Chapter 11

Semisimple Lie Algebras

In Chapter I we looked at Lie algebras over an arbitrary field F. Apart
from introducing the basic notions and examples, we were able to prove
only one substantial theorem (Engel’s Theorem). Virtually all of the remain-
ing theory to be developed in this book will require the assumption that F
have characteristic 0. (Some of the exercises will indicate how counter-
examples arise in prime characteristic.) Moreover, in order to have available
the eigenvalues of ad x for arbitrary x (not just for ad x nilpotent), we shall
assume that F is algebraically closed, except where otherwise specified. It is
possible to work with a slightly less restrictive assumption on F (cf. Jacobson
[1], p. 107), but we shall not do so here.

4. Theorems of Lie and Cartan
4.1. Lie’s Theorem

The essence of Engel’s Theorem for nilpotent Lie algebras is the existence
of a common eigenvector for a Lie algebra consisting of nilpotent endo-
morphisms (Theorem 3.3). The next theorem is similar in nature, but requires
algebraic closure, in order to assure that F will contain all required eigen-
values. It turns out to be necessary also to have char F = 0 (Exercise 3).

Theorem. Let L be a solvable subalgebra of gl(V), V finite dimensional.

If V # 0, then V contains a common eigenvector for all the endomorphisms
in L.

Proof. Use induction on dim L, the case dim L = 0 being trivial. We
attempt to imitate the proof of Theorem 3.3 (which the reader should
review at this point). The idea is (1) to locate an ideal K of codimension one,
(2) to show by induction that common eigenvectors exist for K, (3) to verify
that L stabilizes a space consisting of such eigenvectors, and (4) to find in
that space an eigenvector for a single z € L satisfying L = K+ Fz.

Step (1) is easy. Since L is solvable, of positive dimension, L properly
includes [LL]. L/[LL] being abelian, any subspace is automatically an ideal.
Take a subspace of codimension one, then its inverse image K is an ideal
of codimension one in L (including [LL]).

For step (2), use induction to find a common eigenvector v € V for K
(K is of course solvable; if K = 0, then L is abelian of dimension1 and an eigen-
vector for a basis vector of L finishes the proof.) This means that for x € K

15



16 Semisimple Lie Algebras

x.v = Ax)v, A: K — F some linear function. Fix this A, and denote by W the

subspace
{we Vix.w = Ax)w, for all xe K};so W # 0.

Step (3) consists in showing that L leaves W invariant. Assuming for the
moment that this is done, proceed to step (4): Write L = K+Fz, and use
the fact that F is algebraically closed to find an eigenvector vy e W of z
(for some eigenvalue of z). Then v, is obviously a common eigenvector for L
(and A can be extended to a linear function on L such that x.vq = A(X)v,,
xel).

It remains to show that L stabilizes W. Let we W, x € L. To test whether
or not x.w lies in W, we must take arbitrary y € K and examine yx.w =
xy.w—[x, ylw = A(y)x.w—A([x, y))w. Thus we have to prove that A(x, y]) = 0.
For this, fix we W, xe L. Let n > 0 be the smallest integer for which w,
x.w, ..., x"w are linearly dependent. Let W, be the subspace of ¥ spanned
by w, x.w, ..., x " (set W, =0), so dim W, =n, W, = W,,,; (i = 0)
and x maps W, into W,. It is easy to check that each y € K leaves each W;
invariant. Relative to the basis w, x.w, ..., x" '.w of W,, we claim that
y € K is represented by an upper triangular matrix whose diagonal entries
equal A(y). This follows immediately from the congruence:

* yxiw = Ay)x'.w (mod W),

which we prove by induction on 7, the case i = 0 being obvious. Write
yxiw = yxx'"tw = xyx'"'w—[x, ylx'"'w. By induction, yx'"l.w =
AMx""Lw4w’ (w e W;_,); since x maps W,_, into W; (by construction),
(*) therefore holds for all i.

According to our description of the way in which y e K acts on W,
Try (y) = nA(p). In particular, this is true for elements of K of the special
form [x, y] (x as above, y in K). But x, y both stabilize W,, so [x, y] acts on
W, as the commutator of two endomorphisms of W,; its trace is therefore 0.
We conclude that nA([x, y}) = 0. Since char F = 0, this forces A([x, y]) = 0,
as required. []

Corollary A (Lie’s Theorem). Let L be a solvable subalgebra of gl(V),
dim V = n < 0. Then L stabilizes some flag in V (in other words, the matrices
of L relative to a suitable basis of V are upper triangular).

Proof. Use the theorem, along with induction on dim V. [

More generally, let L be any solvable Lie algebra, ¢: L — gl(¥) a finite
dimensional representation of L. Then ¢(L) is solvable, by Proposition 3.1(a),
hence stabilizes a flag (Corollary A). For example, if ¢ is the adjoint repre-
sentation, a flag of subspaces stable under L is just a chain of ideals of L,
each of codimension one in the next. This proves:

Corollary B. Let L be solvable. Then there exists a chain of ideals of L,
O0=LycL,c...cL,=0L, such that dim L, =i. []

Corollary C. Let L be solvable. Then x € [LL)] implies that ad; x is nil-
potent. In particular, [LL) is nilpotent.
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Proof. Find a flag of ideals as in Corollary B. Relative to a basis (x,, . . .,
x,) of L for which (x, ..., x;) spans L;, the matrices of ad L lie in t(n, F).
Therefore the matrices of [ad L, ad L] = ad, [LL] lie in n(n, F), the derived
algebra of t(n, F). It follows that ad; x is nilpotent for x € [LL]; a fortiori
ad;p;; x is nilpotent, so [LL] is nilpotent by Engel’s Theorem. []

4.2. Jordan-Chevalley decomposition

In this subsection only, char F may be arbitrary. We digress in order to
introduce a very useful tool for the study of linear transformations. The reader
may recall that the Jordan canonical form for a single endomorphism x
over an algebraically closed field amounts to an expression of x in matrix
form as a sum of blocks

a 1 0
a 1
.1
0 a
Since diag (a,...,a) commutes with the nilpotent matrix having one’s

just above the diagonal and zeros elsewhere, x is the sum of a diagonal and
a nilpotent matrix which commute. We can make this decomposition more
precise, as follows.

Call x € End V (V finite dimensional) semisimple if the roots of its minimal
polynomial over F are all distinct. Equivalently (F being algebraically closed),
x is semisimple if and only if x is diagonalizable. We remark that two
commuting semisimple endomorphisms can be simultaneously diagonalized;
therefore, their sum or difference is again semisimple (Exercise 2). Also, if
x is semisimple and maps a subspace W of V into itself, then obviously the
restriction of x to W is semisimple.

Proposition. Let V be a finite dimensional vector space over F, x € End V.

(a) There exist unique x,, x, € End V satisfying the conditions: x = x,+ x,,
x, is semisimple, x, is nilpotent, x, and x, commute.

(b) There exist polynomials p(T), q(T) in one indeterminate, without
constant term, such that x; = p(x), x, = q(x). In particular, x; and x, com-
mute with any endomorphism commuting with x.

(¢) If A < B < V are subspaces, and x maps B into A, then x, and x, also
map B into A.

The decomposition x = x,+x, is called the (additive) Jordan-Chevalley
decomposition of x, or just the Jordan decomposition; x,, x, are called
(respectively) the semisimple part and the nilpotent part of x.

Proof. Let ay,...,q, (with multiplicities m,, ..., m,) be the distinct
eigenvalues of x, so the characteristic polynomial is II(T—a,)™. If V; = Ker
(x—a;- )™, then Vis the direct sum of the subspaces V', . .., V;, each stable
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under x. On V,, x clearly has characteristic polynomial (7'—a;)™. Now
apply the Chinese Remainder Theorem (for the ring F[T]) to locate a poly-
nomial p(7) satisfying the congruences, with pairwise relatively prime
moduli: p(T) = a; (mod (T—a)™), p(T) = 0 (mod T.) (Notice that the
last congruence is superfluous if 0 is an eigenvalue of x, while otherwise T’
is relatively prime to the other moduli.) Set ¢(7) = T—p(T). Evidently
each of p(T), q(T) has zero constant term, since p(7) = 0 (mod 7).

Set x, = p(x), x, = q(x). Since they are polynomials in x, x, and x,
commute with each other, as well as with all endomorphisms which commute
with x. They also stabilize all subspaces of ¥ stabilized by x, in particular the
V.. The congruence p(T) = a; (mod (7 —a;)™) shows that the restriction of
x,—a;-1 to V; is zero for all i, hence that x; acts diagonally on V; with
single eigenvalue a;. By definition, x, = x —x,, which makes it clear that x,
is nilpotent. Because p(T), q(7T) have no constant term, (c) is also obvious
at this point.

It remains only to prove the uniqueness assertion in (a). Let x = s+n be
another such decomposition, so we have x,—s = n—x,. Because of (b), all
endomorphisms in sight commute. Sums of commuting semisimple (resp.
nilpotent) endomorphisms are again semisimple (resp. nilpotent), whereas
only 0 can be both semisimple and nilpotent. This forces s = x,, n = x,. [

To indicate why the Jordan decomposition will be a valuable tool, we
look at a special case. Consider the adjoint representation of the Lie algebra
gl(V), V finite dimensional. If x € gI(¥) is nilpotent, then so is ad x (Lemma
3.2). Similarly, if x is semisimple, then so is ad x. We verify this as follows.
Choose a basis (vy, . . . , v,) of ¥V relative to which x has matrix diag (a,, ...,
a,). Let {e;;} be the standard basis of gl(V) (1.2) relative to (vy, ..., v,):
e;i(v,) = 8;v;. Then a quick calculation (see formula (*) in (1.2)) shows that
ad x (e;;) = (a;—a;)e;;. So ad x has diagonal matrix, relative to the chosen
basis of gl(¥).

Lemma A. Let xe End V (dim V < ©), x = x,+x, its Jordan decom-
position. Then ad x = ad x;+ad x, is the Jordan decomposition of ad x (in
End (End V).

Proof. We have seen that ad x,, ad x, are respectively semisimple, nil-
potent; they commute, since [ad x,, ad x,] = ad [x,, x,] = 0. Then part (a) of
the proposition applies. [

A further useful fact is the following.

Lemma B. Let U be a finite dimensional F-algebra. Then Der W contains
the semisimple and nilpotent parts (in End W) of all its elements.

Proof. If 6eDer U, let o, ve End U be its semisimple and nilpotent
parts, respectively. It will be enough to show that o € Der . If aeF, set
A, = {xe WAW(S—a.l)*x = 0 for some k (depending on x)}. Then U is the
direct sum of those 2, for which a is an eigenvalue of § (or o), and o acts
on A, as scalar multiplication by a. We can verify, for arbitrary a, b e F,
that A, A, = A,,,, by means of the general formula: (*¥) (§ —(a+5b).1)"(xy)
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= Z(") (8 —a.1)""'x)-((8—b.1)y), for x, ye A. (This formula is easily

checked by induction on n.) Now if xe U, y e N, then o(xy) = (a+b)xy,
because xy € U, , (possibly equal to 0); on the other hand, (ox)y+x(0y) =
(a+b)xy. By directness of the sum U = [ | U, it follows that o is a derivation,
as required. []

4.3. Cartan’s Criterion

We are now ready to obtain a powerful criterion for solvability of a Lie
algebra L, based on the traces of certain endomorphisms of L. It is obvious
that L will be solvable if [LL] is nilpotent (this is the converse of Corollary
4.1C). In turn, Engel’s Theorem says that [LL] will be nilpotent if (and only
if) each ad;pyx, x € [LL], is nilpotent. We begin, therefore, with a *trace”
criterion for nilpotence of an endomorphism.

Lemma. Let A < B be two subspaces of gl(V), dim V < co. Set M =
{x e g(V)|[x, B] = A}. Suppose x € M satisfies Tr(xy) = 0 for all ye M.
Then x is nilpotent.

Proof. Let x = s+n (s = x, n = x,) be the Jordan decomposition of x.

Fix a basis vy, ..., v, of V relative to which s has matrix diag (a,, .. ., a,).
Let E be the vector subspace of F (over the prime field Q) spanned by the
eigenvalues a,, ..., a,. We have to show that s = 0, or equivalently, that

E = 0. Since E has finite dimension over Q (by construction), it will suffice
to show that the dual space E* is 0, i.e., that any linear function f: E — Q
18 zero.

Given f let y be that element of gl(V) whose matrix relative to our given
basis is diag (f(ay), . . ., f(a,). If {e;;} is the corresponding basis of gl(¥),
we saw in (4.2) that: ad s(e;;) = (a;—a;)e;;, ad y(e;;) = (f(a;)—f(a)))e;;. Now
let r(T) e F[T] be a polynomial without constant term satisfying r(a;—a;) =
Sf(a;)—f(a;) for all pairs i, j. The existence of such r(T) follows from Lagrange
interpolation; there is no ambiguity in the assigned values, since a;—a; =

—a, implies (by linearity of f) that f(a;)—f(a;) = f(a,)—f(a,). Evidently
ad y = r (ad s).

Now ad s is the semisimple part of ad x, by Lemma A of (4.2), so it can
be written as a polynomial in ad x without constant term (Proposition 4.2).
Therefore, ad y is also a polynomial in ad x without constant term. By
hypothesis, ad x maps B into A, so we also have ad y (B) < 4, i.e,, ye M.
Using the hypothesis of the lemma, Tr(xy) = 0, we get 2a; f(a;) = 0. The
left side is a Q-linear combination of elements of E; applying f, we obtain
Sf(a;)* = 0. But the numbers f(a;) are rational, so this forces all of them to
be 0. Finally, f must be identically 0, because the a; span E. [

Before stating our solvability criterion, we record a useful identity:
If x, y, z are endomorphisms of a finite dimensional vector space, then
(*) Tr([x, y)z) = Tr(x[y, z]). To verify this, write [x, y]z = xyz—yxz, x[y, z]
= xyz-xzy, and use the fact that Tr(y(xz)) = Tr((xz)y).
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Theorem (Cartan’s Criterion). Let L be a subalgebra of gl(V), V finite
dimensional. Suppose that Tr(xy) =0 for all xe[LL), yeL. Then L is
solvable.

Proof. As remarked at the beginning of (4.3), it will suffice to prove that
[LL] is nilpotent, or just that all x in [LL] are nilpotent endomorphisms
(Lemma 3.2 and Engel’s Theorem). For this we apply the above lemma to
the situation: V as given, 4 = [LL], B =L, so M = {xe gl(V)|[x, L] =
[LL]}. Obviously L = M. Our hypothesis is that Tr(xy) = O for x e[LL],
y e L, whereas to conclude from the lemma that each x € [LL] is nilpotent
we need the stronger statement: Tr(xy) = 0 for x e [LL], y e M.

Now if [x, y] is a typical generator of [LL], and if z € M, then identity (*)
above shows that Tr([x, y]z) = Tr(x[y, z]) = Tr([y, z]x). By definition of M,
[y, z] € [LL], so the right side is O by hypothesis. [

Corollary. Let L be a Lie algebra such that Tr(ad x ad y) = 0 for all
xe[LL), ye L. Then L is solvable.

Proof. Applying the theorem to the adjoint representation of L, we get
ad L solvable. Since Ker ad = Z(L) is solvable, L itself is solvable (Pro-
position 3.1). [1

Exercises

I. Let L=8I(V). Use Lie’s Theorem to prove that Rad L=Z(L); con-
clude that L is semisimple (cf. Exercise 2.3). [Observe that Rad L lies in
each maximal solvable subalgebra B of L. Select a basis of V' so that
B=Lnt(n,F), and notice that the transpose of B is also a maximal
solvable subalgebra of L. Conclude that Rad L< LN d(n,F), then that
Rad L=2Z(L)]

2. Show that the proof of Theorem 4.1 still goes through in prime character-
istic, provided dim V is less than char F.

3. This exercise illustrates the failure of Lie’s Theorem when F is allowed to
have prime characteristic p. Consider the p x p matrices:

010...0
0010..0

x=}...... , y=diag(,1,2,3,...,p—1).
0. 1

Check that [x, y] = x, hence that x and y span a two dimensional solvable
subalgebra L of gl(p, F). Verify that x, y have no common eigenvector.
4. When p = 2, Exercise 3.3 shows that a solvable Lie algebra of endo-
morphisms over a field of prime characteristic p need not have derived
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algebra consisting of nilpotent endomorphisms (cf. Corollary C of Theorem
4.1). For arbitrary p, construct a counterexample to Corollary C as
follows: Start with L < gl(p, F) as in Exercise 3. Form the vector space
direct sum M = L+F? and make M a Lie algebra by decreeing that F?
is abelian, while L has its usual product and acts on F? in the given way.
Verify that M is solvable, but that its derived algebra (=Fx+ F?) fails to
be nilpotent.

5. If x, ye End V commute, prove that (x+y), = x,+y,, and (x+y), =

X, +y,. Show by example that this can fail if x, y fail to commute. [Show

first that x, y semisimple (resp. nilpotent) implies x +y semisimple (resp.

nilpotent).]

Check formula (*) at the end of (4.2).

Prove the converse of Theorem 4.3.

8. Note that it suffices to check the hypothesis of Theorem 4.3 (or its
corollary) for x, y ranging over a basis of L. For the example given in
Exercise 1.2, verify solvability by using Cartan’s Criterion.

2o

Notes

The proofs here follow Serre [1]. The systematic use of the Jordan
decomposition in linear algebraic groups originates with Chevalley [1]; see
also Borel [1], where the additive Jordan decomposition in the Lie algebra is
emphasized.

5. Killing form
5.1. Criterion for semisimplicity

Let L be any Lie algebra. If x, y € L, define «(x, y) = Tr(ad x ad y).
Then « is a symmetric bilinear form on L, called the Killing form. « is also
associative, in the sense that «([xy], z) = x(x, [yz]). This follows from the
identity recorded in (4.3): Tr([x, y]z) = Tr(x[y, z]), for endomorphisms x, y, z
of a finite dimensional vector space.

The following lemma will be handy later on.

Lemma. Let I be an ideal of L. If x is the Killing form of L and «; the
Killing form of I (viewed as Lie algebra), then k; = x|y ;.

Proof. First, a simple fact from linear algebra: If W is a subspace of a
(finite dimensional) vector space V, and ¢ an endomorphism of ¥ mapping
V into W, then Tré = Tr(é|y). (To see this, extend a basis of W to a basis
of ¥ and look at the resulting matrix of ¢.) Now if x, y € /, then (ad x) (ad y)
is an endomorphism of L, mapping L into I, so its trace «(x, y) coincides with
the trace «;(x, y) of (ad x) (ad y)|; = (ad; x) (ad; ). 0O
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In general, a symmetric bilinear form B(x, y) is called nondegenerate
if its radical S is 0, where S = {x e L|B(x, y) = 0 for all y e L}. Because the
Killing form is associative, its radical is more than just a subspace: S is an
ideal of L. From linear algebra, a practical way to test nondegeneracy is as
follows: Fix a basis x,, ..., x, of L. Then « is nondegenerate if and only if
the nx n matrix whose 7, j entry is «(x;, x;) has nonzero determinant.

As an example, we compute the Killing form of s1(2, F), using the standard
basis (Example 2.1), which we write in the order (x, A, y). The matrices become:

0-20 000
ad h = diag (2,0, —2),adx=|0 O01}),ady=|-100]}.

0 00 020
004
Therefore « has matrix [0 8 0}, with determinant — 128, and « is non-
400

degenerate. (This is still true so long as char F # 2.)

Recall that a Lie algebra L is called semisimple in case Rad L =0. This
is equivalent to requiring that L have no nonzero abelian ideals: indeed,
any such ideal must be in the radical, and conversely, the radical (if
nonzero) includes such an ideal of L, viz., the last nonzero term in the
derived series of Rad L (cf. exercise 3.1).

Theorem. Let L be a Lie algebra. Then L is semisimple if and only if its
Killing form is nondegenerate.

Proof. Suppose first that Rad L = 0. Let S be the radical of «. By defini-
tion, Tr(ad x ad y) =0 for all xe S, yeL (in particular, for y e [SS]).
According to Cartan’s Criterion (4.3), ad, S is solvable, hence S is solvable.
But we remarked above that S is an ideal of L, so S < Rad L = 0, and « is
nondegenerate.

Conversely, let S = 0. To prove that L is semisimple, it will suffice to
prove that every abelian ideal 7 of L is included in S. Suppose xe I, ye L.
Then ad x ad y maps L — L — I, and (ad x ad y)> maps L into [II] = 0.
This means that ad x ad y is nilpotent, hence that 0 = Tr(ad x ad y) =
k(x, ¥), so I = § = 0. (This half of the proof remains valid even in prime
characteristic (Exercise 6).) [I

The proof shows that we always have S < Rad L; however, the reverse
inclusion need not hold (Exercise 4).

5.2. Simple ideals of L

First a definition. A Lie algebra L is said to be the direct sum of ideals
I,...,I, provided L = I,+...+1, (direct sum of subspaces). This con-
dition forces [I;/;] = I; N I; = 0 if i # j (so the algebra L can be viewed as
gotten from the Lie algebras I; by defining Lie products componentwise
for the external direct sum of these as vector spaces). We write L = I,

®...0I.
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Theorem. Let L be semisimple. Then there exist ideals L,, ..., L, of L
which are simple (as Lie algebras), such that L = L, @ ... ® L,. Every simple
ideal of L coincides with one of the L;. Moreover, the Killing form of L; is the
restriction of « to L;x L;.

Proof. As a first step, let I be an arbitrary ideal of L. Then I* = {xe L]
k(x, y) = 0 for all y e I'} is also an ideal, by the associativity of «. Cartan’s
Criterion, applied to the Lie algebra 7, shows that the ideal 7 N I'* of L is
solvable (hence 0). Therefore, since dim 7+dim I* = dim L, we must have
L=I@I.

Now proceed by induction on dim L to obtain the desired decomposition
into direct sum of simple ideals. If L has no nonzero proper ideal, then L is
simple already and we’re done. Otherwise let L, be a minimal nonzero ideal ;
by the preceding paragraph, L = L, ® L. In particular, any ideal of L,
is also an ideal of L, so L, is semisimple (hence simple, by minimality).
For the same reason, L} is semisimple; by induction, it splits into a direct
sum of simple ideals, which are also ideals of L. The decomposition of L
follows.

Next we have to prove that these simple ideals are unique. If / is any
simple ideal of L, then [IL] is also an ideal of I, nonzero because Z(L) = 0;
this forces [IL] = I. On the other hand, [IL] = [IL,]® ... ® [IL], so all
but one summand must be 0. Say [/L;] = I. Then I < L;,and I = L;(because
L, is simple).

The last assertion of the theorem follows from Lemma 5.1. [

Corollary. If L is semisimple, then L=[LL), and all ideals and homomor-
phic images of L are semisimple. Moreover, each ideal of L is a sum of
certain simple ideals of L. []

5.3. Inner derivations

There is a further important consequence of nondegeneracy of the
Killing form. Before stating it we recall explicitly the result of Exercise 2.1:
ad L is an ideal in Der L (for any Lie algebra L). The proof depends on the
simple observation: (*) [8, ad x] = ad (8x), xe L, 8 € Der L.

Theorem. If L is semisimple, then ad L = Der L (i.e., every derivation of
L is inner).

Proof. Since L is semisimple, Z(L) = 0. Therefore, L —>ad L is an
isomorphism of Lie algebras. In particular, M = ad L itself has non-
degenerate Killing form (Theorem 5.1). If D = Der L, we just remarked
that [D, M] = M. This implies (by Lemma 5.1) that «,, is the restriction to
M x M of the Killing form «j, of D. In particular, if I = M* is the subspace
of D orthogonal to M under «j,, then the nondegeneracy of «,, forces I N M
= 0. Both I and M are ideals of D, so we obtain [/, M] = 0. If é € I, this
forces ad (6x) = 0 for all x e L (by (¥)), so in turn 8x = 0 (x € L) because
ad is 1—1, and 8§ = 0. Conclusion: I =0, Der L = M =ad L. [
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5.4. Abstract Jordan decomposition

Theorem 5.3 can be used to introduce an abstract Jordan decomposition
in an arbitrary semisimple Lie algebra L. Recall (Lemma B of (4.2)) that
if A is any F-algebra of finite dimension, then Der U contains the semisimple
and nilpotent parts in End U of all its elements. In particular, since Der L
coincides with ad L (5.3), while L —ad L is 1 -1, each x € L determines
unique elements s, n € L such that ad x = ad s+ad #n is the usual Jordan
decomposition of ad x (in End L). This means that x = s+n, with [sn] = 0,
s ad-semisimple (i.e., ad s semisimple), n ad-nilpotent. We write s = x,
n = x, and (by abuse of language) call these the semisimple and nilpotent
parts of x.

The alert reader will object at this point that the notation x,, x, is am-
biguous in case L happens to be a linear Lie algebra. It will be shown in
(6.4) that the abstract decomposition of x just obtained does in fact agree
with the usual Jordan decomposition in all such cases. For the moment we
shall be content to point out that this is true in the special case L = sl(V)
(V finite dimensional): Write x = x,+x, in End V (usual Jordan decom-
position), x € L. Since x, is a nilpotent endomorphism, its trace is 0 and
therefore x, € L. This forces x, also to have trace 0, so x, e L. Moreover,
adg(y)X, is semisimple (Lemma A of (4.2)), so ad; x, is a fortiori semisimple;
similarly ad; x, is nilpotent, and [ad, x,, ad; x,] = ad[x.x,] = 0. By the
uniqueness of the abstract Jordan decomposition in L, x = x,+ x, must be it.

Exercises

1. Prove that if L is nilpotent, the Killing form of L is identically zero.

2. Prove that L is solvable if and only if [LL] lies in the radical of the Killing
form.

3. Let L be the two dimensional nonabelian Lie algebra (1.4), which is
solvable. Prove that L has nontrivial Killing form.

4. Let L be the three dimensional solvable Lie algebra of Exercise 1.2.
Compute the radical of its Killing form.

5. Let L = sl(2, F). Compute the basis of L dual to the standard basis,
relative to the Killing form.

6. Let char F = p # 0. Prove that L is semisimple if its Killing form is
nondegenerate. Show by example that the converse fails. [Look at sI(3, F)
modulo its center, when char F = 3]

7. Relative to the standard basis of sl(3, F), compute the determinant of «.
Which primes divide it?

8 Let L=L, ®...® L, be the decomposition of a semisimple Lie
algebra L into its simple ideals. Show that the semisimple and nilpotent
parts of x € L are the sums of the semisimple and nilpotent parts in the
various L; of the components of x.
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Notes

Even in prime characteristic, nondegeneracy of the Killing form has
very strong implications for the structure of a Lie algebra. See Seligman [1],
Pollack [1], Kaplansky [1].

6. Complete reducibility of representations

In this section all representations are finite dimensional, unless otherwise
noted.

We are going to study a semisimple Lie algebra L by means of its adjoint
representation (see §8). It turns out that L is built up from copies of sl(2, F);
to study the adjoint action of such a three dimensional subalgebra of L,
we need precise information about the representations of s1(2, F), to be given
in §7 below. First we prove an important general theorem (due to Weyl)
about representations of an arbitrary semisimple Lie algebra.

6.1. Modules

Let L be a Lie algebra. It is often convenient to use the language of
modules along with the (equivalent) language of representations. As in other
algebraic theories, there is a natural definition. A vector space ¥, endowed
with an operation Lx V' — V (denoted (x, v) — x.v or just xv) is called an
L-module if the following conditions are satisfied:

M1) (ax+by).v = a(x.v)+b(y.v),
(M2) x.(av+bw) = a(x.v)+ b(x.w),
M3) [xylv = x.yv—yxwv. (x,yeL;v,weV;a, beF).

For example, if ¢: L — gl(V) is a representation of L, then V' may be viewed
as an L-module via the action x.v = ¢(x) (v). Conversely, given an L-module
V, this equation defines a representation ¢: L — gl(V).

A homomorphism of L-modules is a linear map ¢: ¥V — W such that
é(x.v) = x.¢(v). The kernel of such a homomorphism is then an L-submodule
of V (and the standard homomorphism theorems all go through without
difficulty). When ¢ is an isomorphism of vector spaces, we call it an iso-
morphism of L-modules; in this case, the two modules are said to afford
equivalent representations of L. An L-module V is called irreducible if it has
precisely two L-submodules (itself and 0); in particular, we do not regard a
zero dimensional vector space as an irreducible L-module. We do, however,
allow a one dimensional space on which L acts (perhaps trivially) to be called
irreducible. V is called completely reducible if ¥ is a direct sum of irreducible
L-submodules, or equivalently (Exercise 2), if each L-submodule W of V
has a complement W' (an L-submodule such that ¥V = W @& W’). When
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W, W' are arbitrary L-modules, we can of course make their direct sum an
L-module in the obvious way, by defining x.(w, w’) = (x.w, x.w’). These
notions are all standard and also make sense when dim ¥ = oo. Of course,
the terminology “irreducible” and “completely reducible” applies equally
well to representations of L.

Given a representation ¢: L — gl(V), the associative algebra (with 1)
generated by ¢(L) in End ¥V leaves invariant precisely the same subspaces as
L. Therefore, all the usual results (e.g., Jordan-H6lder Theorem) for modules
over associative rings hold for L as well. For later use, we recall the well
known Schur’s Lemma.

Schur’s Lemma. Let ¢: L — gl(V) be irreducible. Then the only endo-
morphisms of V commuting with all $(x) (x € L) are the scalars. ]

L itself is an L-module (for the adjoint representation). An L-submodule
is just an ideal, so it follows that a simple algebra L is irreducible as L-module,
while a semisimple algebra is completely reducible (Theorem 5.2).

For later use we mention a couple of standard ways in which to fabricate
new L-modules from old ones. Let ¥ be an L-module. Then the dual vector
space V* becomes an L-module (called the dual or contragredient) if we define,
for feV* veV, xeL: (x.f) (v) = —f(x.v). Axioms (M1), (M2) are almost
obvious, so we just check (M3):

(xy1.f) (0) = —f([xylv)
= —flx.yv—y.x.0)
= —f(x.y.v)+f(y.x.v)
= (x.f/) )= (.f) (x.)
= —(yx.f) )+ (xy.f) @)
= ((x.y—y.x).f) (v).

If V, W are L-modules, let ¥ ® W be the tensor product over F of the
underlying vector spaces. Recall that if ¥, W have respective bases (v, . . .,
v,) and (w,, ..., w,), then V' ® W has a basis consisting of the mn vectors
v; ® w;. The reader may know how to give a module structure to the tensor
product of two modules for a group G: on the generators v ® w, require
g.(v® w) = g.v ® g.w. For Lie algebras the correct definition is gotten by
“differentiating” this one: x.(v ® w) = x.v ® w+v ® x.w. As before, the
crucial axiom to verify is (M3):

[xy].(v @ w) = [xylo ® w+v ® [xy]l.w
= (X.p0—y.xX0) @ w+v ® (X.p.Ww—y.x.W)
=xXyo@w+v ® x.y.W)—(P.xv @ w+v ® y.x.w).
Expanding (x.y —y.x).(vt®@ w) yields the same result.
Given a vector space V over F, there is a standard (and very useful)

isomorphism of vector spaces: V* ® V' — End V, given by sending a typical
generator f® v (fe V* ve V) to the endomorphism whose value at we V'
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is f(w)v. It is a routine matter (using dual bases) to show that this does set
up an epimorphism ¥* ® ¥ — End V; since both sides have dimension n*
(n = dim V), this must be an isomorphism.

Now if V (hence V*) is in addition an L-module, then V* ® V becomes
an L-module in the way described above. Therefore, End ¥ can also be
viewed as an L-module via the isomorphism just exhibited. This action of
L on End V can also be described directly: (x.f) (v) = x.f(v)—f(x.v), xe L,
feEnd V, veV (verify!). More generally, if V and W are two L-modules,
then L acts naturally on the space Hom (¥, W) of linear maps by the rule
(x.f) (v) = x.f(v)—f(x.v). (This action arises from the isomorphism between
Hom (V, W) and V* ® W.)

6.2. Casimir element of a representation

In §5 we used Cartan’s trace criterion for solvability to prove that a
semisimple Lie algebra L has nondegenerate Killing form. More generally,
let L be semisimple and let ¢: L — gl(V) be a faithful (i.e., 1-1) representa-
tion of L. Define a symmetric bilinear form B(x, y) = Tr(¢(x)¢(y)) on L.
The form f is associative, thanks to identity (¥) in (4.3), so in particular its
radical S is an ideal of L. Moreover, B is nondegenerate: indeed, Theorem
4.3 shows that ¢(S) ~ S is solvable, so S = 0. (The Killing form is just 8 in
the special case ¢ = ad.)

Now let L be semisimple, 8 any nondegenerate symmetric associative
bilinear form on L. If (x4, ..., x,) is a basis of L, there is a uniquely deter-
mined dual basis (y,, . . ., y,) relative to B, satisfying p(x;, y;) = 8;;. If xe L,
we can write [xx;] = Za,j ; and [xy] = ) b;;y;. Using the associativity

of B, we compute: ay = ¥ a,B(x;, y) = Alxxl, ») = A(—[xixl, ») =
Bl —Dond) = — 3 bBxi 3) = —b,

If ¢: L — gl( V)Jis any representation of L, write c4(f) = Z d(x)p(y,) €
End V (x;, y; running over dual bases relative to B, as above’). Using the

identity (in End V) [x, yz] = [x, y]z+y[x, z] and the fact that a;, = —b,;
(for x € L as above), we obtain: [¢(x), c,(B)] = Z [p(x), d(x)]d(y;) + Z é(x;)

[p(x), ¢(y)] = Za.fﬁ(x (v + Z bijp(x)$(y;) = 0. In other words, co(B)

is an endomorphzsm of V commutmg with ¢(L).

To bring together the preceding remarks, let ¢: L — gI(¥) be a faithful
representation, with (nondegenerate!) trace form B(x, y) = Tr(é(x)$(»)). In
this case, having fixed a basis (x;, . . ., x,) of L, we write simply c, for ¢4(8)
and call this the Casimir element of &. Its trace is Y, Tr(¢(x)é(y) =

Z B(x;,y,)=dimL. In case ¢ is also irreducible, Schur’s Lemma (6.1)

implies that c, is a scalar (equal to dimZ/dim V, in view of the preceding
sentence); in this case we see that ¢, is independent of the basis of L which
we chose.
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Example. L = s1(2, F), V = F?, ¢ the identity map L — gl(V). Let
(x, h, y) be the standard basis of L (2.1). It is quickly seen that the dual
basis relative to the trace form is (y, h/2, x), so ¢y = xy+(1/2)h* +yx =
(3(/)2 3‘/)2) . Notice that 3/2 = dim L/dim V.

When ¢ is no longer faithful, a slight modification is needed. Ker ¢ is an
ideal of L, hence a sum of certain simple ideals (Corollary 5.2). Let L’
denote the sum of the remaining simple ideals (Theorem 5.2). Then the
restriction of ¢ to L’ is a faithful representation of L’, and we make the
preceding construction (using dual bases of L’); the resulting element of
End V is again called the Casimir element of ¢ and denoted c,. Evidently
it commutes with ¢(L) = (L"), etc.

One last remark: It is often convenient to assume that we are dealing
with a faithful representation of L, which amounts to studying the repre-
sentations of certain (semisimple) ideals of L. If L is simple, only the one
dimensional module (on which L acts trivially) or the module 0 will fail to
be faithful.

6.3. Weyl’s Theorem

Lemma. Let ¢: L — gl(V) be a representation of a semisimple Lie algebra
L. Then ¢(L) = sW(V). In particular, L acts trivially on any one dimensional
L-module.

Proof. Use the fact that L = [LL] (5.2) along with the fact that sl(V) is
the derived algebra of gl(V). 0

Theorem (Weyl). Let ¢: L—gl(V) be a (finite dimensional) representa-
tion of a semisimple Lie algebra. Then ¢ is completely reducible.

Proof. We start with the special case in which ¥ has an L-submodule W
of codimension one. Since L acts trivially on V/W, by the lemma, we may
denote this module F without misleading the reader: 0 - W -V —F -0
is therefore exact. Using induction on dim W, we can reduce to the case
where W is an irreducible L-module, as follows. Let W' be a proper nonzero
submodule of W. This yields an exact sequence: 0 -~ W/W' — V/W' —F
— 0. By induction, this sequence “splits”, i.e., there exists a one dimensional
L-submodule of V/W' (say W/W') complementary to W/W'. So we get
another exact sequence: 0 — W’ — W — F — 0. This is like the original
situation, except that dim W’ < dim W, so induction provides a (one
dimensional) submodule X complementary to W' in W: W = W' @ X.
But V/W' = W/W’'® W/W'. It follows that V = W @ X, since the
dimensions add up to dim ¥V and since W N X = 0.

Now we may assume that W is irreducible. (We may also assume without
loss of generality that L acts faithfully on V.) Let ¢ = ¢, be the Casimir
element of ¢ (6.2). Since ¢ commutes with ¢(L), ¢ is actually an L-module
endomorphism of V; in particular, c(W) < W and Ker c is an L-submodule
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of V. Because L acts trivially on V/W (i.e., ¢(L) sends V into W), ¢ must do
likewise (as a linear combination of products of elements ¢(x)). So ¢ has
trace 0 on V/W. On the other hand, ¢ acts as a scalar on the irreducible
L-submodule W (Schur’s Lemma); this scalar cannot be 0, because that
would force Try(c) = 0, contrary to the conclusion of (6.2). It follows that
Ker ¢ is a one dimensional L-submodule of ¥ which intersects W trivially.
This is the desired complement to W.

Now we can attack the general case. Let W be a nonzero submodule
of V: 0->W—-V—V/W—0. Let Hom(V, W) be the space of linear maps
V — W, viewed as L-module (6.1). Let #~ be the subspace of Hom (V, W)
consisting of those maps whose restriction to W is a scalar multiplication.
¥" is actually an L-submodule: Say f|, = a.ly; then for xe L, we W,
x.f) W) = x. f(w)—f(x.w) = a(x.w)—a(x.w) = 0, so x.f|y = 0. Let #” be
the subspace of ¥~ consisting of those f whose restriction to W is zero. The
preceding calculation shows that ¥~ is also an L-submodule and that L
maps ¥ into #". Moreover, ¥ /#" has dimension one, because each fe ¥~
is determined (modulo #") by the scalar f|,.. This places us precisely in the
situation 0 —~ %~ — ¥~ — F — 0 already treated above.

According to the first part of the proof, ¥~ has a one dimensional sub-
module complementary to #”. Let f: V — W span it, so after multiplying by
a nonzero scalar we may assume that f|y = 1y. To say that L Kkills f is
just to say that 0 = (x. f) (v) = x.f(v)—f(x.v), i.e., that f is an L-homo-
morphism. Therefore Ker f is an L-submodule of V. Since f maps V into W
and acts as 1y on W, we conclude that ¥V = W @ Ker f, as desired. [J

6.4. Preservation of Jordan decomposition

Weyl’s Theorem is of course fundamental for the study of representations
of a semisimple Lie algebra L. We offer here a more immediate application,
to the problem of showing that the abstract Jordan decomposition (5.4) is
compatible with the various linear representations of L.

Theorem. Let L < gl(V) be a semisimple linear Lie algebra (V finite
dimensional). Then L contains the semisimple and nilpotent parts in gl(V) of
all its elements. In particular, the abstract and usual Jordan decompositions
in L coincide.

Proof. The last assertion follows from the first, because each type of
Jordan decomposition is unique (4.2, 5.4).

Let x € L be arbitrary, with Jordan decomposition x = x,+x, in gl(¥).
The problem is just to show that x,, x, lie in L. Since ad x(L) < L, it follows
from Proposition 4.2(c) that ad x,(L) < L and ad x,(L) < L, where ad =
ad 4y). In other words, x,, x, € Ny,(L) = N, which is a Lie subalgebra
of gl(V) including L as an ideal. If we could show that N = L we’d be done,
but unfortunately this is false: e.g., since L < sl(V) (Lemma 6.3), the scalars
lie in N but not in L. Therefore we need to get x;, x, into a smaller subalgebra
than N, which can be shown to equal L. If W is any L-submodule of V,
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define Ly = {ye gl(V)|y(W) = W and Tr(y|y) = 0}. For example, L, =
sl(V). Since L = [LL]), it is clear that L lies in all such L,. Set L’ = inter-
section of N with all spaces Ly,. Clearly, L’ is a subalgebra of N including
L as an ideal (but notice that L’ does exclude the scalars). Even more is
true: If x € L, then x,, x, also lie in Ly, and therefore in L.

It remains to prove that L = L’. L’ being a finite dimensional L-module,
Weyl’s Theorem (6.3) permits us to write L’ = L+ M for some L-submodule
M, where the sum is direct. But [L, L'] = L (since L’ = N), so the action of
L on M is trivial. Let W be any irreducible L-submodule of V. If ye M,
then [L, y] = 0, so Schur’s Lemma implies that y acts on W as a scalar.
On the other hand, Tr(y|y) = 0 because y € L,,. Therefore y acts on W as
zero. V can be written as a direct sum of irreducible L-submodules (by Weyl’s
Theorem), so in fact y = 0. This means M =0, L= L'. []

Corollary. Let L be a semisimple Lie algebra, ¢: L — gl(V) a (finite
dimensional) representation of L. If x = s+n is the abstract Jordan decom-
position of x € L, then ¢(x) = ¢(s)+¢(n) is the usual Jordan decomposition

of $(x).

Proof. The algebra (L) is spanned by the eigenvectors of ad,, ¢(s),
since L has this property relative to ad s; therefore, ad 41, ¢(s) is semisimple.
Similarly, ad 4,y $(n) is nilpotent, and it commutes with ad 4, ¢(s). Accord-
ingly, é(x) = ¢(s)+¢(n) is the abstract Jordan decomposition of ¢(x) in the
semisimple Lie algebra ¢(L) (5.4). Applying the theorem, we get the desired
conclusion. []

Exercises

1. Using the standard basis for L = sl(2, F), write down the Casimir element
of the adjoint representation of L (cf. Exercise 5.5). Do the same thing
for the usual (3-dimensional) representation of sl(3, F), first computing
dual bases relative to the trace form.

. Let ¥V be an L-module. Prove that V is a direct sum of irreducible sub-

modules if and only if each L-submodule of ¥ possesses a complement.

Tt L is solvable, every irreducible representation of L is one dimensional.

4. Use Weyl’s Theorem to give another proof that for L semisimple, ad L =

Der L (Theorem 5.3). [If 6 € Der L, make the direct sum F+ L into an
L-module via the rule x.(a, y) = (0, ad(x)+[xy]). Then consider a com-
plement to the submodule L.]

S. A Lie algebra L for which Rad L = Z(L) is called reductive. (Examples:

L abelian, L semisimple, L = gl(n, F).)

(a) If L is reductive, then L is a completely reducible ad L-module. [If
ad L # 0, use Weyl’s Theorem.] In particular, L is the direct sum of
Z(L) and [LL], with [ LL] semisimple.

(b) If L is a classical linear Lie algebra (1.2), then L is semisimple. [Cf.
Exercise 1.9.]

o

w
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(c) If L is a completely reducible ad L-module, then L is reductive.

(d) If L is reductive, then all finite dimensional representations of L in
which Z(L) is represented by semisimple endomorphisms are completely
reducible.

6. Let L be a simple Lie algebra. Let 8(x,y) and y(x,y) be two symmetric
associative bilinear forms on L. If B,y are nondegenerate, prove that 8
and y are proportional. [Use Schur’s Lemma.]

7. 1t will be seen later on that 3l(n,F) is actually simple. Assuming this and
using Exercise 6, prove that the Killing form k on 8l(n,F) is related to
the ordinary trace form by k(x,y)=2nTr(xy).

8. If L is a Lie algebra, then L acts (via ad) on (L® L)*, which may be
identified with the space of all bilinear forms 8 on L. Prove that 8 is
associative if and only if L.8=0.

9. Let L’ be a semisimple subalgebra of a semisimple Lie algebra L. If
x e L', its Jordan decomposition in L’ is also its Jordan decomposition
in L.

Notes

The proof of Weyl’s Theorem is based on Brauer [1]. The original
proof was quite different, using integration on compact Lie groups, cf.
Freudenthal, de Vries [1]. For Theorem 6.4 we have followed Bourbaki [1].

7. Representations of sl(2, F)

In this section (as in §6) all modules will be assumed to be finite dimen-
sional over F. L denotes sl(2, F), whose standard basis consists of

_ (01 _(00y ,_(1 0
*=1oo)>7 " \10)> "= 1o -1
(Example 2.1). Then [hx] = 2x, [hy] = —2p, [xy] = h.

7.1. Weights and maximal vectors

Let V be an arbitrary L-module. Since 4 is semisimple, Corollary 6.4
implies that & acts diagonally on V. (The assumption that F is algebraically
closed insures that all the required eigenvalues already lie in F.) This yields a
decomposition of ¥V as direct sum of eigenspaces V, = {ve V|hov = A},
X e F. Of course, the subspace ¥, still makes sense (and is 0) when A is not an
eigenvalue for the endomorphism of ¥ which represents A. Whenever ¥, # 0,
we call A a weight of 4 in ¥V and we call V; a weight space.

Lemma. Ifve V,, then xve V,,, and yveV,_,.
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Proof. h.(x.v) = [h, x]v+x.hv = 2xv+Ax.v = (A+2)x.v, and similarly
fory. 01
Remark. The lemma implies that x, y are represented by nilpotent

endomorphisms of V; but this already follows from Theorem 6.4.

Since dim ¥ < oo, and the sum ¥V =[] ¥, is direct, there must exist
A€F

V, # O such that V,,, = 0. (Thanks to the lemma, x.v = 0 for any ve V,.)
For such A, any nonzero vector in ¥, will be called a maximal vector of

weight A.

7.2. Classification of irreducible modules

Assume now that ¥V is an irreducible L-module. Choose a maximal
vector, say vg € Vs set v_y = 0, v; = (1/i")y'v, (i = 0).

Lemma. (a) hv; = (A—2i)y,,

(®) yov; = (i+ Doy,
() xv;,=@A—i+Dv;_; (= 0).

Proof. (a) follows from repeated application of Lemma 7.1, while (b) is
just the definition. To prove (c), use induction on 7, the case i = 0 being
clear (since v_, = 0, by convention). Observe that

iX.0; = X.p.0;_4 (by definition)
=[x, Y]-v;—1 +y. X0,y
= hw;_{+y.x.0;_4
= A=2(—Dw;- +(A—i+2)y.v;_,
(by (a) and induction)
=A=2i+2;,_+(E—-1) A=i+2v,_, (by (b))
= iA—i+Do;_;.

Then divide both sides by i. [
Thanks to formula (a), the nonzero v; are all linearly independent. But

dim ¥V < oo. Let m be the smallest integer for which v, # 0, v,,, = 0;
evidently v,.; = 0 for all i > 0. Taken together, formulas (a)—-(c) show

that the subspace of V with basis (vq, vq,...,0,) is an L-submodule,
different from 0. Because V is irreducible, this subspace must be all of V.
Moreover, relative to the ordered basis (vg, vy, . . ., v,), the matrices of the

endomorphisms representing x, y, h can be written down explicitly; notice
that A yields a diagonal matrix, while x and y yield (respectively) upper and
lower triangular nilpotent matrices.

A closer look at formula (c) reveals a striking fact: for i = m+1, the
left side is 0, whereas the right side is (A—m)v,,. Since v,, # 0, we conclude
that A = m. In other words, the weight of a maximal vector is a nonnegative
integer (one less than dim V). We call it the highest weight of V. Moreover,
each weight u occurs with multiplicity one (i.e., dim V, =1 if V, # 0),
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by formula (a); in particular, since V" determines A uniquely (A = dim V' —1),
the maximal vector v, is the only possible one in V (apart from nonzero
scalar multiples). To summarize:

Theorem. Let V be an irreducible module for L = s1(2, F).

(@) Relative to h, V is the direct sum of weight spaces V,, p. = m, m—2,
oy, —(m—=2), —m, where m+1 = dim V and dim V, = 1 for each p.

(b) V has (up to nonzero scalar multiples) a unique maximal vector, whose
weight (called the highest weight of V') is m.

(¢) The action of L on V is given explicitly by the above formulas, if the
basis is chosen in the prescribed fashion. In particular, there exists at most one
irreducible L-module (up to isomorphism) of each possible dimension m+1,
m=>=0. []

Corollary. Let V be any (finite dimensional) L-module, L = sl(2, F).
Then the eigenvalues of h on V are all integers, and each occurs along with its
negative (an equal number of times). Moreover, in any decomposition of V
into direct sum of irreducible submodules, the number of summands is precisely
dim Vy+dim V,.

Proof. If V = 0, there is nothing to prove. Otherwise use Weyl’s Theorem
(6.3) to write V' as direct sum of irreducible submodules. The latter are
described by the theorem, so the first assertion of the corollary is obvious.
For the second, just observe that each irreducible L-module has a unique
occurrence of either the weight 0 or else the weight 1 (but not both). []

For the purposes of this chapter, the theorem and corollary just proved
are quite adequate. However, it is unreasonable to leave the subject before
investigating whether or not sl(2, F) does have an irreducible module of
each possible highest weight m = 0, 1, 2, ... . Of course, we already know
how to construct suitable modules in low dimensions: the trivial module
(dimension 1), the natural representation (dimension 2), the adjoint repre-
sentation (dimension 3). For arbitrary m > 0, formulas (a)-(c) of Lemma
7.2 can actually be used to define an irreducible representation of L on an
m+ l-dimensional vector space over F with basis (vq, vy, ..., v,), called
V(m). As is customary, the (easy) verification will be left for the reader
(Exercise 3). (For a general existence theorem, see (20.3) below.)

One further observation: The symmetry in the structure of V{(m) can be
made more obvious if we exploit the discussion of exponentials in (2.3).
Let ¢: L — gl(V(m)) be the irreducible representation of highest weight m.
Then ¢(x), #(y) are nilpotent endomorphisms, in view of the formulas above,
so we can define an automorphism of V(m) by 7 = exp ¢(x) exp ¢(—y)
exp #(x). We may as well assume m > 0, so the representation is faithful
(L being simple). The discussion in (2.3) shows that conjugating ¢(h) by =
has precisely the same effect as applying exp (ad ¢(x)) exp (ad #(—y))
exp (ad #(x)) to ¢(h). But ¢(L) is isomorphic to L, so this can be calculated
just as in (2.3). Conclusion: r¢(h)r~' = —¢(h), or rd(h) = —$(h)r. From
this we see at once that = sends the basis vector v; of weight m—2i to the
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basis vector v, _; of weight —(m—2i). (The discussion in (2.3) was limited
to the special case m = 1.) More generally, if V is any finite dimensional
L-module, then = interchanges positive and negative weight spaces.

Exercises
(In these exercises, L = sl(2, F).)

1. Use Lie’s Theorem to prove the existence of a maximal vector in an
arbitrary finite dimensional L-module. [Look at the subalgebra B spanned
by & and x.]

2. M = sl(3, F) contains a copy of L in its upper left-hand 2x 2 position.
Write M as direct sum of irreducible L-submodules (M viewed as L-
module via the adjoint representation): V(0) @ V(1) @ V(1) @ V(2).

3. Verify that formulas (a)-(c) of Lemma 7.2 do define an irreducible
representation of L. [To show that they define a representation, it suffices to
show that the matrices corresponding to x, y, h satisfy the same structural
equations as x, y, h.]

4. The irreducible representation of L of highest weight m can also be
realized ‘““naturally”, as follows. Let X, Y be a basis for the two dimen-
sional vector space F2, on which L acts as usual. Let # = F[X, Y] be the
polynomial algebra in two variables, and extend the action of L to #
by the derivation rule: z. fg = (z.f)g+/(z.g), forz € L, f, g € Z#. Show that
this extension is well defined and that # becomes an L-module. Then show
that the subspace of homogeneous polynomials of degree m, with basis X™,
Xmly,..., XY™ ! Y™ s invariant under L and irreducible of
highest weight m.

5. Suppose char F=p > 0, L = sl(2, F). Prove that the representation
V(m) of L constructed as in Exercise 3 or 4 is irreducible so long as the
highest weight m is strictly less than p, but reducible when m = p.

6. Decompose the tensor product of the two L-modules ¥(3), ¥(7) into the
sum of irreducible submodules: V(4) @ V(6) @ V(8) @ V(10). Try to
develop a general formula for the decomposition of V(m) ® V(n).

7. In this exercise we construct certain infinite dimensional L-modules. Let
A € F be an arbitrary scalar. Let Z(A) be a vector space over F with count-
ably infinite basis (vy, vy, V3, . . .).

(a) Prove that formulas (a)-(c) of Lemma 7.2 define an L-module
structure on Z(A), and that every nonzero L-submodule of Z(A)
contains at least one maximal vector.

(b) Suppose A+ 1= is a nonnegative integer. Prove that v, is a maxi-
mal vector (e.g., A= —1, i=0). This induces an L-module homomor-
phism Z(,u)i Z (), p=A—2i, sending v, to v. Show that ¢ is a
monomorphism, and that Im ¢, Z(A)/Im ¢ are both irreducible L-
modules (but Z (A) fails to be completely reducible when i >0).

(c) Suppose A+1 is not a nonnegative integer. Prove that Z(\) is
irreducible.
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8. Root space decomposition

Throughout this section L denotes a (nonzero) semisimple Lie algebra.
We are going to study in detail the structure of L, via its adjoint repre-
sentation. Our main tools will be the Killing form, and Theorems 6.4, 7.2
(which rely heavily on Weyl’s Theorem). The reader should bear in mind
the special case L =g](2,F) (or more generally, sl(n,F)) as a guide to what is
going on.

8.1. Maximal toral subalgebras and roots

If L consisted entirely of nilpotent (i.e., ad-nilpotent) elements, then L
would be nilpotent (Engel’s Theorem). This not being the case, we can find
x € L whose semisimple part x; ini the abstract Jordan decomposition (5.4)
is nonzero. This shows that L possesses nonzero subalgebras (e.g., the span
of such x;) consisting of semisimple elements. Call such a subalgebra toral.
The following lemma is roughly analogous to Engel’s Theorem.

Lemma. A toral subalgebra of L is abelian.

Proof. Let T be toral. We have to show that ad;y x = O for all x in T.
Since ad x is diagonalizable (ad x being semisimple and F being algebraically
closed), this amounts to showing that ad; x has no nonzero eigenvalues.
Suppose, on the contrary, that [xy] = ay (a # 0) for some nonzero y in T.
Then adr y(x) = —ay is itself an eigenvector of ad; y, of eigenvalue 0. On
the other hand, we can write x as a linear combination of eigenvectors of
adr y (¥ being semisimple also); after applying ad; y to x, all that is left is a
combination of eigenvectors which belong to nonzero eigenvalues, if any.
This contradicts the preceding conclusion. []

Now fix a maximal toral subalgebra H of L, i.e., a toral subalgebra not
properly included in any other. (The notation H is less natural than T, but
more traditional.) For example, if L = sl(n, F), it is easy to verify (Exercise
1) that H can be taken to be the set of diagonal matrices (of trace 0).

Since H is abelian (by the above lemma), ad, H is a commuting family of
semisimple endomorphisms of L. According to a standard result in linear
algebra, ad, H is simultaneously diagonalizable. In other words, L is the
direct sum of the subspaces L, = {x e L|[hx] = «(h)x for all h € H}, where
o ranges over H*. Notice that L, is simply C,(H), the centralizer of H; it
includes H, thanks to the lemma. The set of all nonzero « € H* for which
L, # 0 is denoted by @; the elements of @ are called the roots of L relative
to H (and are finite in number). With this notation we have a root space
decomposition (or Cartan decomposition): (*) L = C,(H)® [] L,. When

aed
L = sl(n, F), for example, the reader will observe that (*) corresponds to
the decomposition of L given by the standard basis (1.2). Our aim in what
follows is first to prove that H = C,(H), then to describe the set of roots in

more detail, and ultimately to show that ® characterizes L completely.
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We begin with a few simple observations about the root space decom-
position.

Proposition. For all «, B H*, [L, Lyl  Lyyp. If x€L,, & # 0, then ad x
is nilpotent. If «, B e H*, and «+B # O, then L, is orthogonal to L, relative
to the Killing form «k of L.

Proof. The first assertion follows from the Jacobi identity: x e L,, y € L,
h e H imply that ad h([xy]) = [[Ax]y] +[x[Ay]] = «(h) [xy]+B(h) [xy] = (x+B)
(h) [xy]. The second assertion is an immediate consequence of the first.

For the remaining assertion, find 4 € H for which («+p8) (h) # 0. Then
if xeL,, y e L;, associativity of the form allows us to write «([hx], y) =
_K([Xh]s y) = —K(X, [hy])s or oc(h) K(X, y) = —B(h) K(xs y)a or (a+/8) (h)
k(x,y) = 0. This forces «(x, y) = 0. [I

Corollary. The restriction of the Killing form to Ly, = C,(H) is non-
degenerate.

Proof. We know from Theorem 5.1 that « is nondegenerate. On the other
hand, L, is orthogonal to all L, (x €®), according to the proposition. If
z e L, is orthogonal to L, as well, then «(z, L) = 0, forcing z = 0. []

8.2. Centralizer of H

We shall need a fact from linear algebra, whose proof is trivial:

Lemma. If x, y are commuting endomorphisms of a finite dimensional
vector space, with y nilpotent, then xy is nilpotent; in particular, Tr(xy) = 0. [

Proposition. Let H be a maximal toral subalgebra of L. Then H = C(H).

Proof. We proceed in steps. Write C = C(H).

(1) C contains the semisimple and nilpotent parts of its elements. To say
that x belongs to C,(H) is to say that ad x maps the subspace H of L into
the subspace 0. By Proposition 4.2, (ad x), and (ad x), have the same property.
But by (5.4), (ad x), = ad x, and (ad x), = ad x,.

(2) All semisimple elements of C lie in H. If x is semisimple and centralizes
H, then H+ Fx (which is obviously an abelian subalgebra of L) is toral: the
sum of commuting semisimple elements is again semisimple (4.2). By
maximality of H, H+Fx = H, so x € H.

(3) The restriction of k to H is nondegenerate. Let «(h, H) = 0 for some
h e H; we must show that A = 0. If x e C is nilpotent, then the fact that
[xH] = 0 and the fact that ad x is nilpotent together imply (by the above
lemma) that Tr(ad x ad y) = O for all y € H, or «(x, H) = 0. But then (1)
and (2) imply that «(h, C) = 0, whence & = 0 (the restriction of « to C being
nondegenerate by the Corollary to Proposition 8.1).

(4) Cisnilpotent. If x € C is semisimple, then x € H by (2), and ad¢ x(=0) is
certainly nilpotent. On the other hand, if x € C is nilpotent, then ad; x is a
fortiori nilpotent. Now let x € C be arbitrary, x = x,+ x,. Since both x,, x,
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lie in C by (1), ad¢ x is the sum of commuting nilpotents and is therefore
itself nilpotent. By Engel’s Theorem, C is nilpotent.

(5) HN[CC] = 0. Since « is associative and [HC] = 0, «(H, [CC]) = 0.
Now use (3).

(6) C is abelian. Otherwise [CC] # 0. C being nilpotent, by (4), Z(C) N
[CC] # 0 (Lemma 3.3). Let z # O lie in this intersection. By (2) and (5), z
cannot be semisimple. Its nilpotent part » is therefore nonzero and lies in C,
by (1), hence also lies in Z(C) by Proposition 4.2. But then our lemma
implies that «(n, C) = 0, contrary to Corollary 8.1.

(7) C = H. Otherwise C contains a nonzero nilpotent element, x, by (1),
(2). According to the lemma and (6), «(x, y) = Tr(ad x ad y) = O for all
y € C, contradicting Corollary 8.1. []

Corollary. The restriction of « to H is nondegenerate. []

The corollary allows us to identify H with H*: to ¢ € H* corresponds
the (unique) element 7, € H satisfying ¢(h) = «(t,4, h) for all h e H. In par-
ticular, ® corresponds to the subset {f,; « e ®} of H.

8.3. Orthogonality properties

In this subsection we shall obtain more precise information about the
root space decomposition, using the Killing form. We already saw (Pro-
position 8.1) that «(L,, L;) =0 if o, Be H*, «+f # 0; in particular,
«(H, L,) = O for all « € ®, so that (Proposition 8.2) the restriction of « to H
is nondegenerate.

Proposition. (a) ® spans H*.

) If x€®, then —a .

(¢c) Let ac®, xe L, yeL_, Then|[xy] = «(x, y)t, (t, as in (8.2)).

) If « €D, then [L,L_,] is one dimensional, with basis t,.

(e) a(ty) = «(t, t) # 0, for o e®.

(f) If « e ® and x, is any nonzero element of L,, then there exists y, € L_,
such that x,, y,, h, = [x,y.] span a three dimensional simple subalgebra of L

isomorphic to sl(2, F) via x,— (3 (1)) > Va2 ((1) 8) s hy ((1) _?) :
2t,

K(ta’ ta)’

Proof. (a) If @ fails to span H*, then (by duality) there exists nonzero
h e H such that «(h) = 0 for all « «®. But this means that [s, L,] = 0 for
all « e®. Since [hH] = 0, this in turn forces [hL] = 0, or he Z(L) = 0,
which is absurd.

(b) Let e ®. If —a ¢ @ (ie., L, = 0), then «(L,, L;) = O for all ¢ H*
(Proposition 8.1). Therefore «(L,, L) = 0, contradicting the nondegeneracy
of «.

(c) Let «e®, xeL,, yeL_, Let he H be arbitrary. The associativity
of « implies: «(h, [xy]) = x([hx], y) = a(W)x(x, ¥) = k(t,, h)x(x, y) =

(&) A,

h, = —h

—ar
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we(i(x, Y)t,, h) = x(h, x(x,)t,). This says that H is orthogonal to [xy] — «(x, )¢,
forcing [xy] = x(x, y)t, (Corollary 8.2).

(d) Part (c) shows that ¢, spans [L,L_,], provided [L,L_,] # 0. Let
0# xeL, If «(x, L_,) = 0, then «(x, L) = 0 (cf. proof of (b)), which is
absurd since « is nondegenerate. Therefore we can find 0 # ye L_, for
which «(x, y) # 0. By (¢), [xy] # O.

(e) Suppose «(t,) = 0, so that [t,x] =0 =[t,y] for all xeL, yeL_,.
As in (d), we can find such x, y satisfying «(x, y) # 0. Modifying one or the
other by a scalar, we may as well assume that «(x, y) = 1. Then [xy] = ¢,,
by (c). It follows that the subspace S of L spanned by x, y, ¢, is a three
dimensional solvable algebra, S ~ ad, S < gl(L). In particular, ad, s is
nilpotent for all s € [SS] (Corollary 4.1A), so ad, ¢, is both semisimple and
nilpotent, i.e., ad, 7, = 0. This says that 7, € Z(L) = 0, contrary to choice
of t,.

(f) Given 0 # x,e L,, find y, € L_, such that «(x,, y,) = . This

(4 1)
is possible in view of (e) and the fact that «(x,, L_,) # 0. Set h, = 2t,/«(t,,
t). Then [x,y,] = h,, by (c). Moreover, [h,x,] = 2z [tx] = 2u1,) X, =
o1,) (1)
2x,, and similarly, [(4,y,] = —2y,. So x,, y,, h, span a three dimensional
subalgebra of L with the same multiplication table as $1(2, F) (Example 2.1).
(g) Recall that ¢, is defined by «(z,, h) = «(h) (h e H). This shows that

t, = —t_,, and in view of the way A, is defined, the assertion follows. []

8.4. Integrality properties

For each pair of roots «, —a« (Proposition 8.3(b)), let S, ~ sl(2, F) be a
subalgebra of L constructed as in Proposition 8.3(f). Thanks to Weyl’s
Theorem and Theorem 7.2, we have a complete description of all (finite
dimensional) S,-modules; in particular, we can describe ad S,,.

Fix « € ®. Consider first the subspace M of L spanned by H along with
all root spaces of the form L., (c € F¥). This is an S,-submodule of L, thanks
to Proposition 8.1. The weights of h, on M are the integers 0 and 2¢ =
ca(h,) (for nonzero ¢ such that L., # 0), in view of Theorem 7.2. In particular,
all ¢ occurring here must be integral multiples of 1/2. Now S, acts trivially
on Ker «, a subspace of codimension one in H complementary to Fh,,
while on the other hand S, is itself an irreducible S,-submodule of M.
Taken together, Ker « and S, exhaust the occurrences of the weight O for 4,.
Therefore, the only even weights occurring in M are 0, +2. This proves that
2« is not a root, i.e., that twice a root is never a root. But then (1/2)« cannot
be a root either, so 1 cannot occur as a weight of 4, in M. The Corollary
of Theorem 7.2 implies that M = H+S,. In particular, dim L, = 1 (so S,
is uniquely determined as the subalgebra of L generated by L, and L_,), and
the only multiples of a root « which are roots are + «.

Next we examine how §, acts on root spaces Ly, B # *a«. Set K = Z
i€l
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Ls. ;.- According to the preceding paragraph, each root space is one
dimensional and no 8+ix can equal 0; so K is an S,-submodule of L, with
one dimensional weight spaces for the distinct integral weights B(h,)+2i
(i € Z such that 8+ ia € ®). Obviously, not both 0 and 1 can occur as weights
of this form, so the Corollary of Theorem 7.2 implies that K is irreducible.
The highest (resp. lowest) weight must be B(h,)+2q (resp. B(h,)—2r) if
q (resp. r) is the largest integer for which 8+ qa (resp. B—ra) is a root.
Moreover, the weights on K form an arithmetic progression with difference 2
(Theorem 7.2), which implies that the roots 8+ ix form a string (the a-string
through B)B—ra, ..., B, ..., B+qa. Notice too that (B—ra) (h,) = —(B+qx)
(h,), or B(h,) = r—gq. Finally, observe that if «, B, «a+Bc®, then ad L,
maps L, onto L,z (Lemma 7.2), ie., [L,Lg]l= L, 4.
To summarize:

Proposition. (a) « € ® implies dim L, = 1. In particular, S, = L,+L_,
+H,(H, =[L,L_,), and for given nonzero x, € L,, there exists a unique
Yo € L, satisfying [x,y,] = h,.

(b) If a € ®, the only scalar multiples of « which are roots are o« and — a.

(¢) If a, Be D, then B(h,) € Z, and B—B(h)x € ®. (The numbers B(h,) are
called Cartan integers.)

d) If a, B, a+Be®, then [L,Ly) = L, ;.

(e) Let o, Bc®, B # +a. Let r, q be (respectively) the largest integers
for which B—ra, B+qo are roots. Then all B+ixe® (—r < i < q), and
Blhy) = r—q.

(f) L is generated (as Lie algebra) by the root spaces L,. [

8.5. Rationality properties. Summary

L is a semisimple Lie algebra (over the algebraically closed field F of
characteristic 0), H a maximal toral subalgebra, ® = H* the set of roots of

L (relative to H), L = H + [] L, the root space decomposition.
aed

Since the restriction to H of the Killing form is nondegenerate (Corollary
8.2), we may transfer the form to H*, letting (y, 8) = «(t,, t;) forall y, 8 H*.
We know that ® spans H* (Proposition 8.3(a)), so choose a basis «, ..., a,

2
of H* consisting of roots. If 8 € ®, we can then write B uniquely as 8 = ) c,;,
i=1

where ¢; € F. We claim that in fact ¢; € Q. To see this, we use a little linear
{

algebra. For each j =1,..., 7, (B, «)) = Y c(«;, «;), so multiplying both
I3

sides by 2/(«;, @) yields: 2(8, «,)/(xj, 2;) = ¥ Ao, o)
i=1 (a_,', aj)
as a system of £ equations in £ unknowns c;, with integral (in particular,
rational) coefficients, thanks to Proposition-8.4(c). Since («,...,a,) is a
basis of H*, and the form is nondegenerate, the matrix ((«;, «;));<;, j<¢ IS

nonsingular; so the same is true of the coefficient matrix of this system of

¢;. This may be viewed
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equations. We conclude that the equations already possess a unique
solution over Q, thereby proving our claim.

We have just shown that the Q-subspace Eq of H* spanned by all the
roots has Q-dimension /=dim; H*. Even more is true: Recall that for
Ape H*, A p)=x(t,t)=Za(t)a(t,)=2(a,A)(a,p), where the sum is
over a € ®. In partlcular for B e @, (B B)=3(a,B)%. Dividing by (5,8)%
we get 1/(B.8)=2(a,B)*/(B,B)’, the latter in Q because 2(a, 8)/(B,B)
e Z by Proposition 8.4(c). Therefore (8,8) € Q, and in turn, (a,B) € Q. It
follows that all inner products of vectors in Eg, are rational, so we obtain a
nondegenerate form on Eq. As above, (\,A)=2(a,A)? so that for Ae Eos
(A,A) is a sum of squares of rational numbers and hence is positive (unless
A=0). Therefore, the form on Eq is positive definite.

Now let E be the real vector space obtained by extending the base field
from Q to R: E = R ®¢ Eq. The form extends canonically to E and is positive
definite, by the preceding remarks, i.e., E is a euclidean space. ® contains a
basis of E, and dimg E = 7. The following theorem summarizes the basic
facts about @: cf. Propositions 8.3(a) (b) and 8.4(b) (c).

Theorem. L, H, ®, E as above. Then:

(a) © spans E, and 0 does not belong to ®.
b) If « €® then —a e ®, but no other scalar multiple of o is a root.

() If o, B, then B — ((ﬁ :;) cd.
@ Ifo, Bed, then "D e 7. ¢

In the language of Chapter I11, the theorem asserts that @ is a root system
in the real euclidean space E. We have therefore set up a correspondence
(L, H)— (®, E). Pairs (@, E) will be completely classified in Chapter I1I.
Later (Chapters IV and V) it will be seen that the correspondence here is
actually 1-1, and that the apparent dependence of @ on the choice of H is
not essential.

Exercises

1. If L is a classical linear Lie algebra of type A,, B,, C,, or D, (see (1.2)),
prove that the set of all diagonal matrices in L is a maximal toral sub-
algebra, of dimension 7. (Cf. Exercise 2.8.)

2. For each algebra in Exercise 1, determine the roots and root spaces.
How are the various %, expressed in terms of the basis for H given in
(1.2)?

3. If L is of classical type, compute explicitly the restriction of the Killing
form to the maximal toral subalgebra described in Exercise 1.

4. If L = sl(2, F), prove that each maximal toral subalgebra is one
dimensional.

5. If L is semisimple, H a maximal toral subalgebra, prove that H is self-
normalizing (i.e., H = N (H)).
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6.

7.

10.

11.

Compute the basis of sl(n, F) which is dual (via the Killing form) to
the standard basis. (Cf. Exercise 5.5.)

Let L be semisimple, H a maximal toral subalgebra. If 4 e H, prove
that Cp(h) is reductive (in the sense of Exercise 6.5). Prove that H
contains elements 4 for which C (h) = H; for which A in sl(n, F) is this
true?

. For sl(n, F) (and other classical algebras), calculate explicitly the root

strings and Cartan integers. In particular, prove that all Cartan integers

2(a, B)/(B, B), « # £, for sl(n, F) are 0, 1.
Prove that every three dimensional semisimple Lie algebra has the same

root system as sl(2, F), hence is isomorphic to sl(2, F).
Prove that no four, five or seven dimensional semisimple Lie algebras

exist.
If (o, B) > 0, prove that a—B e ® (a, B € D). Is the converse true?

Notes

The use of maximal toral subalgebras rather than the more traditional

(but equivalent) Cartan subalgebras is suggested by the parallel theory of
semisimple algebraic groups: cf. Borel [1], Seligman [2], Winter [1].



