra

Lie algebras arise “‘in nature” as vector spaces of linear transformations
endowed with a new operation which is in general neither commutative nor
associative: [x, y] = xy—yx (where the operations on the right side are the
usual ones). It is possible to describe this kind of system abstractly in a few
axioms.

Definition. A vector space L over a field F, with an operation Lx L — L,
denoted (x, y) > [xy] and called the bracket or commutator of x and y, is
called a Lie algebra over F if the following axioms are satisfied:

(L1) The bracket operation is bilinear.
(L2) [xx] = Ofor all xin L.
(L3) [x[yzll+Dlzxll+[z2lxp)] = 0 (x, y, z € L).

Axiom (L3) is called the Jacobi identity. Notice that (L1) and (L2), applied
to [x+y, x+y], imply anticommutativity: (L2") [xy] = —[px]. (Conversely,
if char F 5 2, it is clear that (L2") will imply (L2).)

We say that two Lie algebras L, L’ over F are isomorphic if there exists
a vector space isomorphism ¢: L — L’ satisfying ¢{([xy]) = [¢(x)é(y)] for
all x, y in L (and then ¢ is called an isomorphism of Lie algebras). Similarly,
it is obvious how to define the notion of (Lie) subalgebra of L: A subspace
K of L is called a subalgebra if [xy] € K whenever x, y € K; in particular,
K is a Lie algebra in its own right relative to the inherited operations. Note
that any nonzero element x € L defines a one dimensional subalgebra Fx,
with trivial multiplication, because of (L2).

In this book we shall be concerned almost exclusively with Lie algebras
L whose underlying vector space is finite dimensional over F. This will always
be assumed, unless otherwise stated. We hasten to point out, however, that
certain infinite dimensional vector spaces and associative algebras over F
will play a vital role in the study of representations (Chapters V-VII). We
also mention, before looking at some concrete examples, that the axioms for
a Lie algebra make perfectly good sense if L is only assumed to be a module
over a commutative ring, but we shall not pursue this point of view here.
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2 Basic Concepts
1.2. Linear Lie algebras

If V is a finite dimensional vector space over F, denote by End V the set
of linear transformations ¥ — V. As a vector space over F, End ¥ has dimen-
sion n*> (n = dim V), and End V is a ring relative to the usual product
operation. Define a new operation [x, y] = xy—yx, called the bracket of
x and y. With this operation End V becomes a Lie algebra over F: axioms
(L1) and (L2) are immediate, while (L3) requires a brief calculation (which
the reader is urged to carry out at this point). In order to distinguish this new
algebra structure from the old associative one, we write gl(¥) for End V
viewed as Lie algebra and call it the general linear algebra (because it is
closely associated with the general linear group GL(V) consisting of all in-
vertible endomorphisms of V). When V is infinite dimensional, we shall also
use the notation gl(}") without further comment.

Any subalgebra of a Lie algebra gl(V) is called a linear Lie algebra. The
reader who finds matrices more congenial than linear transformations may
prefer to fix a basis for V, thereby identifying gl(¥") with the set of all nx n
matrices over F, denoted gl (», F). This procedure is harmless, and very
convenient for making explicit calculations. For reference, we write down
the multiplication table for gl (n, F) relative to the standard basis consisting
of the matrices e;; (having 1 in the (i, j) position and 0O elsewhere). Since
e;ie = 8,e;, it follows that:

*) [eijs eyl = ajk e;— 3y €+

Notice that the coefficients are all +1 or 0; in particular, all of them lie in
the prime field of F.

Now for some further examples, which are central to the theory we are
going to develop in this book. They fall into four families A,, B,, C,, D,
(/ = 1) and are called the classical algebras (because they correspond to
certain of the classical linear Lie groups).

A,: Let dim ¥V = /+1. Denote by s(V), or s{(/+1, F), the set of endo-
morphisms of ¥ having trace zero. (Recall that the trace of a matrix is the
sum of its diagonal entries; this is independent of choice of basis for V,
hence makes sense for an endomorphism of V.) Since Tr(xy) = Tr(yx),
and Tr(x+y) = Tr(x)+Tr(y), sl(V) is a subalgebra of gl(V), called the
special linear algebra because of its connection with the special linear group
SL(V) of endomorphisms of det 1. What is its dimension? On the one hand
s[(V) is a proper subalgebra of gI(¥), hence of dimension at most (/+1)* —1.
On the other hand, we can exhibit this number of linearly independent
matrices of trace zero: Take all e;; (i # j), along with all ; = e;;—e;4, ;14
(1 <i<?), for a total of £+ (£+1)*—(£/+1) matrices. We shall always
view this as the standard basis for s1(/+1, F).

C,: Let dim V = 2/, with basis (v,, ..., v,,). Define a nondegenerate

0 I‘) . (It can be shown

skew-symmetric form f on V' by the matrix s = ( 10
At



1.2. Linear Lie algebras 3

that even dimensionality is a necessary condition for existence of a non-
degenerate bilinear form satisfying f(v, w) = —f(w, v).) Denote by sp(V),
or sp(24, F), the symplectic algebra, which by definition consists of all endo-
morphisms x of V satisfying f(x(v), w) = —f(v, x(w)). The reader can easily
verify that sp(¥) is closed under the bracket operation. In matrix terms, the

condition for x = (;1 Z) (m, n, p, q € gl(4, F)) to be symplectic is that

sx = —x's (x* = transpose of x), i.e., that n’ = n, p* = p, and m' = —q.
(This last condition forces Tr(x) = 0.) It is easy now to compute a basis
for sp(2/, F). Take the diagonal matrices e;—e,y;,4; (1 < i < ¢),
Z in all. Add to these all ¢;—e,.; 4; (1 < i#j <), £~ in number.
For n we use the matrices ¢ ,,, (1 <i < /) and e, ,,;+e; ,s; (1 <i<j
< /), a total of £+ % £(/—1), and similarly for the positions in p. Adding up,
we find dim sp(27, F) = 22 +/.

B,: Let dim ¥ = 2/+1 be odd, and take fto be the nondegenerate sym-

100
metric bilinear form on ¥V whose matrix is s = (0 0 D) . The orthogonal
01,0
algebra o(V), or 0(2/+1, F), consists of all endomorphisms of V satisfying
f(x(v), w) = —f(v, x(w)) (the same requirement as for C,). If we partition x in
a b, b,
the same form as s, say x = (c1 m n ) , then the condition sx = —x's
&P q
translates into the following set of conditions: a = 0, ¢, = —bj, ¢, = —¥b,
g= —m', n" = —n, p' = —p. (As in the case of C,, this shows that Tr(x)

= 0.) For a basis, take first the £ diagonal matrices e;;—e;4;,+; 2 < i <
/+1). Add the 2/ matrices involving only row one and column one:
€ rviv1—€i+1,1 and e ;i —e€4,41, (1 <i< 7). Corresponding to
q = —m', take (as for C) e, jr1—€rsji1,04i41 (L <P #j< ). For
ntake e;py r4jr1—€i1,0vi41 (1 S0 <j< /), and for p, €;rr41,j41—
€j+e+1,i+1 (1 £ j < i < /). The total number of basis elements is 2% 4/
(notice that this was also the dimension of C)).

D,: Here we obtain another orthogonal algebra. The construction is
identical to that for B,, except that dim ¥V = 2/is even and s has the simpler
form (0 L

1, 0
and to verify that dim o(2Z, F) = 2/? —¢ (Exercise 8).

We conclude this subsection by mentioning several other subalgebras of
gl(n, F) which play an important subsidiary role for us. Let t(n, F) be the set
of upper triangular matrices (a;;), a;; = 0 if i > j. Let n(n, F) be the strictly
upper triangular matrices (a,; = 0 if i/ > j). Finally, let b(n, F) be the set of
all diagonal matrices. It is trivial to check that each of these is closed under
the bracket. Notice also that t(n, F) = d(n, F)+ n(n, F) (vector space direct
sum), with [d(n, F), n(n, F)] = n(n, F), hence [t(n, F), t(n, F)] = n(n, F), cf.
Exercise 5. (If H, K are subalgebras of L, [H K] denotes the subspace of L
spanned by commutators [xy], x € H, y € K.)

) . We leave it as an exercise for the reader to construct a basis



4 Basic Concepts

1.3. Lie algebras of derivations

Some Lie algebras of linear transformations arise most naturally as
derivations of algebras. By an F-algebra (not necessarily associative) we
simply mean a vector space U over F endowed with a bilinear operation
W x A — A. usually denoted by juxtaposition (unless U is a Lie algebra, in
which case we always use the bracket). By a derivation of 2 we mean a linear
map §8: A — A satisfying the familiar product rule 8(ab) = ad(b)+ 8(a)b. It
is easily checked that the collection Der U of all derivations of U is a vector
subspace of End A. The reader should also verify that the commutator
[8. &'] of two derivations is again a derivation (though the ordinary product
need not be, cf. Exercise 11). So Der U is a subalgebra of gI().

Since a Lie algebra L is an F-algebra in the above sense, Der L is defined.
Certain derivations arise quite naturally, as follows. If xe L, y > [xy] is an
endomorphism of L, which we denote ad x. In fact, ad x € Der L, because
we can rewrite the Jacobi identity (using (L2")) in the form: [x[yz]] = [[xy]z]
+[y[xz]]. Derivations of this form are called inner, ail others outer. It is of
course perfectly possible to have ad x = 0 even when x # 0: this occurs
in any one dimensional Lie algebra, for example. The map L — Der L
sending x to ad x is called the adjoint representation of L; it plays a decisive
role in all that follows.

Sometimes we have occasion to view x simultaneously as an element of
L and of a subalgebra K of L. To avoid ambiguity, the notation ad; x or
adgx will be used to indicate that x is acting on L (respectively, K). For
example, if x is a diagonal matrix, then ady, r (x) = 0, whereas ad, f(x)
need not be zero.

1.4. Abstract Lie algebras

We have looked at some natural examples of linear Lie algebras. It is
known that, in fact, every (finite dimensional) Lie algebra is isomorphic to
some linear Lie algebra (theorems of Ado, Iwasawa). This will not be proved
here (cf. Jacobson [1] Chapter VI, or Bourbaki [1]); however, it will be
obvious at an early stage of the theory that the result is true for all cases we
are interested in.

Sometimes it is desirable, however, to contemplate Lie algebras abstractly.
For example, if L is an arbitrary finite dimensional vector space over F, we
can view L as a Lie algebra by setting [xy] = O for all x, y e L. Such an
algebra, having trivial Lie multiplication, is called abelian (because in the
linear case [x, y] = O just means that x and y commute). If L is any Lie
algebra, with basis x,, ..., x, it is clear that the entire multiplication table
of L can be recovered from the structure constants af.j. which occur in the

n
expressions [x;x;] = ) afx,. Those for which i > j can even be deduced
k=1

from the others, thanks to (L2), (L2’). Turning this remark around, it is
possible to define an abstract Lie algebra from scratch simply by specifying



1.4. Abstract Lie algebras 5
a set of structure constants. Naturally, not just any set of scalars {a,lj.} will
do, but a moment’s thought shows that it is enough to require the “obvious”
identities, those implied by (L2) and (L3):

k_(— &k k.
a;; _O_aij+4ji’

k m k m k my _.
Z (aijakl+ajlaki+aliakj) = 0.
%

In practice, we shall have no occasion to construct Lie algebras in this
artificial way. But, as an application of the abstract point of view, we can
determine (up to isomorphism) all Lie algebras of dimension <2. In dimen-
sion 1 there is a single basis vector x, with multiplication table [xx] = 0 (L2).
In dimension 2, start with a basis x, y of L. Clearly, all products in L yield
scalar multiples of [xy]. If these are all 0, then L is abelian. Otherwise, we
can replace x in the basis by a vector spanning the one dimensional space
of multiples of the original [xy], and take y to be any other vector independent
of the new x. Then [xy] = ax (a # 0). Replacing y by a~'y, we finally get
[xy] = x. Abstractly, therefore, at most one nonabelian L exists (the reader
should check that [xy] = x actually defines a Lie algebra).

Exercises

1. Let L be the real vector space R>. Define [xy] = x x y (cross product of
vectors) for x, y € L, and verify that L is a Lie algebra. Write down the
structure constants relative to the usual basis of R>.

2. Verify that the following equations and those implied by (L1) (L2)
define a Lie algebra structure on a three dimensional vector space with

basis (x, y, 2): [xy] = z, [xz] = y, [yz] = 0.

3. Let x = (8 (l)) , h= ((1) _(1)), y= ((1) 8) be an ordered basis for
s1(2, F). Compute the matrices of ad x, ad A, ad y relative to this basis.

4. Find a linear Lie algebra isomorphic to the nonabelian two dimensional
algebra constructed in (1.4). [Hint: Look at the adjoint representation.]

5. Verify the assertions made in (1.2) about t(n, F), d(n, F), n(n, F), and
compute the dimension of each algebra, by exhibiting bases.

6. Let x € gl(n, F) have n distinct eigenvalues ay, ..., a, in F. Prove that
the eigenvalues of ad x are precisely the n” scalars a;—a; (1 < i,j < n),
which of course need not be distinct.

7. Let s(n, F) denote the scalar matrices (=scalar multiples of the identity)
in gl(n, F). If char F is O or else a prime not dividing »n, prove that
gl(n, F) = sl(n, F)+s(n, F) (direct sum of vector spaces), with [s(n, F),
gl(n, F)] = 0.

. Verify the stated dimension of D,.

9. When char F = 0, show that each classical algebra L = A,, B,, C,, or D,

is equal to [LL]. (This shows again that each algebra consists of trace 0
matrices.)

o]



6 Basic Concepts

10. For small values of 7, isomorphisms occur among certain of the classical
algebras. Show that A, B,, C, are all isomorphic, while D, is the one
dimensional Lie algebra. Show that B, is isomorphic to C,. D; to Aj;.
What can you say about D,?

11. Verify that the commutator of two derivations of an F-algebra is again
a derivation, whereas the ordinary product need not be.

12. Let L be a Lie algebra over an algebraically closed field and let x ¢ L.
Prove that the subspace of L spanned by the eigenvectors of ad x is a
subalgebra.

2. Ideals and homomorphisms

2.1. Ildeals

A subspace I of a Lie algebra L is called an ideal of L if xe L, yel
together imply [xy] € I. (Since [xy] = —[yx], the condition could just as well
be written: {yx]e /) ldeals play the role in Lie algebra theory which is
played by normal subgroups in group theory and by two sided ideals in ring
theory: they arise as kernels of homomorphisms (2.2).

Obviously 0 (the subspace consisting only of the zero vector) and L
itself are ideals of L. A less trivial example is the center Z(L) = {z e L|[xz] =
0 for all x € L}. Notice that L is abelian if and only if Z(L)= L. Another
important example is the derived algebra of L, denoted [LL], which is
analogous to the commutator subgroup of a group. It consists of all linear
combinations of commutators [xy], and is clearly an ideal.

Evidently L is abelian if and only if [LL] = 0. At the other extreme, a
study of the multiplication table for L = sl(n, F) in (1.2) (n # 2 if char
F = 2) shows that L = [LL] in this case, and similarly for other classical
linear Lie algebras (Exercise 1.9).

If 1. J are two ideals of a Lie algebra L, then /+J = {x+y|xel, yeJ}
is also an ideal. Similarly, [/J] = {Z x,y;|x; € [, y; € J} is an ideal; the derived
algebra [LL] is just a special case of this construction.

It is natural to analyze the structure of a Lie algebra by looking at its
ideals. If L has no ideals except itself and 0, and if moreover [LL] # 0, we
call L simple. The condition [LL] # 0 (i.e., L nonabelian) is imposed in
order to avoid giving undue prominence to the one dimensional algebra.
Clearly, L simple implies Z(L) = 0 and L = [LL].

Example. Let L = sl(2, F), char F # 2. Take as standard basis for L the

three matrices (cf. (1.2)): x = (O 1) , Yy = (0 0) , h= (1 0) . The multi-

00 10 0 -1
plication table is then completely determined by the equations: [xy] = h,
[Ax] = 2x, [hy] = —2y. (Notice that x, y, h are eigenvectors for ad A, corres-

ponding to the eigenvalues 2, —2, 0. Since char F # 2, these eigenvalues are
distinct.) If 7 # 0 is an ideal of L, let ax+by+ch be an arbitrary nonzero
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element of 1. Applying ad x twice, we get —2bx e I, and applying ad y twice,
we get —2ay e I. Therefore, if a or b is nonzero, I contains either y or x
(char F # 2), and then, clearly, 7 = L follows. On the other hand, if a = b
=0, then 0 # chel, so hel, and again I = L follows. We conclude that
L is simple.

In case a Lie algebra L is not simple (and not one dimensional) it is
possible to “factor out” a nonzero proper ideal I and thereby obtain a Lie
algebra of smaller dimension. The construction of a quotient algebra L/I
(1 an ideal of L) is formally the same as the construction of a quotient ring:
as vector space L/I is just the quotient space, while its Lie multiplication is
defined by [x+17, y+ 1] = [xy]+ 1. This is unambiguous, since if x+1 = x'+1,
y+1=y'+1I, then we have x' = x+u (uel), y' = y+v (vel), whence
[xyl = [xy]+ ([uy] + [xv] + [uv]), and therefore [x'y'1+1 = [xy]+1, since the
terms in parentheses all lie in 1.

For later use we mention a couple of related notions, analogous to those
which arise in group theory. The normalizer of a subalgebra (or just subspace)
K of L is defined by N, (K) = {xe L|[xK] < K}. By the Jacobi identity,
N (K) is a subalgebra of L; it may be described verbally as the largest sub-
algebra of L which includes K as an ideal (in case K is a subalgebra to begin
with). If K = N (K), we call K self-normalizing ; some important examples of
this behavior will emerge later. The centralizer of a subset X of L is C(X) =
{x e L|[xX] = 0}. Again by the Jacobi identity, C;(X) is a subalgebra of L.
For example, C, (L) = Z(L).

2.2. Homomorphisms and representations

The definition should come as no surprise. A linear transformation
¢: L — L' (L, L' Lie algebras over F) is called a homomorphism if ¢([xy]) =
[¢(x)p(»)], for all x, ye L. ¢ is called a monomorphism if Ker ¢ = 0, an
epimorphism if Im ¢ = L’, an isomorphism (as in (1.1)) if it is both mono- and
epi-. The first interesting observation to make is that Ker ¢ is an ideal of L:
indeed, if #(x) = 0, and if y € L is arbitrary, then ¢([xy]) = [¢(x)$(»)] = O.
It is also apparent that Im ¢ is a subalgebra of L’. As in other algebraic
theories, there is a natural 1-1 correspondence between homomorphisms
and ideals: to ¢ is associated Ker ¢, and to an ideal 7 is associated the canonical
map x — x+ 1 of L onto L/I. It is left as an easy exercise for the reader to
verify the standard homomorphism theorems:

Proposition. (a) If ¢: L — L’ is a homomorphism of Lie algebras, then
L/Ker ¢ ~ Im . If I is any ideal of L included in Ker ¢, there exists a unique
homomorphism : L/l — L' making the following diagram commute (w =
canonical map):

L—i—>L’

N

LI
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(b) If I and J are ideals of L such that I < J, then J/I is an ideal of L|I
and (L/1)/(J]1) is naturally isomorphic to L|J.

(¢) If 1, J are ideals of L, there is a natural isomorphism between (I-+J)|J
and IJ(INJ). 1

A representation of a Lie algebra L is a homomorphism ¢: L — gl(V)
(V' = vector space over F). Although we require L to be finite dimensional,
it is useful to allow V to be of arbitrary dimension: gl(¥) makes sense in any
case. However, for the time being the only important example to keep in
mind is the adjoint representation ad: L — gl(L) introduced in (1.3), which
sends x to ad x, where ad x(y) = [xy]. (The image of ad is in Der L < gI(L), but
this does not concern us at the moment.) It is clear that ad is a linear trans-
formation. To see that it preserves the bracket, we calculate:

[ad x, ad ] (z) = ad x ad y(z) —ad y ad x(2)
= ad x([yz]) —ad y([xz])
= [x[yz]] - [ylxz]]

= [xyzl]+[[xzy] (L2
= [[xy)2] (L3)
= ad [xy] (2).

What is the kernel of ad? It consists of all x e L for which ad x = 0,
i.e., for which [xy] = 0 (all ye L). So Ker ad = Z(L). This already has an
interesting consequence: If L is simple, then Z(L) = 0, so that ad: L — gl(L)
is a monomorphism. This means that any simple Lie algebra is isomorphic
to a linear Lie algebra.

2.3. Automorphisms

An automorphism of L is an isomorphism of L onto itself. Aut L denotes
the group of all such. Important examples occur when L is a linear Lie
algebra < gl(V). If g e GL(V) is any invertible endomorphism of V, and if
moreover gLg™! = L, then it is immediate that the map x> gxg~' is an
automorphism of L. For instance, if L = gl(¥) or even sl( V), the second
condition is automatic, so we obtain in this way a large collection of auto-
morphisms. (Cf. Exercise 12.)

Now specialize to the case: char F = 0. Suppose x € L is an element for
which ad x is nilpotent, i.e., (ad x)* = 0 for some k > 0. Then the usual
exponential power series for a linear transformation over C makes sense over
F, because it has only finitely many terms: exp (ad x) = 1+ad x+(ad x)*/2!
+(ad x)*/31+...+(ad x)*"'/(k—1)!. We claim that exp (ad x)e Aut L.
More generally, this is true if ad x is replaced by an arbitrary nilpotent
derivation & of L. For this, use the familiar Leibniz rule:

n

8 n ' |
() = ,.;,, (1/i1) (8'x) (1/(n—1)!) (8"~ ).
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Then calculate as follows: (say & = 0)

k-1 3i_ k=1 /§J
exp 8(x) exp &(y) = <.ZO <;)> < 2 <_vy >
-

2k—-2 "
-y (A'y ) (Leibniz)
n=0 n
5 8y)
= =0
n=0 n! ( )
= exp 3(xy).

The fact that exp & is invertible follows (in the usual way) by exhibiting the
explicit inverse 1 —n+n*—n>+... 475! exp § = 1+1.

An automorphism of the form exp (ad x), ad x nilpotent, is called inner;
more generally, the subgroup of Aut L generated by these is denoted Int L
and its elements called inner automorphisms. It is a normal subgroup: If
deAut L, xe L, then (ad x)¢~ ' = ad #(x), whence ¢ exp (ad x)¢ ! =
exp (ad $(x)).

For example, let L = sl(2, F), with standard basis (x, y, A). Define
o = exp ad x-exp ad (—y)-exp ad x (so o € Int L). It is easy to compute the
effect of o on the basis (Exercise 10): o(x) = —y, o(y) = —x, o(h) = —h.
In particular, o has order 2. Notice that exp x, exp (—y) are well
defined elements of SL(2, F), the group of 2 x 2 matrices of det 1, conjugation
by which leaves L invariant (as noted at the start of this subsection), so the
product s = (exp x) (exp —y) (exp x) induces an automorphism z - szs ™!

of L. A quick calculation shows that s = (_(1) (1)) and that conjugating by s

has precisely the same effect on L as applying o.

The phenomenon just observed is not accidental: If L < gl(V) is an
arbitrary linear Lie algebra (char F = 0), and x € L is nilpotent, then we
claim that
*) (exp x) y (exp x)™! = expad x (y) forall y e L.

To prove this, notice that ad x = A +p_,, where A,, p, denote left and
right multiplication by x in the ring End V (these commute, of course, and
are nilpotent). Then the usual rules of exponentiation show that exp ad
X = exp (AHpor) = EXD Ace €XP p_y = Ausp s Pexp () Which implies (¥).

Exercises

1. Prove that the set of all inner derivations ad x, x € L, is an ideal of Der L.
2. Show that sl(n, F) is precisely the derived algebra of gl(n, F) (cf. Exercise
1.9).
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3. Prove that the center of gl(n, F) equals s(n, F) (the scalar matrices).
Prove that sl(n, F) has center 0, unless char F divides n, in which case
the center is s(n, F).

4. Show that (up to isomorphism) there is a unique Lie algebra over F of
dimension 3 whose derived algebra has dimension 1 and lies in Z(L).

S. Suppose dim L = 3, L = [LL]. Prove that L must be simple. [Observe
first that any homomorphic image of L also equals its derived algebra.]
Recover the simplicity of sl(2, F), char F # 2.

6. Prove that sl(3, F) is simple, unless char F = 3 (cf. Exercise 3). [Use
the standard basis hy, hy, e;; (i # j). If 1 # 0 is an ideal, then [/ is the
direct sum of eigenspaces for ad kA, or ad /,; compare the eigenvalues
of ad hy, ad h, acting on the e,;.]

7. Prove that t(n, F) and d(n, F) are self-normalizing subalgebras of gl(n, F),
whereas 1i(n, F) has normalizer 1(n, F).

8. Prove that in each classical linear Lie algebra (1.2), the set of diagonal
matrices is a self-normalizing subalgebra, when char F = 0.

9. Prove Proposition 2.2.

10. Let o be the automorphism of s[(2, F) defined in (2.3). Verify that
ox) = —y,0(y) = —x,0(h) = —h.

11. If L = sl(n, F), g e GL(n, F), prove that the map of L to itself defined
by x = —gx'g™! (x' = transpose of x) belongs to Aut L. When n = 2,
g = identity matrix, prove that this automorphism is inner.

12. Let L be an orthogonal Lie algebra (type B, or D,). If g is an orthogonal
matrix, in the sense that g is invertible and g'sg = s, prove that x > gxg !
defines an automorphism of L.

3. Solvable and nilpotent Lie algebras
3.1. Solvability

It is natural to study a Lie algebra L via its ideals. In this section we
exploit the formation of derived algebras. First, define a sequence of ideals of
L (the derived series) by L(® = L, L") = [LL], L® = [LMWLW], ... LD =
[LE-DLGE=D] Call L solvable if L™ = 0 for some n. For example, abelian
implies solvable, whereas simple algebras are definitely nonsolvable.

An example which turns out to be rather general is the algebra t(n, F) of
upper triangular matrices, which was introduced in (1.2). The obvious basis
for 1(n, F) consists of the matrix units e;; for which i/ < j; the dimension is
142+...4n = n(n+1)/2. To show that L = t(n, F) is solvable we compute
explicitly its derived series, using the formula for commutators in (1.2). In
particular, we have [e;;, e;;] = e;, for i < I, which shows that n(n, F) < [LL],
where 1n(n, F) is the subalgebra of upper triangular nilpotent matrices.
Since t(n, F) = d(n, F) +n(n, F), and since d(n, F) is abelian, we conclude that
n(n, F) is equal to the derived algebra of L (cf. Exercise 1.5). Working next
inside the algebra n(n, F), we have a natural notion of “level” for e;;, namely
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j—1i. In the formula for commutators, assume that i < j, k < [. Without
losing any products we may also require i % . Then [e,;, ] = e,, (if j = k)
or 0 (otherwise). In particular, each e;, is commutator of two matrices whose
levels add up to that of e;,. We conclude that L™ is spanned by those e;; of
level >2, LY by those of level >2"'. Finally, it is clear that L) = 0
whenever 2171 > n—1.

Next we assemble a few simple observations about solvability.

Proposition. Let L be a Lie algebra.

(a) If L is solvable, then so are all subalgebras and homomorphic images
of L.

(b) If I is a solvable ideal of L such that L]I is solvable, then L itself is
solvable.

(¢) If I, J are solvable ideals of L, then so is I+J.

Proof. (a) From the definition, if K is a subalgebra of L, then K0 < L®,
Similarly, if ¢: L — M is an epimorphism, an easy induction on i shows that
¢(L(i)) = MWD,

(b) Say (L/)'™ = 0. Applying part (a) to the canonical homomorphism
m: L — LJI, we get #(L™) = 0, or L™ < I = Ker 7. Now if 1™ = 0, the
obvious fact that (L)) = LG+ implies that L"*™ = 0 (apply proof of
part (a) to the situation L™ < I).

(c) One of the standard homomorphism theorems (Proposition 2.2 (c))
yields an isomorphism between (/+J)/J and I/(I N J). As a homomorphic
image of 7, the right side is solvable, so (/+J)/J is solvable. Then so is 7+ J,
by part (b) applied to the pair I+J, J. [

As a first application, let L be an arbitrary Lie algebra and let S be a
maximal solvable ideal (i.e., one included in no larger solvable ideal). If 7
is any other solvable ideal of L, then part (c) of the Proposition forces
S+ I =S (by maximality), or I C S. This proves the existence of a unique
maximal solvable ideal, called the radical of L and denoted Rad L. In case
Rad L =0, L is called semisimple. For example, a simple algebra is semisim-
ple: L has no ideals except itself and 0, and L is nonsolvable. Also, L =0 is
semisimple. Notice that for arbitrary L, L /Rad L is semisimple (use part (b)
of the proposition). The study of semisimple Lie algebras (char F = 0) will
occupy most of this book. (But certain solvable subalgebras will also be
needed along the way.)

3.2. Nilpotency

The definition of solvability imitates the corresponding notion in group
theory, which goes back to Abel and Galois. By contrast, the notion of
nilpotent group is more recent, and is modeled on the corresponding notion
for Lie algebras. Define a sequence of ideals of L (the descending central
series, also called the lower central series) by L° = L, L' = [LL] (=LW),
L? =[LL"Y,...,L' =[L L'"']. L is called nilpotent if L" = 0 for some n.
For example, any abelian algebra is nilpotent. Clearly, L'? < L’ for all i, so
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nilpotent algebras are solvable. The converse is false, however. Consider
again L = t(n, F). Our discussion in (3.1) showed that L") = L! is n(n, F),
and also that L2 = [L L'l = L', so L' = L' for all i > 1. On the other hand,
it is easy to see that M = n(n, F) is nilpotent: M' is spanned by those e
of level 22, M? by those of level 23, ..., M’ by those of level = +]1.

Proposition. Let L be a Lie algebra.

(a) If L is nilpotent, then so are all subalgebras and homomorphic images
of L.

(b) If L/Z(L) is nilpotent, then so is L.

(c) If L is nilpotent and nonzero, then Z(L)#0.

Proof. (a) Imitate the proof of Proposition 3.1 (a).

(b) Say L" < Z(L), then L"*' = [LL") < [LZ(L)] = 0.

(c) The last nonzero term of the descending central series is central. []

The condition for L to be nilpotent can be rephrased as follows: For
some n (depending only on L), ad x, ad x, ...ad x,(y) = 0 for all x;, ye L.
In particular, (ad x)" = O for all x € L. Now if L is any Lie algebra, and x € L,
we call x ad-nilpotent if ad x is a nilpotent endomorphism. Using this language,
our conclusion can be stated: If L is nilpotent, then all elements of L are ad-
nilpotent. It is a pleasant surprise to find that the converse is also true.

Theorem (Engel). If all elements of L are ad-nilpotent, then L is nilpotent.

The proof will be given in the next subsection. Using Engel’s Theorem,
it is easy to prove that n(n, F) is nilpotent, without actually calculating the
descending central series. We need only apply the following simple lemma.

Lemma. Let x € gl(V) be a nilpotent endomorphism. Then ad x is also
nilpotent.

Proof. As in (2.3), we may associate to x two endomorphisms of End V,
left and right translation: A(y) = xy, p(y) = yx, which are nilpotent
because x is. Moreover A, and p, obviously commute. In any ring (here
End (End V) the sum or difference of two commuting nilpotents is again
nilpotent (why?), so ad x = A, —p, is nilpotent. []

A word of warning: It is easy for a matrix to be ad-nilpotent in gl(n, F)
without being nilpotent. (The identity matrix is an example.) The reader

should keep in mind two contrasting types of nilpotent linear Lie algebras:
o(n, F) and n(n, F).

3.3. Proof of Engel’s Theorem

Engel’s Theorem (3.2) will be deduced from the following result, which
is of interest in its own right. Recall that a single nilpotent linear transforma-
tion always has at least one eigenvector, corresponding to its unique eigen-
value 0. This is just the case dim L = 1 of the following theorem.

Theorem. Let L be a subalgebra of gI(V), V finite dimensional. If L consists
of nilpotent endomorphisms and V # 0, then there exists nonzero ve V for
which L.v = 0.
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Proof. Use induction on dim [, the case dim L = 0 (or dim L = 1)
being obvious. Suppose K # L is any subalgebra of L. According to Lemma
3.2, K acts (via ad) as a Lie algebra of nilpotent linear transformations on
the vector space L, hence also on the vector space L/K. Because dim K <
dim L, the induction hypothesis guarantees existence of a vector x+ K # K
in L/K killed by the image of K in gl(Z/K). This just means that [yx]e K
for all y € K, whereas x ¢ K. In other words, K is properly included in N, (K)
(the normalizer of K in L, sece (2.1)).

Now take K to be a maximal proper subalgebra of L. The preceding
argument forces N, (K) = L, i.e., K is an ideal of L. If dim L/K were greater
than one, then the inverse image in L of a one dimensional subalgebra of
L/K (which always exists) would be a proper subalgebra properly containing
K, which is absurd; therefore, K has codimension one. This allows us to
write L = K+Fz for any ze L—K.

By induction, W = {ve V|K.v = 0} is nonzero. Since K is an ideal, W is
stable under L: xelL, yeK, we W imply yx.w = xy.w—[x, ylw = 0.
Choose z € L— K as above, so the nilpotent endomorphism z (acting now on
the subspace W) has an eigenvector, i.e., there exists nonzero v e W for
which z.v = 0. Finally, L.v = 0, as desired. [

Proof of Engel’s Theorem. We are given a Lie algebra L all of whose
elements are ad-nilpotent; therefore, the algebra ad L < gl(L) satisfies the
hypothesis of Theorem 3.3. (We can assume L # 0.) Conclusion: There
exists x # 0 in L for which [Lx] = 0, i.e., Z(L) # 0. Now L/Z(L) evidently
consists of ad-nilpotent elements and has smaller dimension than L. Using
induction on dim L, we find that L/Z(L) is nilpotent. Part (b) of Proposition
3.2 then implies that L itself is nilpotent. []

There is a useful corollary (actually, an equivalent version) of Theorem
3.3, which shows how “typical” n(n, F) is. First a definition: If V is a finite
dimensional vector space (say dim V' = n), a flag in V is a chain of subspaces
O0=V,cV, c...cV,=V,dimV, =ilf xeEndV, we say x stabilizes
(or leaves invariant) this flag provided x.V; < ¥, for all i.

Corollary. Under the hypotheses of the theorem there exists a flag (V)
in V stable under L, with x.V; < V,_, for all i. In other words, there exists a
basis of V relative to which the matrices of L are all in n(n, F).

Proof. Begin with any nonzero v € V killed by L, the existence of which is
assured by the theorem . Set V|, = Fv. Let W = V/V,, and observe that the
induced action of L on W is also by nilpotent endomorphisms. By induction
on dim V, W has a flag stabilized by L, whose inverse image in V" does the
trick. [

To conclude this section, we mention a typical application of Theorem
3.3, which will be needed later on.

Lemma. Let L be nilpotent, K an ideal of L. Then if K # 0, KN Z(L) # 0.
(In particular, Z(L) # 0; cf. Proposition 3.2(c).)
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Proof. L acts on K via the adjoint representation, so Theorem 3.3 yields

nonzero x € K killed by L, i.e., [Lx] = 0,so xe KN Z(L). [

10.

Exercises

. Let I be an ideal of L. Then each member of the derived series or descend-

ing central series of / is also an ideal of L.

Prove that L is solvable if and only if there exists a chain of subalgebras
L=L,>L, 2L,>...> L,=0 such that L;,, is an ideal of L,
and such that each quotient L,/L;,, is abelian.

Let char F = 2. Prove that sl(2, F) is nilpotent.

Prove that L is solvable (resp. nilpotent) if and only if ad L is solvable
(resp. nilpotent).

Prove that the nonabelian two dimensional algebra constructed in (1.4)
is solvable but not nilpotent. Do the same for the algebra in Exercise 1.2.

. Prove that the sum of two nilpotent ideals of a Lie algebra L is again a

nilpotent ideal. Therefore, L possesses a unique maximal nilpotent ideal.
Determine this ideal for each algebra in Exercise 5.

. Let L be nilpotent, K a proper subalgebra of L. Prove that N, (K)

includes K properly.

Let L be nilpotent. Prove that L has an ideal of codimension 1.

Prove that every nilpotent Lie algebra L has an outer derivation (see
(1.3)), as follows: Write L = K+Fx for some ideal K of codimension
one (Exercise 8). Then C,(K) # 0 (why?). Choose » so that C,(K) < L",
C(K) ¢ L"*!, and let ze C(K)—L"*'. Then the linear map & sending
K to 0, x to z, is an outer derivation.

Let L be a Lie algebra, K an ideal of L such that L/K is nilpotent and
such that ad x|k is nilpotent for all x e L. Prove that L is nilpotent.



